1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-01 08:23:21 +01:00
llvm-mirror/lib/Support/StringRef.cpp
Jay Foad 79e18ed269 PR5207: Change APInt methods trunc(), sext(), zext(), sextOrTrunc() and
zextOrTrunc(), and APSInt methods extend(), extOrTrunc() and new method
trunc(), to be const and to return a new value instead of modifying the
object in place.

llvm-svn: 121120
2010-12-07 08:25:19 +00:00

416 lines
12 KiB
C++

//===-- StringRef.cpp - Lightweight String References ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/OwningPtr.h"
#include <bitset>
using namespace llvm;
// MSVC emits references to this into the translation units which reference it.
#ifndef _MSC_VER
const size_t StringRef::npos;
#endif
static char ascii_tolower(char x) {
if (x >= 'A' && x <= 'Z')
return x - 'A' + 'a';
return x;
}
static bool ascii_isdigit(char x) {
return x >= '0' && x <= '9';
}
/// compare_lower - Compare strings, ignoring case.
int StringRef::compare_lower(StringRef RHS) const {
for (size_t I = 0, E = min(Length, RHS.Length); I != E; ++I) {
unsigned char LHC = ascii_tolower(Data[I]);
unsigned char RHC = ascii_tolower(RHS.Data[I]);
if (LHC != RHC)
return LHC < RHC ? -1 : 1;
}
if (Length == RHS.Length)
return 0;
return Length < RHS.Length ? -1 : 1;
}
/// compare_numeric - Compare strings, handle embedded numbers.
int StringRef::compare_numeric(StringRef RHS) const {
for (size_t I = 0, E = min(Length, RHS.Length); I != E; ++I) {
if (Data[I] == RHS.Data[I])
continue;
if (ascii_isdigit(Data[I]) && ascii_isdigit(RHS.Data[I])) {
// The longer sequence of numbers is larger. This doesn't really handle
// prefixed zeros well.
for (size_t J = I+1; J != E+1; ++J) {
bool ld = J < Length && ascii_isdigit(Data[J]);
bool rd = J < RHS.Length && ascii_isdigit(RHS.Data[J]);
if (ld != rd)
return rd ? -1 : 1;
if (!rd)
break;
}
}
return (unsigned char)Data[I] < (unsigned char)RHS.Data[I] ? -1 : 1;
}
if (Length == RHS.Length)
return 0;
return Length < RHS.Length ? -1 : 1;
}
// Compute the edit distance between the two given strings.
unsigned StringRef::edit_distance(llvm::StringRef Other,
bool AllowReplacements,
unsigned MaxEditDistance) {
// The algorithm implemented below is the "classic"
// dynamic-programming algorithm for computing the Levenshtein
// distance, which is described here:
//
// http://en.wikipedia.org/wiki/Levenshtein_distance
//
// Although the algorithm is typically described using an m x n
// array, only two rows are used at a time, so this implemenation
// just keeps two separate vectors for those two rows.
size_type m = size();
size_type n = Other.size();
const unsigned SmallBufferSize = 64;
unsigned SmallBuffer[SmallBufferSize];
llvm::OwningArrayPtr<unsigned> Allocated;
unsigned *previous = SmallBuffer;
if (2*(n + 1) > SmallBufferSize) {
previous = new unsigned [2*(n+1)];
Allocated.reset(previous);
}
unsigned *current = previous + (n + 1);
for (unsigned i = 0; i <= n; ++i)
previous[i] = i;
for (size_type y = 1; y <= m; ++y) {
current[0] = y;
unsigned BestThisRow = current[0];
for (size_type x = 1; x <= n; ++x) {
if (AllowReplacements) {
current[x] = min(previous[x-1] + ((*this)[y-1] == Other[x-1]? 0u:1u),
min(current[x-1], previous[x])+1);
}
else {
if ((*this)[y-1] == Other[x-1]) current[x] = previous[x-1];
else current[x] = min(current[x-1], previous[x]) + 1;
}
BestThisRow = min(BestThisRow, current[x]);
}
if (MaxEditDistance && BestThisRow > MaxEditDistance)
return MaxEditDistance + 1;
unsigned *tmp = current;
current = previous;
previous = tmp;
}
unsigned Result = previous[n];
return Result;
}
//===----------------------------------------------------------------------===//
// String Searching
//===----------------------------------------------------------------------===//
/// find - Search for the first string \arg Str in the string.
///
/// \return - The index of the first occurence of \arg Str, or npos if not
/// found.
size_t StringRef::find(StringRef Str, size_t From) const {
size_t N = Str.size();
if (N > Length)
return npos;
for (size_t e = Length - N + 1, i = min(From, e); i != e; ++i)
if (substr(i, N).equals(Str))
return i;
return npos;
}
/// rfind - Search for the last string \arg Str in the string.
///
/// \return - The index of the last occurence of \arg Str, or npos if not
/// found.
size_t StringRef::rfind(StringRef Str) const {
size_t N = Str.size();
if (N > Length)
return npos;
for (size_t i = Length - N + 1, e = 0; i != e;) {
--i;
if (substr(i, N).equals(Str))
return i;
}
return npos;
}
/// find_first_of - Find the first character in the string that is in \arg
/// Chars, or npos if not found.
///
/// Note: O(size() + Chars.size())
StringRef::size_type StringRef::find_first_of(StringRef Chars,
size_t From) const {
std::bitset<1 << CHAR_BIT> CharBits;
for (size_type i = 0; i != Chars.size(); ++i)
CharBits.set((unsigned char)Chars[i]);
for (size_type i = min(From, Length), e = Length; i != e; ++i)
if (CharBits.test((unsigned char)Data[i]))
return i;
return npos;
}
/// find_first_not_of - Find the first character in the string that is not
/// \arg C or npos if not found.
StringRef::size_type StringRef::find_first_not_of(char C, size_t From) const {
for (size_type i = min(From, Length), e = Length; i != e; ++i)
if (Data[i] != C)
return i;
return npos;
}
/// find_first_not_of - Find the first character in the string that is not
/// in the string \arg Chars, or npos if not found.
///
/// Note: O(size() + Chars.size())
StringRef::size_type StringRef::find_first_not_of(StringRef Chars,
size_t From) const {
std::bitset<1 << CHAR_BIT> CharBits;
for (size_type i = 0; i != Chars.size(); ++i)
CharBits.set((unsigned char)Chars[i]);
for (size_type i = min(From, Length), e = Length; i != e; ++i)
if (!CharBits.test((unsigned char)Data[i]))
return i;
return npos;
}
/// find_last_of - Find the last character in the string that is in \arg C,
/// or npos if not found.
///
/// Note: O(size() + Chars.size())
StringRef::size_type StringRef::find_last_of(StringRef Chars,
size_t From) const {
std::bitset<1 << CHAR_BIT> CharBits;
for (size_type i = 0; i != Chars.size(); ++i)
CharBits.set((unsigned char)Chars[i]);
for (size_type i = min(From, Length) - 1, e = -1; i != e; --i)
if (CharBits.test((unsigned char)Data[i]))
return i;
return npos;
}
//===----------------------------------------------------------------------===//
// Helpful Algorithms
//===----------------------------------------------------------------------===//
/// count - Return the number of non-overlapped occurrences of \arg Str in
/// the string.
size_t StringRef::count(StringRef Str) const {
size_t Count = 0;
size_t N = Str.size();
if (N > Length)
return 0;
for (size_t i = 0, e = Length - N + 1; i != e; ++i)
if (substr(i, N).equals(Str))
++Count;
return Count;
}
static unsigned GetAutoSenseRadix(StringRef &Str) {
if (Str.startswith("0x")) {
Str = Str.substr(2);
return 16;
} else if (Str.startswith("0b")) {
Str = Str.substr(2);
return 2;
} else if (Str.startswith("0")) {
return 8;
} else {
return 10;
}
}
/// GetAsUnsignedInteger - Workhorse method that converts a integer character
/// sequence of radix up to 36 to an unsigned long long value.
static bool GetAsUnsignedInteger(StringRef Str, unsigned Radix,
unsigned long long &Result) {
// Autosense radix if not specified.
if (Radix == 0)
Radix = GetAutoSenseRadix(Str);
// Empty strings (after the radix autosense) are invalid.
if (Str.empty()) return true;
// Parse all the bytes of the string given this radix. Watch for overflow.
Result = 0;
while (!Str.empty()) {
unsigned CharVal;
if (Str[0] >= '0' && Str[0] <= '9')
CharVal = Str[0]-'0';
else if (Str[0] >= 'a' && Str[0] <= 'z')
CharVal = Str[0]-'a'+10;
else if (Str[0] >= 'A' && Str[0] <= 'Z')
CharVal = Str[0]-'A'+10;
else
return true;
// If the parsed value is larger than the integer radix, the string is
// invalid.
if (CharVal >= Radix)
return true;
// Add in this character.
unsigned long long PrevResult = Result;
Result = Result*Radix+CharVal;
// Check for overflow.
if (Result < PrevResult)
return true;
Str = Str.substr(1);
}
return false;
}
bool StringRef::getAsInteger(unsigned Radix, unsigned long long &Result) const {
return GetAsUnsignedInteger(*this, Radix, Result);
}
bool StringRef::getAsInteger(unsigned Radix, long long &Result) const {
unsigned long long ULLVal;
// Handle positive strings first.
if (empty() || front() != '-') {
if (GetAsUnsignedInteger(*this, Radix, ULLVal) ||
// Check for value so large it overflows a signed value.
(long long)ULLVal < 0)
return true;
Result = ULLVal;
return false;
}
// Get the positive part of the value.
if (GetAsUnsignedInteger(substr(1), Radix, ULLVal) ||
// Reject values so large they'd overflow as negative signed, but allow
// "-0". This negates the unsigned so that the negative isn't undefined
// on signed overflow.
(long long)-ULLVal > 0)
return true;
Result = -ULLVal;
return false;
}
bool StringRef::getAsInteger(unsigned Radix, int &Result) const {
long long Val;
if (getAsInteger(Radix, Val) ||
(int)Val != Val)
return true;
Result = Val;
return false;
}
bool StringRef::getAsInteger(unsigned Radix, unsigned &Result) const {
unsigned long long Val;
if (getAsInteger(Radix, Val) ||
(unsigned)Val != Val)
return true;
Result = Val;
return false;
}
bool StringRef::getAsInteger(unsigned Radix, APInt &Result) const {
StringRef Str = *this;
// Autosense radix if not specified.
if (Radix == 0)
Radix = GetAutoSenseRadix(Str);
assert(Radix > 1 && Radix <= 36);
// Empty strings (after the radix autosense) are invalid.
if (Str.empty()) return true;
// Skip leading zeroes. This can be a significant improvement if
// it means we don't need > 64 bits.
while (!Str.empty() && Str.front() == '0')
Str = Str.substr(1);
// If it was nothing but zeroes....
if (Str.empty()) {
Result = APInt(64, 0);
return false;
}
// (Over-)estimate the required number of bits.
unsigned Log2Radix = 0;
while ((1U << Log2Radix) < Radix) Log2Radix++;
bool IsPowerOf2Radix = ((1U << Log2Radix) == Radix);
unsigned BitWidth = Log2Radix * Str.size();
if (BitWidth < Result.getBitWidth())
BitWidth = Result.getBitWidth(); // don't shrink the result
else
Result = Result.zext(BitWidth);
APInt RadixAP, CharAP; // unused unless !IsPowerOf2Radix
if (!IsPowerOf2Radix) {
// These must have the same bit-width as Result.
RadixAP = APInt(BitWidth, Radix);
CharAP = APInt(BitWidth, 0);
}
// Parse all the bytes of the string given this radix.
Result = 0;
while (!Str.empty()) {
unsigned CharVal;
if (Str[0] >= '0' && Str[0] <= '9')
CharVal = Str[0]-'0';
else if (Str[0] >= 'a' && Str[0] <= 'z')
CharVal = Str[0]-'a'+10;
else if (Str[0] >= 'A' && Str[0] <= 'Z')
CharVal = Str[0]-'A'+10;
else
return true;
// If the parsed value is larger than the integer radix, the string is
// invalid.
if (CharVal >= Radix)
return true;
// Add in this character.
if (IsPowerOf2Radix) {
Result <<= Log2Radix;
Result |= CharVal;
} else {
Result *= RadixAP;
CharAP = CharVal;
Result += CharAP;
}
Str = Str.substr(1);
}
return false;
}