1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 03:33:20 +01:00
llvm-mirror/include/llvm/Analysis/RegionInfo.h
Hongbin Zheng b116afd873 [LLVM] [RegionInfo] Introduce getExitingBlocks to get all predecessors of Exit in the current region.
This function will return true if all predecessors of Exit are in the current region, false otherwise.

Differential Revision: https://reviews.llvm.org/D36210

llvm-svn: 313611
2017-09-19 04:59:27 +00:00

1033 lines
36 KiB
C++

//===- RegionInfo.h - SESE region analysis ----------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Calculate a program structure tree built out of single entry single exit
// regions.
// The basic ideas are taken from "The Program Structure Tree - Richard Johnson,
// David Pearson, Keshav Pingali - 1994", however enriched with ideas from "The
// Refined Process Structure Tree - Jussi Vanhatalo, Hagen Voelyer, Jana
// Koehler - 2009".
// The algorithm to calculate these data structures however is completely
// different, as it takes advantage of existing information already available
// in (Post)dominace tree and dominance frontier passes. This leads to a simpler
// and in practice hopefully better performing algorithm. The runtime of the
// algorithms described in the papers above are both linear in graph size,
// O(V+E), whereas this algorithm is not, as the dominance frontier information
// itself is not, but in practice runtime seems to be in the order of magnitude
// of dominance tree calculation.
//
// WARNING: LLVM is generally very concerned about compile time such that
// the use of additional analysis passes in the default
// optimization sequence is avoided as much as possible.
// Specifically, if you do not need the RegionInfo, but dominance
// information could be sufficient please base your work only on
// the dominator tree. Most passes maintain it, such that using
// it has often near zero cost. In contrast RegionInfo is by
// default not available, is not maintained by existing
// transformations and there is no intention to do so.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_REGIONINFO_H
#define LLVM_ANALYSIS_REGIONINFO_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/PassManager.h"
#include "llvm/Pass.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <map>
#include <memory>
#include <set>
#include <string>
#include <type_traits>
#include <vector>
namespace llvm {
class DominanceFrontier;
class DominatorTree;
class Loop;
class LoopInfo;
struct PostDominatorTree;
class Region;
template <class RegionTr> class RegionBase;
class RegionInfo;
template <class RegionTr> class RegionInfoBase;
class RegionNode;
// Class to be specialized for different users of RegionInfo
// (i.e. BasicBlocks or MachineBasicBlocks). This is only to avoid needing to
// pass around an unreasonable number of template parameters.
template <class FuncT_>
struct RegionTraits {
// FuncT
// BlockT
// RegionT
// RegionNodeT
// RegionInfoT
using BrokenT = typename FuncT_::UnknownRegionTypeError;
};
template <>
struct RegionTraits<Function> {
using FuncT = Function;
using BlockT = BasicBlock;
using RegionT = Region;
using RegionNodeT = RegionNode;
using RegionInfoT = RegionInfo;
using DomTreeT = DominatorTree;
using DomTreeNodeT = DomTreeNode;
using DomFrontierT = DominanceFrontier;
using PostDomTreeT = PostDominatorTree;
using InstT = Instruction;
using LoopT = Loop;
using LoopInfoT = LoopInfo;
static unsigned getNumSuccessors(BasicBlock *BB) {
return BB->getTerminator()->getNumSuccessors();
}
};
/// @brief Marker class to iterate over the elements of a Region in flat mode.
///
/// The class is used to either iterate in Flat mode or by not using it to not
/// iterate in Flat mode. During a Flat mode iteration all Regions are entered
/// and the iteration returns every BasicBlock. If the Flat mode is not
/// selected for SubRegions just one RegionNode containing the subregion is
/// returned.
template <class GraphType>
class FlatIt {};
/// @brief A RegionNode represents a subregion or a BasicBlock that is part of a
/// Region.
template <class Tr>
class RegionNodeBase {
friend class RegionBase<Tr>;
public:
using BlockT = typename Tr::BlockT;
using RegionT = typename Tr::RegionT;
private:
/// This is the entry basic block that starts this region node. If this is a
/// BasicBlock RegionNode, then entry is just the basic block, that this
/// RegionNode represents. Otherwise it is the entry of this (Sub)RegionNode.
///
/// In the BBtoRegionNode map of the parent of this node, BB will always map
/// to this node no matter which kind of node this one is.
///
/// The node can hold either a Region or a BasicBlock.
/// Use one bit to save, if this RegionNode is a subregion or BasicBlock
/// RegionNode.
PointerIntPair<BlockT *, 1, bool> entry;
/// @brief The parent Region of this RegionNode.
/// @see getParent()
RegionT *parent;
protected:
/// @brief Create a RegionNode.
///
/// @param Parent The parent of this RegionNode.
/// @param Entry The entry BasicBlock of the RegionNode. If this
/// RegionNode represents a BasicBlock, this is the
/// BasicBlock itself. If it represents a subregion, this
/// is the entry BasicBlock of the subregion.
/// @param isSubRegion If this RegionNode represents a SubRegion.
inline RegionNodeBase(RegionT *Parent, BlockT *Entry,
bool isSubRegion = false)
: entry(Entry, isSubRegion), parent(Parent) {}
public:
RegionNodeBase(const RegionNodeBase &) = delete;
RegionNodeBase &operator=(const RegionNodeBase &) = delete;
/// @brief Get the parent Region of this RegionNode.
///
/// The parent Region is the Region this RegionNode belongs to. If for
/// example a BasicBlock is element of two Regions, there exist two
/// RegionNodes for this BasicBlock. Each with the getParent() function
/// pointing to the Region this RegionNode belongs to.
///
/// @return Get the parent Region of this RegionNode.
inline RegionT *getParent() const { return parent; }
/// @brief Get the entry BasicBlock of this RegionNode.
///
/// If this RegionNode represents a BasicBlock this is just the BasicBlock
/// itself, otherwise we return the entry BasicBlock of the Subregion
///
/// @return The entry BasicBlock of this RegionNode.
inline BlockT *getEntry() const { return entry.getPointer(); }
/// @brief Get the content of this RegionNode.
///
/// This can be either a BasicBlock or a subregion. Before calling getNodeAs()
/// check the type of the content with the isSubRegion() function call.
///
/// @return The content of this RegionNode.
template <class T> inline T *getNodeAs() const;
/// @brief Is this RegionNode a subregion?
///
/// @return True if it contains a subregion. False if it contains a
/// BasicBlock.
inline bool isSubRegion() const { return entry.getInt(); }
};
//===----------------------------------------------------------------------===//
/// @brief A single entry single exit Region.
///
/// A Region is a connected subgraph of a control flow graph that has exactly
/// two connections to the remaining graph. It can be used to analyze or
/// optimize parts of the control flow graph.
///
/// A <em> simple Region </em> is connected to the remaining graph by just two
/// edges. One edge entering the Region and another one leaving the Region.
///
/// An <em> extended Region </em> (or just Region) is a subgraph that can be
/// transform into a simple Region. The transformation is done by adding
/// BasicBlocks that merge several entry or exit edges so that after the merge
/// just one entry and one exit edge exists.
///
/// The \e Entry of a Region is the first BasicBlock that is passed after
/// entering the Region. It is an element of the Region. The entry BasicBlock
/// dominates all BasicBlocks in the Region.
///
/// The \e Exit of a Region is the first BasicBlock that is passed after
/// leaving the Region. It is not an element of the Region. The exit BasicBlock,
/// postdominates all BasicBlocks in the Region.
///
/// A <em> canonical Region </em> cannot be constructed by combining smaller
/// Regions.
///
/// Region A is the \e parent of Region B, if B is completely contained in A.
///
/// Two canonical Regions either do not intersect at all or one is
/// the parent of the other.
///
/// The <em> Program Structure Tree</em> is a graph (V, E) where V is the set of
/// Regions in the control flow graph and E is the \e parent relation of these
/// Regions.
///
/// Example:
///
/// \verbatim
/// A simple control flow graph, that contains two regions.
///
/// 1
/// / |
/// 2 |
/// / \ 3
/// 4 5 |
/// | | |
/// 6 7 8
/// \ | /
/// \ |/ Region A: 1 -> 9 {1,2,3,4,5,6,7,8}
/// 9 Region B: 2 -> 9 {2,4,5,6,7}
/// \endverbatim
///
/// You can obtain more examples by either calling
///
/// <tt> "opt -regions -analyze anyprogram.ll" </tt>
/// or
/// <tt> "opt -view-regions-only anyprogram.ll" </tt>
///
/// on any LLVM file you are interested in.
///
/// The first call returns a textual representation of the program structure
/// tree, the second one creates a graphical representation using graphviz.
template <class Tr>
class RegionBase : public RegionNodeBase<Tr> {
friend class RegionInfoBase<Tr>;
using FuncT = typename Tr::FuncT;
using BlockT = typename Tr::BlockT;
using RegionInfoT = typename Tr::RegionInfoT;
using RegionT = typename Tr::RegionT;
using RegionNodeT = typename Tr::RegionNodeT;
using DomTreeT = typename Tr::DomTreeT;
using LoopT = typename Tr::LoopT;
using LoopInfoT = typename Tr::LoopInfoT;
using InstT = typename Tr::InstT;
using BlockTraits = GraphTraits<BlockT *>;
using InvBlockTraits = GraphTraits<Inverse<BlockT *>>;
using SuccIterTy = typename BlockTraits::ChildIteratorType;
using PredIterTy = typename InvBlockTraits::ChildIteratorType;
// Information necessary to manage this Region.
RegionInfoT *RI;
DomTreeT *DT;
// The exit BasicBlock of this region.
// (The entry BasicBlock is part of RegionNode)
BlockT *exit;
using RegionSet = std::vector<std::unique_ptr<RegionT>>;
// The subregions of this region.
RegionSet children;
using BBNodeMapT = std::map<BlockT *, std::unique_ptr<RegionNodeT>>;
// Save the BasicBlock RegionNodes that are element of this Region.
mutable BBNodeMapT BBNodeMap;
/// Check if a BB is in this Region. This check also works
/// if the region is incorrectly built. (EXPENSIVE!)
void verifyBBInRegion(BlockT *BB) const;
/// Walk over all the BBs of the region starting from BB and
/// verify that all reachable basic blocks are elements of the region.
/// (EXPENSIVE!)
void verifyWalk(BlockT *BB, std::set<BlockT *> *visitedBB) const;
/// Verify if the region and its children are valid regions (EXPENSIVE!)
void verifyRegionNest() const;
public:
/// @brief Create a new region.
///
/// @param Entry The entry basic block of the region.
/// @param Exit The exit basic block of the region.
/// @param RI The region info object that is managing this region.
/// @param DT The dominator tree of the current function.
/// @param Parent The surrounding region or NULL if this is a top level
/// region.
RegionBase(BlockT *Entry, BlockT *Exit, RegionInfoT *RI, DomTreeT *DT,
RegionT *Parent = nullptr);
RegionBase(const RegionBase &) = delete;
RegionBase &operator=(const RegionBase &) = delete;
/// Delete the Region and all its subregions.
~RegionBase();
/// @brief Get the entry BasicBlock of the Region.
/// @return The entry BasicBlock of the region.
BlockT *getEntry() const {
return RegionNodeBase<Tr>::getEntry();
}
/// @brief Replace the entry basic block of the region with the new basic
/// block.
///
/// @param BB The new entry basic block of the region.
void replaceEntry(BlockT *BB);
/// @brief Replace the exit basic block of the region with the new basic
/// block.
///
/// @param BB The new exit basic block of the region.
void replaceExit(BlockT *BB);
/// @brief Recursively replace the entry basic block of the region.
///
/// This function replaces the entry basic block with a new basic block. It
/// also updates all child regions that have the same entry basic block as
/// this region.
///
/// @param NewEntry The new entry basic block.
void replaceEntryRecursive(BlockT *NewEntry);
/// @brief Recursively replace the exit basic block of the region.
///
/// This function replaces the exit basic block with a new basic block. It
/// also updates all child regions that have the same exit basic block as
/// this region.
///
/// @param NewExit The new exit basic block.
void replaceExitRecursive(BlockT *NewExit);
/// @brief Get the exit BasicBlock of the Region.
/// @return The exit BasicBlock of the Region, NULL if this is the TopLevel
/// Region.
BlockT *getExit() const { return exit; }
/// @brief Get the parent of the Region.
/// @return The parent of the Region or NULL if this is a top level
/// Region.
RegionT *getParent() const {
return RegionNodeBase<Tr>::getParent();
}
/// @brief Get the RegionNode representing the current Region.
/// @return The RegionNode representing the current Region.
RegionNodeT *getNode() const {
return const_cast<RegionNodeT *>(
reinterpret_cast<const RegionNodeT *>(this));
}
/// @brief Get the nesting level of this Region.
///
/// An toplevel Region has depth 0.
///
/// @return The depth of the region.
unsigned getDepth() const;
/// @brief Check if a Region is the TopLevel region.
///
/// The toplevel region represents the whole function.
bool isTopLevelRegion() const { return exit == nullptr; }
/// @brief Return a new (non-canonical) region, that is obtained by joining
/// this region with its predecessors.
///
/// @return A region also starting at getEntry(), but reaching to the next
/// basic block that forms with getEntry() a (non-canonical) region.
/// NULL if such a basic block does not exist.
RegionT *getExpandedRegion() const;
/// @brief Return the first block of this region's single entry edge,
/// if existing.
///
/// @return The BasicBlock starting this region's single entry edge,
/// else NULL.
BlockT *getEnteringBlock() const;
/// @brief Return the first block of this region's single exit edge,
/// if existing.
///
/// @return The BasicBlock starting this region's single exit edge,
/// else NULL.
BlockT *getExitingBlock() const;
/// @brief Collect all blocks of this region's single exit edge, if existing.
///
/// @return True if this region contains all the predecessors of the exit.
bool getExitingBlocks(SmallVectorImpl<BlockT *> &Exitings) const;
/// @brief Is this a simple region?
///
/// A region is simple if it has exactly one exit and one entry edge.
///
/// @return True if the Region is simple.
bool isSimple() const;
/// @brief Returns the name of the Region.
/// @return The Name of the Region.
std::string getNameStr() const;
/// @brief Return the RegionInfo object, that belongs to this Region.
RegionInfoT *getRegionInfo() const { return RI; }
/// PrintStyle - Print region in difference ways.
enum PrintStyle { PrintNone, PrintBB, PrintRN };
/// @brief Print the region.
///
/// @param OS The output stream the Region is printed to.
/// @param printTree Print also the tree of subregions.
/// @param level The indentation level used for printing.
void print(raw_ostream &OS, bool printTree = true, unsigned level = 0,
PrintStyle Style = PrintNone) const;
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// @brief Print the region to stderr.
void dump() const;
#endif
/// @brief Check if the region contains a BasicBlock.
///
/// @param BB The BasicBlock that might be contained in this Region.
/// @return True if the block is contained in the region otherwise false.
bool contains(const BlockT *BB) const;
/// @brief Check if the region contains another region.
///
/// @param SubRegion The region that might be contained in this Region.
/// @return True if SubRegion is contained in the region otherwise false.
bool contains(const RegionT *SubRegion) const {
// Toplevel Region.
if (!getExit())
return true;
return contains(SubRegion->getEntry()) &&
(contains(SubRegion->getExit()) ||
SubRegion->getExit() == getExit());
}
/// @brief Check if the region contains an Instruction.
///
/// @param Inst The Instruction that might be contained in this region.
/// @return True if the Instruction is contained in the region otherwise
/// false.
bool contains(const InstT *Inst) const { return contains(Inst->getParent()); }
/// @brief Check if the region contains a loop.
///
/// @param L The loop that might be contained in this region.
/// @return True if the loop is contained in the region otherwise false.
/// In case a NULL pointer is passed to this function the result
/// is false, except for the region that describes the whole function.
/// In that case true is returned.
bool contains(const LoopT *L) const;
/// @brief Get the outermost loop in the region that contains a loop.
///
/// Find for a Loop L the outermost loop OuterL that is a parent loop of L
/// and is itself contained in the region.
///
/// @param L The loop the lookup is started.
/// @return The outermost loop in the region, NULL if such a loop does not
/// exist or if the region describes the whole function.
LoopT *outermostLoopInRegion(LoopT *L) const;
/// @brief Get the outermost loop in the region that contains a basic block.
///
/// Find for a basic block BB the outermost loop L that contains BB and is
/// itself contained in the region.
///
/// @param LI A pointer to a LoopInfo analysis.
/// @param BB The basic block surrounded by the loop.
/// @return The outermost loop in the region, NULL if such a loop does not
/// exist or if the region describes the whole function.
LoopT *outermostLoopInRegion(LoopInfoT *LI, BlockT *BB) const;
/// @brief Get the subregion that starts at a BasicBlock
///
/// @param BB The BasicBlock the subregion should start.
/// @return The Subregion if available, otherwise NULL.
RegionT *getSubRegionNode(BlockT *BB) const;
/// @brief Get the RegionNode for a BasicBlock
///
/// @param BB The BasicBlock at which the RegionNode should start.
/// @return If available, the RegionNode that represents the subregion
/// starting at BB. If no subregion starts at BB, the RegionNode
/// representing BB.
RegionNodeT *getNode(BlockT *BB) const;
/// @brief Get the BasicBlock RegionNode for a BasicBlock
///
/// @param BB The BasicBlock for which the RegionNode is requested.
/// @return The RegionNode representing the BB.
RegionNodeT *getBBNode(BlockT *BB) const;
/// @brief Add a new subregion to this Region.
///
/// @param SubRegion The new subregion that will be added.
/// @param moveChildren Move the children of this region, that are also
/// contained in SubRegion into SubRegion.
void addSubRegion(RegionT *SubRegion, bool moveChildren = false);
/// @brief Remove a subregion from this Region.
///
/// The subregion is not deleted, as it will probably be inserted into another
/// region.
/// @param SubRegion The SubRegion that will be removed.
RegionT *removeSubRegion(RegionT *SubRegion);
/// @brief Move all direct child nodes of this Region to another Region.
///
/// @param To The Region the child nodes will be transferred to.
void transferChildrenTo(RegionT *To);
/// @brief Verify if the region is a correct region.
///
/// Check if this is a correctly build Region. This is an expensive check, as
/// the complete CFG of the Region will be walked.
void verifyRegion() const;
/// @brief Clear the cache for BB RegionNodes.
///
/// After calling this function the BasicBlock RegionNodes will be stored at
/// different memory locations. RegionNodes obtained before this function is
/// called are therefore not comparable to RegionNodes abtained afterwords.
void clearNodeCache();
/// @name Subregion Iterators
///
/// These iterators iterator over all subregions of this Region.
//@{
using iterator = typename RegionSet::iterator;
using const_iterator = typename RegionSet::const_iterator;
iterator begin() { return children.begin(); }
iterator end() { return children.end(); }
const_iterator begin() const { return children.begin(); }
const_iterator end() const { return children.end(); }
//@}
/// @name BasicBlock Iterators
///
/// These iterators iterate over all BasicBlocks that are contained in this
/// Region. The iterator also iterates over BasicBlocks that are elements of
/// a subregion of this Region. It is therefore called a flat iterator.
//@{
template <bool IsConst>
class block_iterator_wrapper
: public df_iterator<
typename std::conditional<IsConst, const BlockT, BlockT>::type *> {
using super =
df_iterator<
typename std::conditional<IsConst, const BlockT, BlockT>::type *>;
public:
using Self = block_iterator_wrapper<IsConst>;
using value_type = typename super::value_type;
// Construct the begin iterator.
block_iterator_wrapper(value_type Entry, value_type Exit)
: super(df_begin(Entry)) {
// Mark the exit of the region as visited, so that the children of the
// exit and the exit itself, i.e. the block outside the region will never
// be visited.
super::Visited.insert(Exit);
}
// Construct the end iterator.
block_iterator_wrapper() : super(df_end<value_type>((BlockT *)nullptr)) {}
/*implicit*/ block_iterator_wrapper(super I) : super(I) {}
// FIXME: Even a const_iterator returns a non-const BasicBlock pointer.
// This was introduced for backwards compatibility, but should
// be removed as soon as all users are fixed.
BlockT *operator*() const {
return const_cast<BlockT *>(super::operator*());
}
};
using block_iterator = block_iterator_wrapper<false>;
using const_block_iterator = block_iterator_wrapper<true>;
block_iterator block_begin() { return block_iterator(getEntry(), getExit()); }
block_iterator block_end() { return block_iterator(); }
const_block_iterator block_begin() const {
return const_block_iterator(getEntry(), getExit());
}
const_block_iterator block_end() const { return const_block_iterator(); }
using block_range = iterator_range<block_iterator>;
using const_block_range = iterator_range<const_block_iterator>;
/// @brief Returns a range view of the basic blocks in the region.
inline block_range blocks() {
return block_range(block_begin(), block_end());
}
/// @brief Returns a range view of the basic blocks in the region.
///
/// This is the 'const' version of the range view.
inline const_block_range blocks() const {
return const_block_range(block_begin(), block_end());
}
//@}
/// @name Element Iterators
///
/// These iterators iterate over all BasicBlock and subregion RegionNodes that
/// are direct children of this Region. It does not iterate over any
/// RegionNodes that are also element of a subregion of this Region.
//@{
using element_iterator =
df_iterator<RegionNodeT *, df_iterator_default_set<RegionNodeT *>, false,
GraphTraits<RegionNodeT *>>;
using const_element_iterator =
df_iterator<const RegionNodeT *,
df_iterator_default_set<const RegionNodeT *>, false,
GraphTraits<const RegionNodeT *>>;
element_iterator element_begin();
element_iterator element_end();
iterator_range<element_iterator> elements() {
return make_range(element_begin(), element_end());
}
const_element_iterator element_begin() const;
const_element_iterator element_end() const;
iterator_range<const_element_iterator> elements() const {
return make_range(element_begin(), element_end());
}
//@}
};
/// Print a RegionNode.
template <class Tr>
inline raw_ostream &operator<<(raw_ostream &OS, const RegionNodeBase<Tr> &Node);
//===----------------------------------------------------------------------===//
/// @brief Analysis that detects all canonical Regions.
///
/// The RegionInfo pass detects all canonical regions in a function. The Regions
/// are connected using the parent relation. This builds a Program Structure
/// Tree.
template <class Tr>
class RegionInfoBase {
friend class RegionInfo;
friend class MachineRegionInfo;
using BlockT = typename Tr::BlockT;
using FuncT = typename Tr::FuncT;
using RegionT = typename Tr::RegionT;
using RegionInfoT = typename Tr::RegionInfoT;
using DomTreeT = typename Tr::DomTreeT;
using DomTreeNodeT = typename Tr::DomTreeNodeT;
using PostDomTreeT = typename Tr::PostDomTreeT;
using DomFrontierT = typename Tr::DomFrontierT;
using BlockTraits = GraphTraits<BlockT *>;
using InvBlockTraits = GraphTraits<Inverse<BlockT *>>;
using SuccIterTy = typename BlockTraits::ChildIteratorType;
using PredIterTy = typename InvBlockTraits::ChildIteratorType;
using BBtoBBMap = DenseMap<BlockT *, BlockT *>;
using BBtoRegionMap = DenseMap<BlockT *, RegionT *>;
RegionInfoBase();
RegionInfoBase(RegionInfoBase &&Arg)
: DT(std::move(Arg.DT)), PDT(std::move(Arg.PDT)), DF(std::move(Arg.DF)),
TopLevelRegion(std::move(Arg.TopLevelRegion)),
BBtoRegion(std::move(Arg.BBtoRegion)) {
Arg.wipe();
}
RegionInfoBase &operator=(RegionInfoBase &&RHS) {
DT = std::move(RHS.DT);
PDT = std::move(RHS.PDT);
DF = std::move(RHS.DF);
TopLevelRegion = std::move(RHS.TopLevelRegion);
BBtoRegion = std::move(RHS.BBtoRegion);
RHS.wipe();
return *this;
}
virtual ~RegionInfoBase();
DomTreeT *DT;
PostDomTreeT *PDT;
DomFrontierT *DF;
/// The top level region.
RegionT *TopLevelRegion = nullptr;
/// Map every BB to the smallest region, that contains BB.
BBtoRegionMap BBtoRegion;
protected:
/// \brief Update refences to a RegionInfoT held by the RegionT managed here
///
/// This is a post-move helper. Regions hold references to the owning
/// RegionInfo object. After a move these need to be fixed.
template<typename TheRegionT>
void updateRegionTree(RegionInfoT &RI, TheRegionT *R) {
if (!R)
return;
R->RI = &RI;
for (auto &SubR : *R)
updateRegionTree(RI, SubR.get());
}
private:
/// \brief Wipe this region tree's state without releasing any resources.
///
/// This is essentially a post-move helper only. It leaves the object in an
/// assignable and destroyable state, but otherwise invalid.
void wipe() {
DT = nullptr;
PDT = nullptr;
DF = nullptr;
TopLevelRegion = nullptr;
BBtoRegion.clear();
}
// Check whether the entries of BBtoRegion for the BBs of region
// SR are correct. Triggers an assertion if not. Calls itself recursively for
// subregions.
void verifyBBMap(const RegionT *SR) const;
// Returns true if BB is in the dominance frontier of
// entry, because it was inherited from exit. In the other case there is an
// edge going from entry to BB without passing exit.
bool isCommonDomFrontier(BlockT *BB, BlockT *entry, BlockT *exit) const;
// Check if entry and exit surround a valid region, based on
// dominance tree and dominance frontier.
bool isRegion(BlockT *entry, BlockT *exit) const;
// Saves a shortcut pointing from entry to exit.
// This function may extend this shortcut if possible.
void insertShortCut(BlockT *entry, BlockT *exit, BBtoBBMap *ShortCut) const;
// Returns the next BB that postdominates N, while skipping
// all post dominators that cannot finish a canonical region.
DomTreeNodeT *getNextPostDom(DomTreeNodeT *N, BBtoBBMap *ShortCut) const;
// A region is trivial, if it contains only one BB.
bool isTrivialRegion(BlockT *entry, BlockT *exit) const;
// Creates a single entry single exit region.
RegionT *createRegion(BlockT *entry, BlockT *exit);
// Detect all regions starting with bb 'entry'.
void findRegionsWithEntry(BlockT *entry, BBtoBBMap *ShortCut);
// Detects regions in F.
void scanForRegions(FuncT &F, BBtoBBMap *ShortCut);
// Get the top most parent with the same entry block.
RegionT *getTopMostParent(RegionT *region);
// Build the region hierarchy after all region detected.
void buildRegionsTree(DomTreeNodeT *N, RegionT *region);
// Update statistic about created regions.
virtual void updateStatistics(RegionT *R) = 0;
// Detect all regions in function and build the region tree.
void calculate(FuncT &F);
public:
RegionInfoBase(const RegionInfoBase &) = delete;
RegionInfoBase &operator=(const RegionInfoBase &) = delete;
static bool VerifyRegionInfo;
static typename RegionT::PrintStyle printStyle;
void print(raw_ostream &OS) const;
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void dump() const;
#endif
void releaseMemory();
/// @brief Get the smallest region that contains a BasicBlock.
///
/// @param BB The basic block.
/// @return The smallest region, that contains BB or NULL, if there is no
/// region containing BB.
RegionT *getRegionFor(BlockT *BB) const;
/// @brief Set the smallest region that surrounds a basic block.
///
/// @param BB The basic block surrounded by a region.
/// @param R The smallest region that surrounds BB.
void setRegionFor(BlockT *BB, RegionT *R);
/// @brief A shortcut for getRegionFor().
///
/// @param BB The basic block.
/// @return The smallest region, that contains BB or NULL, if there is no
/// region containing BB.
RegionT *operator[](BlockT *BB) const;
/// @brief Return the exit of the maximal refined region, that starts at a
/// BasicBlock.
///
/// @param BB The BasicBlock the refined region starts.
BlockT *getMaxRegionExit(BlockT *BB) const;
/// @brief Find the smallest region that contains two regions.
///
/// @param A The first region.
/// @param B The second region.
/// @return The smallest region containing A and B.
RegionT *getCommonRegion(RegionT *A, RegionT *B) const;
/// @brief Find the smallest region that contains two basic blocks.
///
/// @param A The first basic block.
/// @param B The second basic block.
/// @return The smallest region that contains A and B.
RegionT *getCommonRegion(BlockT *A, BlockT *B) const {
return getCommonRegion(getRegionFor(A), getRegionFor(B));
}
/// @brief Find the smallest region that contains a set of regions.
///
/// @param Regions A vector of regions.
/// @return The smallest region that contains all regions in Regions.
RegionT *getCommonRegion(SmallVectorImpl<RegionT *> &Regions) const;
/// @brief Find the smallest region that contains a set of basic blocks.
///
/// @param BBs A vector of basic blocks.
/// @return The smallest region that contains all basic blocks in BBS.
RegionT *getCommonRegion(SmallVectorImpl<BlockT *> &BBs) const;
RegionT *getTopLevelRegion() const { return TopLevelRegion; }
/// @brief Clear the Node Cache for all Regions.
///
/// @see Region::clearNodeCache()
void clearNodeCache() {
if (TopLevelRegion)
TopLevelRegion->clearNodeCache();
}
void verifyAnalysis() const;
};
class Region;
class RegionNode : public RegionNodeBase<RegionTraits<Function>> {
public:
inline RegionNode(Region *Parent, BasicBlock *Entry, bool isSubRegion = false)
: RegionNodeBase<RegionTraits<Function>>(Parent, Entry, isSubRegion) {}
bool operator==(const Region &RN) const {
return this == reinterpret_cast<const RegionNode *>(&RN);
}
};
class Region : public RegionBase<RegionTraits<Function>> {
public:
Region(BasicBlock *Entry, BasicBlock *Exit, RegionInfo *RI, DominatorTree *DT,
Region *Parent = nullptr);
~Region();
bool operator==(const RegionNode &RN) const {
return &RN == reinterpret_cast<const RegionNode *>(this);
}
};
class RegionInfo : public RegionInfoBase<RegionTraits<Function>> {
public:
using Base = RegionInfoBase<RegionTraits<Function>>;
explicit RegionInfo();
RegionInfo(RegionInfo &&Arg) : Base(std::move(static_cast<Base &>(Arg))) {
updateRegionTree(*this, TopLevelRegion);
}
RegionInfo &operator=(RegionInfo &&RHS) {
Base::operator=(std::move(static_cast<Base &>(RHS)));
updateRegionTree(*this, TopLevelRegion);
return *this;
}
~RegionInfo() override;
/// Handle invalidation explicitly.
bool invalidate(Function &F, const PreservedAnalyses &PA,
FunctionAnalysisManager::Invalidator &);
// updateStatistics - Update statistic about created regions.
void updateStatistics(Region *R) final;
void recalculate(Function &F, DominatorTree *DT, PostDominatorTree *PDT,
DominanceFrontier *DF);
#ifndef NDEBUG
/// @brief Opens a viewer to show the GraphViz visualization of the regions.
///
/// Useful during debugging as an alternative to dump().
void view();
/// @brief Opens a viewer to show the GraphViz visualization of this region
/// without instructions in the BasicBlocks.
///
/// Useful during debugging as an alternative to dump().
void viewOnly();
#endif
};
class RegionInfoPass : public FunctionPass {
RegionInfo RI;
public:
static char ID;
explicit RegionInfoPass();
~RegionInfoPass() override;
RegionInfo &getRegionInfo() { return RI; }
const RegionInfo &getRegionInfo() const { return RI; }
/// @name FunctionPass interface
//@{
bool runOnFunction(Function &F) override;
void releaseMemory() override;
void verifyAnalysis() const override;
void getAnalysisUsage(AnalysisUsage &AU) const override;
void print(raw_ostream &OS, const Module *) const override;
void dump() const;
//@}
};
/// \brief Analysis pass that exposes the \c RegionInfo for a function.
class RegionInfoAnalysis : public AnalysisInfoMixin<RegionInfoAnalysis> {
friend AnalysisInfoMixin<RegionInfoAnalysis>;
static AnalysisKey Key;
public:
using Result = RegionInfo;
RegionInfo run(Function &F, FunctionAnalysisManager &AM);
};
/// \brief Printer pass for the \c RegionInfo.
class RegionInfoPrinterPass : public PassInfoMixin<RegionInfoPrinterPass> {
raw_ostream &OS;
public:
explicit RegionInfoPrinterPass(raw_ostream &OS);
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
};
/// \brief Verifier pass for the \c RegionInfo.
struct RegionInfoVerifierPass : PassInfoMixin<RegionInfoVerifierPass> {
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
};
template <>
template <>
inline BasicBlock *
RegionNodeBase<RegionTraits<Function>>::getNodeAs<BasicBlock>() const {
assert(!isSubRegion() && "This is not a BasicBlock RegionNode!");
return getEntry();
}
template <>
template <>
inline Region *
RegionNodeBase<RegionTraits<Function>>::getNodeAs<Region>() const {
assert(isSubRegion() && "This is not a subregion RegionNode!");
auto Unconst = const_cast<RegionNodeBase<RegionTraits<Function>> *>(this);
return reinterpret_cast<Region *>(Unconst);
}
template <class Tr>
inline raw_ostream &operator<<(raw_ostream &OS,
const RegionNodeBase<Tr> &Node) {
using BlockT = typename Tr::BlockT;
using RegionT = typename Tr::RegionT;
if (Node.isSubRegion())
return OS << Node.template getNodeAs<RegionT>()->getNameStr();
else
return OS << Node.template getNodeAs<BlockT>()->getName();
}
extern template class RegionBase<RegionTraits<Function>>;
extern template class RegionNodeBase<RegionTraits<Function>>;
extern template class RegionInfoBase<RegionTraits<Function>>;
} // end namespace llvm
#endif // LLVM_ANALYSIS_REGIONINFO_H