mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 20:23:11 +01:00
0241a57a8c
This is a follow-up to https://reviews.llvm.org/D100387. std::vector is not the best storage container here. My local benchmark (counting the number of instruction when compiling the sqlite3 amalgamation) yields the following: - std::vector<BitVector> -> 5,860,885,896 - SmallVector<BitWord, 0> -> 5,858,991,997 - SmallVector<BitWord> -> 5,817,679,224 Differential Revision: https://reviews.llvm.org/D100744
844 lines
26 KiB
C++
844 lines
26 KiB
C++
//===- llvm/ADT/BitVector.h - Bit vectors -----------------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the BitVector class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_ADT_BITVECTOR_H
|
|
#define LLVM_ADT_BITVECTOR_H
|
|
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/DenseMapInfo.h"
|
|
#include "llvm/ADT/iterator_range.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <climits>
|
|
#include <cstdint>
|
|
#include <cstdlib>
|
|
#include <cstring>
|
|
#include <utility>
|
|
|
|
namespace llvm {
|
|
|
|
/// ForwardIterator for the bits that are set.
|
|
/// Iterators get invalidated when resize / reserve is called.
|
|
template <typename BitVectorT> class const_set_bits_iterator_impl {
|
|
const BitVectorT &Parent;
|
|
int Current = 0;
|
|
|
|
void advance() {
|
|
assert(Current != -1 && "Trying to advance past end.");
|
|
Current = Parent.find_next(Current);
|
|
}
|
|
|
|
public:
|
|
const_set_bits_iterator_impl(const BitVectorT &Parent, int Current)
|
|
: Parent(Parent), Current(Current) {}
|
|
explicit const_set_bits_iterator_impl(const BitVectorT &Parent)
|
|
: const_set_bits_iterator_impl(Parent, Parent.find_first()) {}
|
|
const_set_bits_iterator_impl(const const_set_bits_iterator_impl &) = default;
|
|
|
|
const_set_bits_iterator_impl operator++(int) {
|
|
auto Prev = *this;
|
|
advance();
|
|
return Prev;
|
|
}
|
|
|
|
const_set_bits_iterator_impl &operator++() {
|
|
advance();
|
|
return *this;
|
|
}
|
|
|
|
unsigned operator*() const { return Current; }
|
|
|
|
bool operator==(const const_set_bits_iterator_impl &Other) const {
|
|
assert(&Parent == &Other.Parent &&
|
|
"Comparing iterators from different BitVectors");
|
|
return Current == Other.Current;
|
|
}
|
|
|
|
bool operator!=(const const_set_bits_iterator_impl &Other) const {
|
|
assert(&Parent == &Other.Parent &&
|
|
"Comparing iterators from different BitVectors");
|
|
return Current != Other.Current;
|
|
}
|
|
};
|
|
|
|
class BitVector {
|
|
typedef uintptr_t BitWord;
|
|
|
|
enum { BITWORD_SIZE = (unsigned)sizeof(BitWord) * CHAR_BIT };
|
|
|
|
static_assert(BITWORD_SIZE == 64 || BITWORD_SIZE == 32,
|
|
"Unsupported word size");
|
|
|
|
using Storage = SmallVector<BitWord>;
|
|
|
|
Storage Bits; // Actual bits.
|
|
unsigned Size; // Size of bitvector in bits.
|
|
|
|
public:
|
|
typedef unsigned size_type;
|
|
|
|
// Encapsulation of a single bit.
|
|
class reference {
|
|
|
|
BitWord *WordRef;
|
|
unsigned BitPos;
|
|
|
|
public:
|
|
reference(BitVector &b, unsigned Idx) {
|
|
WordRef = &b.Bits[Idx / BITWORD_SIZE];
|
|
BitPos = Idx % BITWORD_SIZE;
|
|
}
|
|
|
|
reference() = delete;
|
|
reference(const reference&) = default;
|
|
|
|
reference &operator=(reference t) {
|
|
*this = bool(t);
|
|
return *this;
|
|
}
|
|
|
|
reference& operator=(bool t) {
|
|
if (t)
|
|
*WordRef |= BitWord(1) << BitPos;
|
|
else
|
|
*WordRef &= ~(BitWord(1) << BitPos);
|
|
return *this;
|
|
}
|
|
|
|
operator bool() const {
|
|
return ((*WordRef) & (BitWord(1) << BitPos)) != 0;
|
|
}
|
|
};
|
|
|
|
typedef const_set_bits_iterator_impl<BitVector> const_set_bits_iterator;
|
|
typedef const_set_bits_iterator set_iterator;
|
|
|
|
const_set_bits_iterator set_bits_begin() const {
|
|
return const_set_bits_iterator(*this);
|
|
}
|
|
const_set_bits_iterator set_bits_end() const {
|
|
return const_set_bits_iterator(*this, -1);
|
|
}
|
|
iterator_range<const_set_bits_iterator> set_bits() const {
|
|
return make_range(set_bits_begin(), set_bits_end());
|
|
}
|
|
|
|
/// BitVector default ctor - Creates an empty bitvector.
|
|
BitVector() : Size(0) {}
|
|
|
|
/// BitVector ctor - Creates a bitvector of specified number of bits. All
|
|
/// bits are initialized to the specified value.
|
|
explicit BitVector(unsigned s, bool t = false)
|
|
: Bits(NumBitWords(s), 0 - (BitWord)t), Size(s) {
|
|
if (t)
|
|
clear_unused_bits();
|
|
}
|
|
|
|
/// empty - Tests whether there are no bits in this bitvector.
|
|
bool empty() const { return Size == 0; }
|
|
|
|
/// size - Returns the number of bits in this bitvector.
|
|
size_type size() const { return Size; }
|
|
|
|
/// count - Returns the number of bits which are set.
|
|
size_type count() const {
|
|
unsigned NumBits = 0;
|
|
for (auto Bit : Bits)
|
|
NumBits += countPopulation(Bit);
|
|
return NumBits;
|
|
}
|
|
|
|
/// any - Returns true if any bit is set.
|
|
bool any() const {
|
|
return any_of(Bits, [](BitWord Bit) { return Bit != 0; });
|
|
}
|
|
|
|
/// all - Returns true if all bits are set.
|
|
bool all() const {
|
|
for (unsigned i = 0; i < Size / BITWORD_SIZE; ++i)
|
|
if (Bits[i] != ~BitWord(0))
|
|
return false;
|
|
|
|
// If bits remain check that they are ones. The unused bits are always zero.
|
|
if (unsigned Remainder = Size % BITWORD_SIZE)
|
|
return Bits[Size / BITWORD_SIZE] == (BitWord(1) << Remainder) - 1;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// none - Returns true if none of the bits are set.
|
|
bool none() const {
|
|
return !any();
|
|
}
|
|
|
|
/// find_first_in - Returns the index of the first set / unset bit,
|
|
/// depending on \p Set, in the range [Begin, End).
|
|
/// Returns -1 if all bits in the range are unset / set.
|
|
int find_first_in(unsigned Begin, unsigned End, bool Set = true) const {
|
|
assert(Begin <= End && End <= Size);
|
|
if (Begin == End)
|
|
return -1;
|
|
|
|
unsigned FirstWord = Begin / BITWORD_SIZE;
|
|
unsigned LastWord = (End - 1) / BITWORD_SIZE;
|
|
|
|
// Check subsequent words.
|
|
// The code below is based on search for the first _set_ bit. If
|
|
// we're searching for the first _unset_, we just take the
|
|
// complement of each word before we use it and apply
|
|
// the same method.
|
|
for (unsigned i = FirstWord; i <= LastWord; ++i) {
|
|
BitWord Copy = Bits[i];
|
|
if (!Set)
|
|
Copy = ~Copy;
|
|
|
|
if (i == FirstWord) {
|
|
unsigned FirstBit = Begin % BITWORD_SIZE;
|
|
Copy &= maskTrailingZeros<BitWord>(FirstBit);
|
|
}
|
|
|
|
if (i == LastWord) {
|
|
unsigned LastBit = (End - 1) % BITWORD_SIZE;
|
|
Copy &= maskTrailingOnes<BitWord>(LastBit + 1);
|
|
}
|
|
if (Copy != 0)
|
|
return i * BITWORD_SIZE + countTrailingZeros(Copy);
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/// find_last_in - Returns the index of the last set bit in the range
|
|
/// [Begin, End). Returns -1 if all bits in the range are unset.
|
|
int find_last_in(unsigned Begin, unsigned End) const {
|
|
assert(Begin <= End && End <= Size);
|
|
if (Begin == End)
|
|
return -1;
|
|
|
|
unsigned LastWord = (End - 1) / BITWORD_SIZE;
|
|
unsigned FirstWord = Begin / BITWORD_SIZE;
|
|
|
|
for (unsigned i = LastWord + 1; i >= FirstWord + 1; --i) {
|
|
unsigned CurrentWord = i - 1;
|
|
|
|
BitWord Copy = Bits[CurrentWord];
|
|
if (CurrentWord == LastWord) {
|
|
unsigned LastBit = (End - 1) % BITWORD_SIZE;
|
|
Copy &= maskTrailingOnes<BitWord>(LastBit + 1);
|
|
}
|
|
|
|
if (CurrentWord == FirstWord) {
|
|
unsigned FirstBit = Begin % BITWORD_SIZE;
|
|
Copy &= maskTrailingZeros<BitWord>(FirstBit);
|
|
}
|
|
|
|
if (Copy != 0)
|
|
return (CurrentWord + 1) * BITWORD_SIZE - countLeadingZeros(Copy) - 1;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
/// find_first_unset_in - Returns the index of the first unset bit in the
|
|
/// range [Begin, End). Returns -1 if all bits in the range are set.
|
|
int find_first_unset_in(unsigned Begin, unsigned End) const {
|
|
return find_first_in(Begin, End, /* Set = */ false);
|
|
}
|
|
|
|
/// find_last_unset_in - Returns the index of the last unset bit in the
|
|
/// range [Begin, End). Returns -1 if all bits in the range are set.
|
|
int find_last_unset_in(unsigned Begin, unsigned End) const {
|
|
assert(Begin <= End && End <= Size);
|
|
if (Begin == End)
|
|
return -1;
|
|
|
|
unsigned LastWord = (End - 1) / BITWORD_SIZE;
|
|
unsigned FirstWord = Begin / BITWORD_SIZE;
|
|
|
|
for (unsigned i = LastWord + 1; i >= FirstWord + 1; --i) {
|
|
unsigned CurrentWord = i - 1;
|
|
|
|
BitWord Copy = Bits[CurrentWord];
|
|
if (CurrentWord == LastWord) {
|
|
unsigned LastBit = (End - 1) % BITWORD_SIZE;
|
|
Copy |= maskTrailingZeros<BitWord>(LastBit + 1);
|
|
}
|
|
|
|
if (CurrentWord == FirstWord) {
|
|
unsigned FirstBit = Begin % BITWORD_SIZE;
|
|
Copy |= maskTrailingOnes<BitWord>(FirstBit);
|
|
}
|
|
|
|
if (Copy != ~BitWord(0)) {
|
|
unsigned Result =
|
|
(CurrentWord + 1) * BITWORD_SIZE - countLeadingOnes(Copy) - 1;
|
|
return Result < Size ? Result : -1;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/// find_first - Returns the index of the first set bit, -1 if none
|
|
/// of the bits are set.
|
|
int find_first() const { return find_first_in(0, Size); }
|
|
|
|
/// find_last - Returns the index of the last set bit, -1 if none of the bits
|
|
/// are set.
|
|
int find_last() const { return find_last_in(0, Size); }
|
|
|
|
/// find_next - Returns the index of the next set bit following the
|
|
/// "Prev" bit. Returns -1 if the next set bit is not found.
|
|
int find_next(unsigned Prev) const { return find_first_in(Prev + 1, Size); }
|
|
|
|
/// find_prev - Returns the index of the first set bit that precedes the
|
|
/// the bit at \p PriorTo. Returns -1 if all previous bits are unset.
|
|
int find_prev(unsigned PriorTo) const { return find_last_in(0, PriorTo); }
|
|
|
|
/// find_first_unset - Returns the index of the first unset bit, -1 if all
|
|
/// of the bits are set.
|
|
int find_first_unset() const { return find_first_unset_in(0, Size); }
|
|
|
|
/// find_next_unset - Returns the index of the next unset bit following the
|
|
/// "Prev" bit. Returns -1 if all remaining bits are set.
|
|
int find_next_unset(unsigned Prev) const {
|
|
return find_first_unset_in(Prev + 1, Size);
|
|
}
|
|
|
|
/// find_last_unset - Returns the index of the last unset bit, -1 if all of
|
|
/// the bits are set.
|
|
int find_last_unset() const { return find_last_unset_in(0, Size); }
|
|
|
|
/// find_prev_unset - Returns the index of the first unset bit that precedes
|
|
/// the bit at \p PriorTo. Returns -1 if all previous bits are set.
|
|
int find_prev_unset(unsigned PriorTo) {
|
|
return find_last_unset_in(0, PriorTo);
|
|
}
|
|
|
|
/// clear - Removes all bits from the bitvector.
|
|
void clear() {
|
|
Size = 0;
|
|
Bits.clear();
|
|
}
|
|
|
|
/// resize - Grow or shrink the bitvector.
|
|
void resize(unsigned N, bool t = false) {
|
|
set_unused_bits(t);
|
|
Size = N;
|
|
Bits.resize(NumBitWords(N), 0 - BitWord(t));
|
|
clear_unused_bits();
|
|
}
|
|
|
|
void reserve(unsigned N) { Bits.reserve(NumBitWords(N)); }
|
|
|
|
// Set, reset, flip
|
|
BitVector &set() {
|
|
init_words(true);
|
|
clear_unused_bits();
|
|
return *this;
|
|
}
|
|
|
|
BitVector &set(unsigned Idx) {
|
|
assert(Idx < Size && "access in bound");
|
|
Bits[Idx / BITWORD_SIZE] |= BitWord(1) << (Idx % BITWORD_SIZE);
|
|
return *this;
|
|
}
|
|
|
|
/// set - Efficiently set a range of bits in [I, E)
|
|
BitVector &set(unsigned I, unsigned E) {
|
|
assert(I <= E && "Attempted to set backwards range!");
|
|
assert(E <= size() && "Attempted to set out-of-bounds range!");
|
|
|
|
if (I == E) return *this;
|
|
|
|
if (I / BITWORD_SIZE == E / BITWORD_SIZE) {
|
|
BitWord EMask = BitWord(1) << (E % BITWORD_SIZE);
|
|
BitWord IMask = BitWord(1) << (I % BITWORD_SIZE);
|
|
BitWord Mask = EMask - IMask;
|
|
Bits[I / BITWORD_SIZE] |= Mask;
|
|
return *this;
|
|
}
|
|
|
|
BitWord PrefixMask = ~BitWord(0) << (I % BITWORD_SIZE);
|
|
Bits[I / BITWORD_SIZE] |= PrefixMask;
|
|
I = alignTo(I, BITWORD_SIZE);
|
|
|
|
for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE)
|
|
Bits[I / BITWORD_SIZE] = ~BitWord(0);
|
|
|
|
BitWord PostfixMask = (BitWord(1) << (E % BITWORD_SIZE)) - 1;
|
|
if (I < E)
|
|
Bits[I / BITWORD_SIZE] |= PostfixMask;
|
|
|
|
return *this;
|
|
}
|
|
|
|
BitVector &reset() {
|
|
init_words(false);
|
|
return *this;
|
|
}
|
|
|
|
BitVector &reset(unsigned Idx) {
|
|
Bits[Idx / BITWORD_SIZE] &= ~(BitWord(1) << (Idx % BITWORD_SIZE));
|
|
return *this;
|
|
}
|
|
|
|
/// reset - Efficiently reset a range of bits in [I, E)
|
|
BitVector &reset(unsigned I, unsigned E) {
|
|
assert(I <= E && "Attempted to reset backwards range!");
|
|
assert(E <= size() && "Attempted to reset out-of-bounds range!");
|
|
|
|
if (I == E) return *this;
|
|
|
|
if (I / BITWORD_SIZE == E / BITWORD_SIZE) {
|
|
BitWord EMask = BitWord(1) << (E % BITWORD_SIZE);
|
|
BitWord IMask = BitWord(1) << (I % BITWORD_SIZE);
|
|
BitWord Mask = EMask - IMask;
|
|
Bits[I / BITWORD_SIZE] &= ~Mask;
|
|
return *this;
|
|
}
|
|
|
|
BitWord PrefixMask = ~BitWord(0) << (I % BITWORD_SIZE);
|
|
Bits[I / BITWORD_SIZE] &= ~PrefixMask;
|
|
I = alignTo(I, BITWORD_SIZE);
|
|
|
|
for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE)
|
|
Bits[I / BITWORD_SIZE] = BitWord(0);
|
|
|
|
BitWord PostfixMask = (BitWord(1) << (E % BITWORD_SIZE)) - 1;
|
|
if (I < E)
|
|
Bits[I / BITWORD_SIZE] &= ~PostfixMask;
|
|
|
|
return *this;
|
|
}
|
|
|
|
BitVector &flip() {
|
|
for (auto &Bit : Bits)
|
|
Bit = ~Bit;
|
|
clear_unused_bits();
|
|
return *this;
|
|
}
|
|
|
|
BitVector &flip(unsigned Idx) {
|
|
Bits[Idx / BITWORD_SIZE] ^= BitWord(1) << (Idx % BITWORD_SIZE);
|
|
return *this;
|
|
}
|
|
|
|
// Indexing.
|
|
reference operator[](unsigned Idx) {
|
|
assert (Idx < Size && "Out-of-bounds Bit access.");
|
|
return reference(*this, Idx);
|
|
}
|
|
|
|
bool operator[](unsigned Idx) const {
|
|
assert (Idx < Size && "Out-of-bounds Bit access.");
|
|
BitWord Mask = BitWord(1) << (Idx % BITWORD_SIZE);
|
|
return (Bits[Idx / BITWORD_SIZE] & Mask) != 0;
|
|
}
|
|
|
|
bool test(unsigned Idx) const {
|
|
return (*this)[Idx];
|
|
}
|
|
|
|
// Push single bit to end of vector.
|
|
void push_back(bool Val) {
|
|
unsigned OldSize = Size;
|
|
unsigned NewSize = Size + 1;
|
|
|
|
// Resize, which will insert zeros.
|
|
// If we already fit then the unused bits will be already zero.
|
|
if (NewSize > getBitCapacity())
|
|
resize(NewSize, false);
|
|
else
|
|
Size = NewSize;
|
|
|
|
// If true, set single bit.
|
|
if (Val)
|
|
set(OldSize);
|
|
}
|
|
|
|
/// Test if any common bits are set.
|
|
bool anyCommon(const BitVector &RHS) const {
|
|
unsigned ThisWords = Bits.size();
|
|
unsigned RHSWords = RHS.Bits.size();
|
|
for (unsigned i = 0, e = std::min(ThisWords, RHSWords); i != e; ++i)
|
|
if (Bits[i] & RHS.Bits[i])
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
// Comparison operators.
|
|
bool operator==(const BitVector &RHS) const {
|
|
if (size() != RHS.size())
|
|
return false;
|
|
unsigned NumWords = Bits.size();
|
|
return std::equal(Bits.begin(), Bits.begin() + NumWords, RHS.Bits.begin());
|
|
}
|
|
|
|
bool operator!=(const BitVector &RHS) const { return !(*this == RHS); }
|
|
|
|
/// Intersection, union, disjoint union.
|
|
BitVector &operator&=(const BitVector &RHS) {
|
|
unsigned ThisWords = Bits.size();
|
|
unsigned RHSWords = RHS.Bits.size();
|
|
unsigned i;
|
|
for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
|
|
Bits[i] &= RHS.Bits[i];
|
|
|
|
// Any bits that are just in this bitvector become zero, because they aren't
|
|
// in the RHS bit vector. Any words only in RHS are ignored because they
|
|
// are already zero in the LHS.
|
|
for (; i != ThisWords; ++i)
|
|
Bits[i] = 0;
|
|
|
|
return *this;
|
|
}
|
|
|
|
/// reset - Reset bits that are set in RHS. Same as *this &= ~RHS.
|
|
BitVector &reset(const BitVector &RHS) {
|
|
unsigned ThisWords = Bits.size();
|
|
unsigned RHSWords = RHS.Bits.size();
|
|
for (unsigned i = 0; i != std::min(ThisWords, RHSWords); ++i)
|
|
Bits[i] &= ~RHS.Bits[i];
|
|
return *this;
|
|
}
|
|
|
|
/// test - Check if (This - RHS) is zero.
|
|
/// This is the same as reset(RHS) and any().
|
|
bool test(const BitVector &RHS) const {
|
|
unsigned ThisWords = Bits.size();
|
|
unsigned RHSWords = RHS.Bits.size();
|
|
unsigned i;
|
|
for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
|
|
if ((Bits[i] & ~RHS.Bits[i]) != 0)
|
|
return true;
|
|
|
|
for (; i != ThisWords ; ++i)
|
|
if (Bits[i] != 0)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
template <class F, class... ArgTys>
|
|
static BitVector &apply(F &&f, BitVector &Out, BitVector const &Arg,
|
|
ArgTys const &...Args) {
|
|
assert(llvm::all_of(
|
|
std::initializer_list<unsigned>{Args.size()...},
|
|
[&Arg](auto const &BV) { return Arg.size() == BV; }) &&
|
|
"consistent sizes");
|
|
Out.resize(Arg.size());
|
|
for (size_t i = 0, e = Arg.Bits.size(); i != e; ++i)
|
|
Out.Bits[i] = f(Arg.Bits[i], Args.Bits[i]...);
|
|
Out.clear_unused_bits();
|
|
return Out;
|
|
}
|
|
|
|
BitVector &operator|=(const BitVector &RHS) {
|
|
if (size() < RHS.size())
|
|
resize(RHS.size());
|
|
for (size_t i = 0, e = RHS.Bits.size(); i != e; ++i)
|
|
Bits[i] |= RHS.Bits[i];
|
|
return *this;
|
|
}
|
|
|
|
BitVector &operator^=(const BitVector &RHS) {
|
|
if (size() < RHS.size())
|
|
resize(RHS.size());
|
|
for (size_t i = 0, e = RHS.Bits.size(); i != e; ++i)
|
|
Bits[i] ^= RHS.Bits[i];
|
|
return *this;
|
|
}
|
|
|
|
BitVector &operator>>=(unsigned N) {
|
|
assert(N <= Size);
|
|
if (LLVM_UNLIKELY(empty() || N == 0))
|
|
return *this;
|
|
|
|
unsigned NumWords = Bits.size();
|
|
assert(NumWords >= 1);
|
|
|
|
wordShr(N / BITWORD_SIZE);
|
|
|
|
unsigned BitDistance = N % BITWORD_SIZE;
|
|
if (BitDistance == 0)
|
|
return *this;
|
|
|
|
// When the shift size is not a multiple of the word size, then we have
|
|
// a tricky situation where each word in succession needs to extract some
|
|
// of the bits from the next word and or them into this word while
|
|
// shifting this word to make room for the new bits. This has to be done
|
|
// for every word in the array.
|
|
|
|
// Since we're shifting each word right, some bits will fall off the end
|
|
// of each word to the right, and empty space will be created on the left.
|
|
// The final word in the array will lose bits permanently, so starting at
|
|
// the beginning, work forwards shifting each word to the right, and
|
|
// OR'ing in the bits from the end of the next word to the beginning of
|
|
// the current word.
|
|
|
|
// Example:
|
|
// Starting with {0xAABBCCDD, 0xEEFF0011, 0x22334455} and shifting right
|
|
// by 4 bits.
|
|
// Step 1: Word[0] >>= 4 ; 0x0ABBCCDD
|
|
// Step 2: Word[0] |= 0x10000000 ; 0x1ABBCCDD
|
|
// Step 3: Word[1] >>= 4 ; 0x0EEFF001
|
|
// Step 4: Word[1] |= 0x50000000 ; 0x5EEFF001
|
|
// Step 5: Word[2] >>= 4 ; 0x02334455
|
|
// Result: { 0x1ABBCCDD, 0x5EEFF001, 0x02334455 }
|
|
const BitWord Mask = maskTrailingOnes<BitWord>(BitDistance);
|
|
const unsigned LSH = BITWORD_SIZE - BitDistance;
|
|
|
|
for (unsigned I = 0; I < NumWords - 1; ++I) {
|
|
Bits[I] >>= BitDistance;
|
|
Bits[I] |= (Bits[I + 1] & Mask) << LSH;
|
|
}
|
|
|
|
Bits[NumWords - 1] >>= BitDistance;
|
|
|
|
return *this;
|
|
}
|
|
|
|
BitVector &operator<<=(unsigned N) {
|
|
assert(N <= Size);
|
|
if (LLVM_UNLIKELY(empty() || N == 0))
|
|
return *this;
|
|
|
|
unsigned NumWords = Bits.size();
|
|
assert(NumWords >= 1);
|
|
|
|
wordShl(N / BITWORD_SIZE);
|
|
|
|
unsigned BitDistance = N % BITWORD_SIZE;
|
|
if (BitDistance == 0)
|
|
return *this;
|
|
|
|
// When the shift size is not a multiple of the word size, then we have
|
|
// a tricky situation where each word in succession needs to extract some
|
|
// of the bits from the previous word and or them into this word while
|
|
// shifting this word to make room for the new bits. This has to be done
|
|
// for every word in the array. This is similar to the algorithm outlined
|
|
// in operator>>=, but backwards.
|
|
|
|
// Since we're shifting each word left, some bits will fall off the end
|
|
// of each word to the left, and empty space will be created on the right.
|
|
// The first word in the array will lose bits permanently, so starting at
|
|
// the end, work backwards shifting each word to the left, and OR'ing
|
|
// in the bits from the end of the next word to the beginning of the
|
|
// current word.
|
|
|
|
// Example:
|
|
// Starting with {0xAABBCCDD, 0xEEFF0011, 0x22334455} and shifting left
|
|
// by 4 bits.
|
|
// Step 1: Word[2] <<= 4 ; 0x23344550
|
|
// Step 2: Word[2] |= 0x0000000E ; 0x2334455E
|
|
// Step 3: Word[1] <<= 4 ; 0xEFF00110
|
|
// Step 4: Word[1] |= 0x0000000A ; 0xEFF0011A
|
|
// Step 5: Word[0] <<= 4 ; 0xABBCCDD0
|
|
// Result: { 0xABBCCDD0, 0xEFF0011A, 0x2334455E }
|
|
const BitWord Mask = maskLeadingOnes<BitWord>(BitDistance);
|
|
const unsigned RSH = BITWORD_SIZE - BitDistance;
|
|
|
|
for (int I = NumWords - 1; I > 0; --I) {
|
|
Bits[I] <<= BitDistance;
|
|
Bits[I] |= (Bits[I - 1] & Mask) >> RSH;
|
|
}
|
|
Bits[0] <<= BitDistance;
|
|
clear_unused_bits();
|
|
|
|
return *this;
|
|
}
|
|
|
|
void swap(BitVector &RHS) {
|
|
std::swap(Bits, RHS.Bits);
|
|
std::swap(Size, RHS.Size);
|
|
}
|
|
|
|
void invalid() {
|
|
assert(!Size && Bits.empty());
|
|
Size = (unsigned)-1;
|
|
}
|
|
bool isInvalid() const { return Size == (unsigned)-1; }
|
|
|
|
ArrayRef<BitWord> getData() const { return {&Bits[0], Bits.size()}; }
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Portable bit mask operations.
|
|
//===--------------------------------------------------------------------===//
|
|
//
|
|
// These methods all operate on arrays of uint32_t, each holding 32 bits. The
|
|
// fixed word size makes it easier to work with literal bit vector constants
|
|
// in portable code.
|
|
//
|
|
// The LSB in each word is the lowest numbered bit. The size of a portable
|
|
// bit mask is always a whole multiple of 32 bits. If no bit mask size is
|
|
// given, the bit mask is assumed to cover the entire BitVector.
|
|
|
|
/// setBitsInMask - Add '1' bits from Mask to this vector. Don't resize.
|
|
/// This computes "*this |= Mask".
|
|
void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
|
|
applyMask<true, false>(Mask, MaskWords);
|
|
}
|
|
|
|
/// clearBitsInMask - Clear any bits in this vector that are set in Mask.
|
|
/// Don't resize. This computes "*this &= ~Mask".
|
|
void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
|
|
applyMask<false, false>(Mask, MaskWords);
|
|
}
|
|
|
|
/// setBitsNotInMask - Add a bit to this vector for every '0' bit in Mask.
|
|
/// Don't resize. This computes "*this |= ~Mask".
|
|
void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
|
|
applyMask<true, true>(Mask, MaskWords);
|
|
}
|
|
|
|
/// clearBitsNotInMask - Clear a bit in this vector for every '0' bit in Mask.
|
|
/// Don't resize. This computes "*this &= Mask".
|
|
void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
|
|
applyMask<false, true>(Mask, MaskWords);
|
|
}
|
|
|
|
private:
|
|
/// Perform a logical left shift of \p Count words by moving everything
|
|
/// \p Count words to the right in memory.
|
|
///
|
|
/// While confusing, words are stored from least significant at Bits[0] to
|
|
/// most significant at Bits[NumWords-1]. A logical shift left, however,
|
|
/// moves the current least significant bit to a higher logical index, and
|
|
/// fills the previous least significant bits with 0. Thus, we actually
|
|
/// need to move the bytes of the memory to the right, not to the left.
|
|
/// Example:
|
|
/// Words = [0xBBBBAAAA, 0xDDDDFFFF, 0x00000000, 0xDDDD0000]
|
|
/// represents a BitVector where 0xBBBBAAAA contain the least significant
|
|
/// bits. So if we want to shift the BitVector left by 2 words, we need
|
|
/// to turn this into 0x00000000 0x00000000 0xBBBBAAAA 0xDDDDFFFF by using a
|
|
/// memmove which moves right, not left.
|
|
void wordShl(uint32_t Count) {
|
|
if (Count == 0)
|
|
return;
|
|
|
|
uint32_t NumWords = Bits.size();
|
|
|
|
// Since we always move Word-sized chunks of data with src and dest both
|
|
// aligned to a word-boundary, we don't need to worry about endianness
|
|
// here.
|
|
std::copy(Bits.begin(), Bits.begin() + NumWords - Count,
|
|
Bits.begin() + Count);
|
|
std::fill(Bits.begin(), Bits.begin() + Count, 0);
|
|
clear_unused_bits();
|
|
}
|
|
|
|
/// Perform a logical right shift of \p Count words by moving those
|
|
/// words to the left in memory. See wordShl for more information.
|
|
///
|
|
void wordShr(uint32_t Count) {
|
|
if (Count == 0)
|
|
return;
|
|
|
|
uint32_t NumWords = Bits.size();
|
|
|
|
std::copy(Bits.begin() + Count, Bits.begin() + NumWords, Bits.begin());
|
|
std::fill(Bits.begin() + NumWords - Count, Bits.begin() + NumWords, 0);
|
|
}
|
|
|
|
int next_unset_in_word(int WordIndex, BitWord Word) const {
|
|
unsigned Result = WordIndex * BITWORD_SIZE + countTrailingOnes(Word);
|
|
return Result < size() ? Result : -1;
|
|
}
|
|
|
|
unsigned NumBitWords(unsigned S) const {
|
|
return (S + BITWORD_SIZE-1) / BITWORD_SIZE;
|
|
}
|
|
|
|
// Set the unused bits in the high words.
|
|
void set_unused_bits(bool t = true) {
|
|
// Then set any stray high bits of the last used word.
|
|
if (unsigned ExtraBits = Size % BITWORD_SIZE) {
|
|
BitWord ExtraBitMask = ~BitWord(0) << ExtraBits;
|
|
if (t)
|
|
Bits.back() |= ExtraBitMask;
|
|
else
|
|
Bits.back() &= ~ExtraBitMask;
|
|
}
|
|
}
|
|
|
|
// Clear the unused bits in the high words.
|
|
void clear_unused_bits() {
|
|
set_unused_bits(false);
|
|
}
|
|
|
|
void init_words(bool t) {
|
|
std::fill(Bits.begin(), Bits.end(), 0 - (BitWord)t);
|
|
}
|
|
|
|
template<bool AddBits, bool InvertMask>
|
|
void applyMask(const uint32_t *Mask, unsigned MaskWords) {
|
|
static_assert(BITWORD_SIZE % 32 == 0, "Unsupported BitWord size.");
|
|
MaskWords = std::min(MaskWords, (size() + 31) / 32);
|
|
const unsigned Scale = BITWORD_SIZE / 32;
|
|
unsigned i;
|
|
for (i = 0; MaskWords >= Scale; ++i, MaskWords -= Scale) {
|
|
BitWord BW = Bits[i];
|
|
// This inner loop should unroll completely when BITWORD_SIZE > 32.
|
|
for (unsigned b = 0; b != BITWORD_SIZE; b += 32) {
|
|
uint32_t M = *Mask++;
|
|
if (InvertMask) M = ~M;
|
|
if (AddBits) BW |= BitWord(M) << b;
|
|
else BW &= ~(BitWord(M) << b);
|
|
}
|
|
Bits[i] = BW;
|
|
}
|
|
for (unsigned b = 0; MaskWords; b += 32, --MaskWords) {
|
|
uint32_t M = *Mask++;
|
|
if (InvertMask) M = ~M;
|
|
if (AddBits) Bits[i] |= BitWord(M) << b;
|
|
else Bits[i] &= ~(BitWord(M) << b);
|
|
}
|
|
if (AddBits)
|
|
clear_unused_bits();
|
|
}
|
|
|
|
public:
|
|
/// Return the size (in bytes) of the bit vector.
|
|
size_t getMemorySize() const { return Bits.size() * sizeof(BitWord); }
|
|
size_t getBitCapacity() const { return Bits.size() * BITWORD_SIZE; }
|
|
};
|
|
|
|
inline size_t capacity_in_bytes(const BitVector &X) {
|
|
return X.getMemorySize();
|
|
}
|
|
|
|
template <> struct DenseMapInfo<BitVector> {
|
|
static inline BitVector getEmptyKey() { return {}; }
|
|
static inline BitVector getTombstoneKey() {
|
|
BitVector V;
|
|
V.invalid();
|
|
return V;
|
|
}
|
|
static unsigned getHashValue(const BitVector &V) {
|
|
return DenseMapInfo<std::pair<unsigned, ArrayRef<uintptr_t>>>::getHashValue(
|
|
std::make_pair(V.size(), V.getData()));
|
|
}
|
|
static bool isEqual(const BitVector &LHS, const BitVector &RHS) {
|
|
if (LHS.isInvalid() || RHS.isInvalid())
|
|
return LHS.isInvalid() == RHS.isInvalid();
|
|
return LHS == RHS;
|
|
}
|
|
};
|
|
} // end namespace llvm
|
|
|
|
namespace std {
|
|
/// Implement std::swap in terms of BitVector swap.
|
|
inline void swap(llvm::BitVector &LHS, llvm::BitVector &RHS) { LHS.swap(RHS); }
|
|
} // end namespace std
|
|
|
|
#endif // LLVM_ADT_BITVECTOR_H
|