1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2025-02-01 05:01:59 +01:00
Lang Hames efc9f3486a [ORC] Add support for resource tracking/removal (removable code).
This patch introduces new APIs to support resource tracking and removal in Orc.
It is intended as a thread-safe generalization of the removeModule concept from
OrcV1.

Clients can now create ResourceTracker objects (using
JITDylib::createResourceTracker) to track resources for each MaterializationUnit
(code, data, aliases, absolute symbols, etc.) added to the JIT. Every
MaterializationUnit will be associated with a ResourceTracker, and
ResourceTrackers can be re-used for multiple MaterializationUnits. Each JITDylib
has a default ResourceTracker that will be used for MaterializationUnits added
to that JITDylib if no ResourceTracker is explicitly specified.

Two operations can be performed on ResourceTrackers: transferTo and remove. The
transferTo operation transfers tracking of the resources to a different
ResourceTracker object, allowing ResourceTrackers to be merged to reduce
administrative overhead (the source tracker is invalidated in the process). The
remove operation removes all resources associated with a ResourceTracker,
including any symbols defined by MaterializationUnits associated with the
tracker, and also invalidates the tracker. These operations are thread safe, and
should work regardless of the the state of the MaterializationUnits. In the case
of resource transfer any existing resources associated with the source tracker
will be transferred to the destination tracker, and all future resources for
those units will be automatically associated with the destination tracker. In
the case of resource removal all already-allocated resources will be
deallocated, any if any program representations associated with the tracker have
not been compiled yet they will be destroyed. If any program representations are
currently being compiled then they will be prevented from completing: their
MaterializationResponsibility will return errors on any attempt to update the
JIT state.

Clients (usually Layer writers) wishing to track resources can implement the
ResourceManager API to receive notifications when ResourceTrackers are
transferred or removed. The MaterializationResponsibility::withResourceKeyDo
method can be used to create associations between the key for a ResourceTracker
and an allocated resource in a thread-safe way.

RTDyldObjectLinkingLayer and ObjectLinkingLayer are updated to use the
ResourceManager API to enable tracking and removal of memory allocated by the
JIT linker.

The new JITDylib::clear method can be used to trigger removal of every
ResourceTracker associated with the JITDylib (note that this will only
remove resources for the JITDylib, it does not run static destructors).

This patch includes unit tests showing basic usage. A follow-up patch will
update the Kaleidoscope and BuildingAJIT tutorial series to OrcV2 and will
use this API to release code associated with anonymous expressions.
2020-10-18 21:02:54 -07:00

213 lines
7.4 KiB
C++

//===-------------------- Layer.cpp - Layer interfaces --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/ExecutionEngine/Orc/Layer.h"
#include "llvm/ExecutionEngine/Orc/DebugUtils.h"
#include "llvm/ExecutionEngine/Orc/ExecutionUtils.h"
#include "llvm/IR/Constants.h"
#include "llvm/Object/MachO.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "orc"
namespace llvm {
namespace orc {
IRLayer::~IRLayer() {}
Error IRLayer::add(ResourceTrackerSP RT, ThreadSafeModule TSM) {
assert(RT && "RT can not be null");
auto &JD = RT->getJITDylib();
return JD.define(std::make_unique<BasicIRLayerMaterializationUnit>(
*this, *getManglingOptions(), std::move(TSM)),
std::move(RT));
}
IRMaterializationUnit::IRMaterializationUnit(
ExecutionSession &ES, const IRSymbolMapper::ManglingOptions &MO,
ThreadSafeModule TSM)
: MaterializationUnit(SymbolFlagsMap(), nullptr), TSM(std::move(TSM)) {
assert(this->TSM && "Module must not be null");
MangleAndInterner Mangle(ES, this->TSM.getModuleUnlocked()->getDataLayout());
this->TSM.withModuleDo([&](Module &M) {
for (auto &G : M.global_values()) {
// Skip globals that don't generate symbols.
if (!G.hasName() || G.isDeclaration() || G.hasLocalLinkage() ||
G.hasAvailableExternallyLinkage() || G.hasAppendingLinkage())
continue;
// thread locals generate different symbols depending on whether or not
// emulated TLS is enabled.
if (G.isThreadLocal() && MO.EmulatedTLS) {
auto &GV = cast<GlobalVariable>(G);
auto Flags = JITSymbolFlags::fromGlobalValue(GV);
auto EmuTLSV = Mangle(("__emutls_v." + GV.getName()).str());
SymbolFlags[EmuTLSV] = Flags;
SymbolToDefinition[EmuTLSV] = &GV;
// If this GV has a non-zero initializer we'll need to emit an
// __emutls.t symbol too.
if (GV.hasInitializer()) {
const auto *InitVal = GV.getInitializer();
// Skip zero-initializers.
if (isa<ConstantAggregateZero>(InitVal))
continue;
const auto *InitIntValue = dyn_cast<ConstantInt>(InitVal);
if (InitIntValue && InitIntValue->isZero())
continue;
auto EmuTLST = Mangle(("__emutls_t." + GV.getName()).str());
SymbolFlags[EmuTLST] = Flags;
}
continue;
}
// Otherwise we just need a normal linker mangling.
auto MangledName = Mangle(G.getName());
SymbolFlags[MangledName] = JITSymbolFlags::fromGlobalValue(G);
SymbolToDefinition[MangledName] = &G;
}
// If we need an init symbol for this module then create one.
if (!llvm::empty(getStaticInitGVs(M))) {
size_t Counter = 0;
do {
std::string InitSymbolName;
raw_string_ostream(InitSymbolName)
<< "$." << M.getModuleIdentifier() << ".__inits." << Counter++;
InitSymbol = ES.intern(InitSymbolName);
} while (SymbolFlags.count(InitSymbol));
SymbolFlags[InitSymbol] = JITSymbolFlags::MaterializationSideEffectsOnly;
}
});
}
IRMaterializationUnit::IRMaterializationUnit(
ThreadSafeModule TSM, SymbolFlagsMap SymbolFlags,
SymbolStringPtr InitSymbol, SymbolNameToDefinitionMap SymbolToDefinition)
: MaterializationUnit(std::move(SymbolFlags), std::move(InitSymbol)),
TSM(std::move(TSM)), SymbolToDefinition(std::move(SymbolToDefinition)) {}
StringRef IRMaterializationUnit::getName() const {
if (TSM)
return TSM.withModuleDo(
[](const Module &M) -> StringRef { return M.getModuleIdentifier(); });
return "<null module>";
}
void IRMaterializationUnit::discard(const JITDylib &JD,
const SymbolStringPtr &Name) {
LLVM_DEBUG(JD.getExecutionSession().runSessionLocked([&]() {
dbgs() << "In " << JD.getName() << " discarding " << *Name << " from MU@"
<< this << " (" << getName() << ")\n";
}););
auto I = SymbolToDefinition.find(Name);
assert(I != SymbolToDefinition.end() &&
"Symbol not provided by this MU, or previously discarded");
assert(!I->second->isDeclaration() &&
"Discard should only apply to definitions");
I->second->setLinkage(GlobalValue::AvailableExternallyLinkage);
SymbolToDefinition.erase(I);
}
BasicIRLayerMaterializationUnit::BasicIRLayerMaterializationUnit(
IRLayer &L, const IRSymbolMapper::ManglingOptions &MO, ThreadSafeModule TSM)
: IRMaterializationUnit(L.getExecutionSession(), MO, std::move(TSM)), L(L) {
}
void BasicIRLayerMaterializationUnit::materialize(
std::unique_ptr<MaterializationResponsibility> R) {
// Throw away the SymbolToDefinition map: it's not usable after we hand
// off the module.
SymbolToDefinition.clear();
// If cloneToNewContextOnEmit is set, clone the module now.
if (L.getCloneToNewContextOnEmit())
TSM = cloneToNewContext(TSM);
#ifndef NDEBUG
auto &ES = R->getTargetJITDylib().getExecutionSession();
auto &N = R->getTargetJITDylib().getName();
#endif // NDEBUG
LLVM_DEBUG(ES.runSessionLocked(
[&]() { dbgs() << "Emitting, for " << N << ", " << *this << "\n"; }););
L.emit(std::move(R), std::move(TSM));
LLVM_DEBUG(ES.runSessionLocked([&]() {
dbgs() << "Finished emitting, for " << N << ", " << *this << "\n";
}););
}
ObjectLayer::ObjectLayer(ExecutionSession &ES) : ES(ES) {}
ObjectLayer::~ObjectLayer() {}
Error ObjectLayer::add(ResourceTrackerSP RT, std::unique_ptr<MemoryBuffer> O) {
assert(RT && "RT can not be null");
auto ObjMU = BasicObjectLayerMaterializationUnit::Create(*this, std::move(O));
if (!ObjMU)
return ObjMU.takeError();
auto &JD = RT->getJITDylib();
return JD.define(std::move(*ObjMU), std::move(RT));
}
Expected<std::unique_ptr<BasicObjectLayerMaterializationUnit>>
BasicObjectLayerMaterializationUnit::Create(ObjectLayer &L,
std::unique_ptr<MemoryBuffer> O) {
auto ObjSymInfo =
getObjectSymbolInfo(L.getExecutionSession(), O->getMemBufferRef());
if (!ObjSymInfo)
return ObjSymInfo.takeError();
auto &SymbolFlags = ObjSymInfo->first;
auto &InitSymbol = ObjSymInfo->second;
return std::unique_ptr<BasicObjectLayerMaterializationUnit>(
new BasicObjectLayerMaterializationUnit(
L, std::move(O), std::move(SymbolFlags), std::move(InitSymbol)));
}
BasicObjectLayerMaterializationUnit::BasicObjectLayerMaterializationUnit(
ObjectLayer &L, std::unique_ptr<MemoryBuffer> O, SymbolFlagsMap SymbolFlags,
SymbolStringPtr InitSymbol)
: MaterializationUnit(std::move(SymbolFlags), std::move(InitSymbol)), L(L),
O(std::move(O)) {}
StringRef BasicObjectLayerMaterializationUnit::getName() const {
if (O)
return O->getBufferIdentifier();
return "<null object>";
}
void BasicObjectLayerMaterializationUnit::materialize(
std::unique_ptr<MaterializationResponsibility> R) {
L.emit(std::move(R), std::move(O));
}
void BasicObjectLayerMaterializationUnit::discard(const JITDylib &JD,
const SymbolStringPtr &Name) {
// This is a no-op for object files: Having removed 'Name' from SymbolFlags
// the symbol will be dead-stripped by the JIT linker.
}
} // End namespace orc.
} // End namespace llvm.