1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 12:12:47 +01:00
llvm-mirror/lib/Target/RISCV/RISCVInstrInfoD.td
Craig Topper 4511712eb4 [RISCV] Implement lround*/llround*/lrint*/llrint* with fcvt instruction with -fno-math-errno
These are fp->int conversions using either RMM or dynamic rounding modes.

The lround and lrint opcodes have a return type of either i32 or
i64 depending on sizeof(long) in the frontend which should follow
xlen. llround/llrint should always return i64 so we'll need a libcall
for those on rv32.

The frontend will only emit the intrinsics if -fno-math-errno is in
effect otherwise a libcall will be emitted which will not use
these ISD opcodes.

gcc also does this optimization.

Reviewed By: arcbbb

Differential Revision: https://reviews.llvm.org/D105206
2021-07-06 11:43:22 -07:00

381 lines
15 KiB
TableGen

//===-- RISCVInstrInfoD.td - RISC-V 'D' instructions -------*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file describes the RISC-V instructions from the standard 'D',
// Double-Precision Floating-Point instruction set extension.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// RISC-V specific DAG Nodes.
//===----------------------------------------------------------------------===//
def SDT_RISCVBuildPairF64 : SDTypeProfile<1, 2, [SDTCisVT<0, f64>,
SDTCisVT<1, i32>,
SDTCisSameAs<1, 2>]>;
def SDT_RISCVSplitF64 : SDTypeProfile<2, 1, [SDTCisVT<0, i32>,
SDTCisVT<1, i32>,
SDTCisVT<2, f64>]>;
def RISCVBuildPairF64 : SDNode<"RISCVISD::BuildPairF64", SDT_RISCVBuildPairF64>;
def RISCVSplitF64 : SDNode<"RISCVISD::SplitF64", SDT_RISCVSplitF64>;
//===----------------------------------------------------------------------===//
// Instruction Class Templates
//===----------------------------------------------------------------------===//
let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
class FPFMAD_rrr_frm<RISCVOpcode opcode, string opcodestr>
: RVInstR4Frm<0b01, opcode, (outs FPR64:$rd),
(ins FPR64:$rs1, FPR64:$rs2, FPR64:$rs3, frmarg:$funct3),
opcodestr, "$rd, $rs1, $rs2, $rs3, $funct3">;
class FPFMADDynFrmAlias<FPFMAD_rrr_frm Inst, string OpcodeStr>
: InstAlias<OpcodeStr#" $rd, $rs1, $rs2, $rs3",
(Inst FPR64:$rd, FPR64:$rs1, FPR64:$rs2, FPR64:$rs3, 0b111)>;
let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
class FPALUD_rr<bits<7> funct7, bits<3> funct3, string opcodestr>
: RVInstR<funct7, funct3, OPC_OP_FP, (outs FPR64:$rd),
(ins FPR64:$rs1, FPR64:$rs2), opcodestr, "$rd, $rs1, $rs2">;
let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
class FPALUD_rr_frm<bits<7> funct7, string opcodestr>
: RVInstRFrm<funct7, OPC_OP_FP, (outs FPR64:$rd),
(ins FPR64:$rs1, FPR64:$rs2, frmarg:$funct3), opcodestr,
"$rd, $rs1, $rs2, $funct3">;
class FPALUDDynFrmAlias<FPALUD_rr_frm Inst, string OpcodeStr>
: InstAlias<OpcodeStr#" $rd, $rs1, $rs2",
(Inst FPR64:$rd, FPR64:$rs1, FPR64:$rs2, 0b111)>;
let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
class FPCmpD_rr<bits<3> funct3, string opcodestr>
: RVInstR<0b1010001, funct3, OPC_OP_FP, (outs GPR:$rd),
(ins FPR64:$rs1, FPR64:$rs2), opcodestr, "$rd, $rs1, $rs2">,
Sched<[WriteFCmp64, ReadFCmp64, ReadFCmp64]>;
//===----------------------------------------------------------------------===//
// Instructions
//===----------------------------------------------------------------------===//
let Predicates = [HasStdExtD] in {
let hasSideEffects = 0, mayLoad = 1, mayStore = 0 in
def FLD : RVInstI<0b011, OPC_LOAD_FP, (outs FPR64:$rd),
(ins GPR:$rs1, simm12:$imm12),
"fld", "$rd, ${imm12}(${rs1})">,
Sched<[WriteFLD64, ReadFMemBase]>;
// Operands for stores are in the order srcreg, base, offset rather than
// reflecting the order these fields are specified in the instruction
// encoding.
let hasSideEffects = 0, mayLoad = 0, mayStore = 1 in
def FSD : RVInstS<0b011, OPC_STORE_FP, (outs),
(ins FPR64:$rs2, GPR:$rs1, simm12:$imm12),
"fsd", "$rs2, ${imm12}(${rs1})">,
Sched<[WriteFST64, ReadStoreData, ReadFMemBase]>;
def FMADD_D : FPFMAD_rrr_frm<OPC_MADD, "fmadd.d">,
Sched<[WriteFMA64, ReadFMA64, ReadFMA64, ReadFMA64]>;
def : FPFMADDynFrmAlias<FMADD_D, "fmadd.d">;
def FMSUB_D : FPFMAD_rrr_frm<OPC_MSUB, "fmsub.d">,
Sched<[WriteFMA64, ReadFMA64, ReadFMA64, ReadFMA64]>;
def : FPFMADDynFrmAlias<FMSUB_D, "fmsub.d">;
def FNMSUB_D : FPFMAD_rrr_frm<OPC_NMSUB, "fnmsub.d">,
Sched<[WriteFMA64, ReadFMA64, ReadFMA64, ReadFMA64]>;
def : FPFMADDynFrmAlias<FNMSUB_D, "fnmsub.d">;
def FNMADD_D : FPFMAD_rrr_frm<OPC_NMADD, "fnmadd.d">,
Sched<[WriteFMA64, ReadFMA64, ReadFMA64, ReadFMA64]>;
def : FPFMADDynFrmAlias<FNMADD_D, "fnmadd.d">;
def FADD_D : FPALUD_rr_frm<0b0000001, "fadd.d">,
Sched<[WriteFALU64, ReadFALU64, ReadFALU64]>;
def : FPALUDDynFrmAlias<FADD_D, "fadd.d">;
def FSUB_D : FPALUD_rr_frm<0b0000101, "fsub.d">,
Sched<[WriteFALU64, ReadFALU64, ReadFALU64]>;
def : FPALUDDynFrmAlias<FSUB_D, "fsub.d">;
def FMUL_D : FPALUD_rr_frm<0b0001001, "fmul.d">,
Sched<[WriteFMul64, ReadFMul64, ReadFMul64]>;
def : FPALUDDynFrmAlias<FMUL_D, "fmul.d">;
def FDIV_D : FPALUD_rr_frm<0b0001101, "fdiv.d">,
Sched<[WriteFDiv64, ReadFDiv64, ReadFDiv64]>;
def : FPALUDDynFrmAlias<FDIV_D, "fdiv.d">;
def FSQRT_D : FPUnaryOp_r_frm<0b0101101, FPR64, FPR64, "fsqrt.d">,
Sched<[WriteFSqrt64, ReadFSqrt64]> {
let rs2 = 0b00000;
}
def : FPUnaryOpDynFrmAlias<FSQRT_D, "fsqrt.d", FPR64, FPR64>;
def FSGNJ_D : FPALUD_rr<0b0010001, 0b000, "fsgnj.d">,
Sched<[WriteFSGNJ64, ReadFSGNJ64, ReadFSGNJ64]>;
def FSGNJN_D : FPALUD_rr<0b0010001, 0b001, "fsgnjn.d">,
Sched<[WriteFSGNJ64, ReadFSGNJ64, ReadFSGNJ64]>;
def FSGNJX_D : FPALUD_rr<0b0010001, 0b010, "fsgnjx.d">,
Sched<[WriteFSGNJ64, ReadFSGNJ64, ReadFSGNJ64]>;
def FMIN_D : FPALUD_rr<0b0010101, 0b000, "fmin.d">,
Sched<[WriteFMinMax64, ReadFMinMax64, ReadFMinMax64]>;
def FMAX_D : FPALUD_rr<0b0010101, 0b001, "fmax.d">,
Sched<[WriteFMinMax64, ReadFMinMax64, ReadFMinMax64]>;
def FCVT_S_D : FPUnaryOp_r_frm<0b0100000, FPR32, FPR64, "fcvt.s.d">,
Sched<[WriteFCvtF64ToF32, ReadFCvtF64ToF32]> {
let rs2 = 0b00001;
}
def : FPUnaryOpDynFrmAlias<FCVT_S_D, "fcvt.s.d", FPR32, FPR64>;
def FCVT_D_S : FPUnaryOp_r<0b0100001, 0b000, FPR64, FPR32, "fcvt.d.s">,
Sched<[WriteFCvtF32ToF64, ReadFCvtF32ToF64]> {
let rs2 = 0b00000;
}
def FEQ_D : FPCmpD_rr<0b010, "feq.d">;
def FLT_D : FPCmpD_rr<0b001, "flt.d">;
def FLE_D : FPCmpD_rr<0b000, "fle.d">;
def FCLASS_D : FPUnaryOp_r<0b1110001, 0b001, GPR, FPR64, "fclass.d">,
Sched<[WriteFClass64, ReadFClass64]> {
let rs2 = 0b00000;
}
def FCVT_W_D : FPUnaryOp_r_frm<0b1100001, GPR, FPR64, "fcvt.w.d">,
Sched<[WriteFCvtF64ToI32, ReadFCvtF64ToI32]> {
let rs2 = 0b00000;
}
def : FPUnaryOpDynFrmAlias<FCVT_W_D, "fcvt.w.d", GPR, FPR64>;
def FCVT_WU_D : FPUnaryOp_r_frm<0b1100001, GPR, FPR64, "fcvt.wu.d">,
Sched<[WriteFCvtF64ToI32, ReadFCvtF64ToI32]> {
let rs2 = 0b00001;
}
def : FPUnaryOpDynFrmAlias<FCVT_WU_D, "fcvt.wu.d", GPR, FPR64>;
def FCVT_D_W : FPUnaryOp_r<0b1101001, 0b000, FPR64, GPR, "fcvt.d.w">,
Sched<[WriteFCvtI32ToF64, ReadFCvtI32ToF64]> {
let rs2 = 0b00000;
}
def FCVT_D_WU : FPUnaryOp_r<0b1101001, 0b000, FPR64, GPR, "fcvt.d.wu">,
Sched<[WriteFCvtI32ToF64, ReadFCvtI32ToF64]> {
let rs2 = 0b00001;
}
} // Predicates = [HasStdExtD]
let Predicates = [HasStdExtD, IsRV64] in {
def FCVT_L_D : FPUnaryOp_r_frm<0b1100001, GPR, FPR64, "fcvt.l.d">,
Sched<[WriteFCvtF64ToI64, ReadFCvtF64ToI64]> {
let rs2 = 0b00010;
}
def : FPUnaryOpDynFrmAlias<FCVT_L_D, "fcvt.l.d", GPR, FPR64>;
def FCVT_LU_D : FPUnaryOp_r_frm<0b1100001, GPR, FPR64, "fcvt.lu.d">,
Sched<[WriteFCvtF64ToI64, ReadFCvtF64ToI64]> {
let rs2 = 0b00011;
}
def : FPUnaryOpDynFrmAlias<FCVT_LU_D, "fcvt.lu.d", GPR, FPR64>;
def FMV_X_D : FPUnaryOp_r<0b1110001, 0b000, GPR, FPR64, "fmv.x.d">,
Sched<[WriteFMovF64ToI64, ReadFMovF64ToI64]> {
let rs2 = 0b00000;
}
def FCVT_D_L : FPUnaryOp_r_frm<0b1101001, FPR64, GPR, "fcvt.d.l">,
Sched<[WriteFCvtI64ToF64, ReadFCvtI64ToF64]> {
let rs2 = 0b00010;
}
def : FPUnaryOpDynFrmAlias<FCVT_D_L, "fcvt.d.l", FPR64, GPR>;
def FCVT_D_LU : FPUnaryOp_r_frm<0b1101001, FPR64, GPR, "fcvt.d.lu">,
Sched<[WriteFCvtI64ToF64, ReadFCvtI64ToF64]> {
let rs2 = 0b00011;
}
def : FPUnaryOpDynFrmAlias<FCVT_D_LU, "fcvt.d.lu", FPR64, GPR>;
def FMV_D_X : FPUnaryOp_r<0b1111001, 0b000, FPR64, GPR, "fmv.d.x">,
Sched<[WriteFMovI64ToF64, ReadFMovI64ToF64]> {
let rs2 = 0b00000;
}
} // Predicates = [HasStdExtD, IsRV64]
//===----------------------------------------------------------------------===//
// Assembler Pseudo Instructions (User-Level ISA, Version 2.2, Chapter 20)
//===----------------------------------------------------------------------===//
let Predicates = [HasStdExtD] in {
def : InstAlias<"fld $rd, (${rs1})", (FLD FPR64:$rd, GPR:$rs1, 0), 0>;
def : InstAlias<"fsd $rs2, (${rs1})", (FSD FPR64:$rs2, GPR:$rs1, 0), 0>;
def : InstAlias<"fmv.d $rd, $rs", (FSGNJ_D FPR64:$rd, FPR64:$rs, FPR64:$rs)>;
def : InstAlias<"fabs.d $rd, $rs", (FSGNJX_D FPR64:$rd, FPR64:$rs, FPR64:$rs)>;
def : InstAlias<"fneg.d $rd, $rs", (FSGNJN_D FPR64:$rd, FPR64:$rs, FPR64:$rs)>;
// fgt.d/fge.d are recognised by the GNU assembler but the canonical
// flt.d/fle.d forms will always be printed. Therefore, set a zero weight.
def : InstAlias<"fgt.d $rd, $rs, $rt",
(FLT_D GPR:$rd, FPR64:$rt, FPR64:$rs), 0>;
def : InstAlias<"fge.d $rd, $rs, $rt",
(FLE_D GPR:$rd, FPR64:$rt, FPR64:$rs), 0>;
def PseudoFLD : PseudoFloatLoad<"fld", FPR64>;
def PseudoFSD : PseudoStore<"fsd", FPR64>;
} // Predicates = [HasStdExtD]
//===----------------------------------------------------------------------===//
// Pseudo-instructions and codegen patterns
//===----------------------------------------------------------------------===//
class PatFpr64Fpr64<SDPatternOperator OpNode, RVInstR Inst>
: Pat<(OpNode FPR64:$rs1, FPR64:$rs2), (Inst $rs1, $rs2)>;
class PatFpr64Fpr64DynFrm<SDPatternOperator OpNode, RVInstRFrm Inst>
: Pat<(OpNode FPR64:$rs1, FPR64:$rs2), (Inst $rs1, $rs2, 0b111)>;
let Predicates = [HasStdExtD] in {
/// Float conversion operations
// f64 -> f32, f32 -> f64
def : Pat<(fpround FPR64:$rs1), (FCVT_S_D FPR64:$rs1, 0b111)>;
def : Pat<(fpextend FPR32:$rs1), (FCVT_D_S FPR32:$rs1)>;
// [u]int<->double conversion patterns must be gated on IsRV32 or IsRV64, so
// are defined later.
/// Float arithmetic operations
def : PatFpr64Fpr64DynFrm<fadd, FADD_D>;
def : PatFpr64Fpr64DynFrm<fsub, FSUB_D>;
def : PatFpr64Fpr64DynFrm<fmul, FMUL_D>;
def : PatFpr64Fpr64DynFrm<fdiv, FDIV_D>;
def : Pat<(fsqrt FPR64:$rs1), (FSQRT_D FPR64:$rs1, 0b111)>;
def : Pat<(fneg FPR64:$rs1), (FSGNJN_D $rs1, $rs1)>;
def : Pat<(fabs FPR64:$rs1), (FSGNJX_D $rs1, $rs1)>;
def : PatFpr64Fpr64<fcopysign, FSGNJ_D>;
def : Pat<(fcopysign FPR64:$rs1, (fneg FPR64:$rs2)), (FSGNJN_D $rs1, $rs2)>;
def : Pat<(fcopysign FPR64:$rs1, FPR32:$rs2), (FSGNJ_D $rs1, (FCVT_D_S $rs2))>;
def : Pat<(fcopysign FPR32:$rs1, FPR64:$rs2), (FSGNJ_S $rs1, (FCVT_S_D $rs2,
0b111))>;
// fmadd: rs1 * rs2 + rs3
def : Pat<(fma FPR64:$rs1, FPR64:$rs2, FPR64:$rs3),
(FMADD_D $rs1, $rs2, $rs3, 0b111)>;
// fmsub: rs1 * rs2 - rs3
def : Pat<(fma FPR64:$rs1, FPR64:$rs2, (fneg FPR64:$rs3)),
(FMSUB_D FPR64:$rs1, FPR64:$rs2, FPR64:$rs3, 0b111)>;
// fnmsub: -rs1 * rs2 + rs3
def : Pat<(fma (fneg FPR64:$rs1), FPR64:$rs2, FPR64:$rs3),
(FNMSUB_D FPR64:$rs1, FPR64:$rs2, FPR64:$rs3, 0b111)>;
// fnmadd: -rs1 * rs2 - rs3
def : Pat<(fma (fneg FPR64:$rs1), FPR64:$rs2, (fneg FPR64:$rs3)),
(FNMADD_D FPR64:$rs1, FPR64:$rs2, FPR64:$rs3, 0b111)>;
// The ratified 20191213 ISA spec defines fmin and fmax in a way that matches
// LLVM's fminnum and fmaxnum.
// <https://github.com/riscv/riscv-isa-manual/commit/cd20cee7efd9bac7c5aa127ec3b451749d2b3cce>.
def : PatFpr64Fpr64<fminnum, FMIN_D>;
def : PatFpr64Fpr64<fmaxnum, FMAX_D>;
/// Setcc
def : PatFpr64Fpr64<seteq, FEQ_D>;
def : PatFpr64Fpr64<setoeq, FEQ_D>;
def : PatFpr64Fpr64<setlt, FLT_D>;
def : PatFpr64Fpr64<setolt, FLT_D>;
def : PatFpr64Fpr64<setle, FLE_D>;
def : PatFpr64Fpr64<setole, FLE_D>;
def Select_FPR64_Using_CC_GPR : SelectCC_rrirr<FPR64, GPR>;
/// Loads
defm : LdPat<load, FLD, f64>;
/// Stores
defm : StPat<store, FSD, FPR64, f64>;
/// Pseudo-instructions needed for the soft-float ABI with RV32D
// Moves two GPRs to an FPR.
let usesCustomInserter = 1 in
def BuildPairF64Pseudo
: Pseudo<(outs FPR64:$dst), (ins GPR:$src1, GPR:$src2),
[(set FPR64:$dst, (RISCVBuildPairF64 GPR:$src1, GPR:$src2))]>;
// Moves an FPR to two GPRs.
let usesCustomInserter = 1 in
def SplitF64Pseudo
: Pseudo<(outs GPR:$dst1, GPR:$dst2), (ins FPR64:$src),
[(set GPR:$dst1, GPR:$dst2, (RISCVSplitF64 FPR64:$src))]>;
} // Predicates = [HasStdExtD]
let Predicates = [HasStdExtD, IsRV32] in {
/// Float constants
def : Pat<(f64 (fpimm0)), (FCVT_D_W (i32 X0))>;
// double->[u]int. Round-to-zero must be used.
def : Pat<(i32 (fp_to_sint FPR64:$rs1)), (FCVT_W_D FPR64:$rs1, 0b001)>;
def : Pat<(i32 (fp_to_uint FPR64:$rs1)), (FCVT_WU_D FPR64:$rs1, 0b001)>;
// float->int32 with current rounding mode.
def : Pat<(i32 (lrint FPR64:$rs1)), (FCVT_W_D $rs1, 0b111)>;
// float->int32 rounded to nearest with ties rounded away from zero.
def : Pat<(i32 (lround FPR64:$rs1)), (FCVT_W_D $rs1, 0b100)>;
// [u]int->double.
def : Pat<(sint_to_fp (i32 GPR:$rs1)), (FCVT_D_W GPR:$rs1)>;
def : Pat<(uint_to_fp (i32 GPR:$rs1)), (FCVT_D_WU GPR:$rs1)>;
} // Predicates = [HasStdExtD, IsRV32]
let Predicates = [HasStdExtD, IsRV64] in {
/// Float constants
def : Pat<(f64 (fpimm0)), (FMV_D_X (i64 X0))>;
// Moves (no conversion)
def : Pat<(bitconvert (i64 GPR:$rs1)), (FMV_D_X GPR:$rs1)>;
def : Pat<(i64 (bitconvert FPR64:$rs1)), (FMV_X_D FPR64:$rs1)>;
// FP->[u]int32 is mostly handled by the FP->[u]int64 patterns. This is safe
// because fpto[u|s]i produce poison if the value can't fit into the target.
// We match the single case below because fcvt.wu.d sign-extends its result so
// is cheaper than fcvt.lu.d+sext.w.
def : Pat<(sext_inreg (assertzexti32 (fp_to_uint FPR64:$rs1)), i32),
(FCVT_WU_D $rs1, 0b001)>;
// [u]int32->fp
def : Pat<(sint_to_fp (i64 (sexti32 (i64 GPR:$rs1)))), (FCVT_D_W $rs1)>;
def : Pat<(uint_to_fp (i64 (zexti32 (i64 GPR:$rs1)))), (FCVT_D_WU $rs1)>;
// double->[u]int64. Round-to-zero must be used.
def : Pat<(i64 (fp_to_sint FPR64:$rs1)), (FCVT_L_D FPR64:$rs1, 0b001)>;
def : Pat<(i64 (fp_to_uint FPR64:$rs1)), (FCVT_LU_D FPR64:$rs1, 0b001)>;
// double->int64 with current rounding mode.
def : Pat<(i64 (lrint FPR64:$rs1)), (FCVT_L_D $rs1, 0b111)>;
def : Pat<(i64 (llrint FPR64:$rs1)), (FCVT_L_D $rs1, 0b111)>;
// double->int64 rounded to nearest with ties rounded away from zero.
def : Pat<(i64 (lround FPR64:$rs1)), (FCVT_L_D $rs1, 0b100)>;
def : Pat<(i64 (llround FPR64:$rs1)), (FCVT_L_D $rs1, 0b100)>;
// [u]int64->fp. Match GCC and default to using dynamic rounding mode.
def : Pat<(sint_to_fp (i64 GPR:$rs1)), (FCVT_D_L GPR:$rs1, 0b111)>;
def : Pat<(uint_to_fp (i64 GPR:$rs1)), (FCVT_D_LU GPR:$rs1, 0b111)>;
} // Predicates = [HasStdExtD, IsRV64]