1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-19 11:02:59 +02:00
llvm-mirror/lib/CodeGen/ReachingDefAnalysis.cpp
Nikita Popov 808adc1a0e [RDA] Avoid full reprocessing of blocks in loops (NFCI)
RDA sometimes needs to visit blocks twice, to take into account
reaching defs coming in along loop back edges. Currently it handles
repeated visitation the same way as usual, which means that it will
scan through all instructions and their reg unit defs again. Not
only is this very inefficient, it also means that all reaching defs
in loops are going to be inserted twice.

We can do much better than this. The only thing we need to handle
is a new reaching def from a predecessor, which either needs to be
prepended to the reaching definitions (if there was no reaching def
from a predecessor), or needs to replace an existing predecessor
reaching def, if it is more recent. Since D77508 we only store the
most recent predecessor reaching def, so that's the only one that
may need updating.

This also has the nice side-effect that reaching definitions are
now automatically sorted and unique, so drop the llvm::sort() call
in favor of an assertion.

Differential Revision: https://reviews.llvm.org/D77511
2020-04-07 17:55:37 +02:00

672 lines
22 KiB
C++

//===---- ReachingDefAnalysis.cpp - Reaching Def Analysis ---*- C++ -*-----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/SmallSet.h"
#include "llvm/CodeGen/LivePhysRegs.h"
#include "llvm/CodeGen/ReachingDefAnalysis.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/Support/Debug.h"
using namespace llvm;
#define DEBUG_TYPE "reaching-deps-analysis"
char ReachingDefAnalysis::ID = 0;
INITIALIZE_PASS(ReachingDefAnalysis, DEBUG_TYPE, "ReachingDefAnalysis", false,
true)
static bool isValidReg(const MachineOperand &MO) {
return MO.isReg() && MO.getReg();
}
static bool isValidRegUse(const MachineOperand &MO) {
return isValidReg(MO) && MO.isUse();
}
static bool isValidRegUseOf(const MachineOperand &MO, int PhysReg) {
return isValidRegUse(MO) && MO.getReg() == PhysReg;
}
static bool isValidRegDef(const MachineOperand &MO) {
return isValidReg(MO) && MO.isDef();
}
static bool isValidRegDefOf(const MachineOperand &MO, int PhysReg) {
return isValidRegDef(MO) && MO.getReg() == PhysReg;
}
void ReachingDefAnalysis::enterBasicBlock(MachineBasicBlock *MBB) {
unsigned MBBNumber = MBB->getNumber();
assert(MBBNumber < MBBReachingDefs.size() &&
"Unexpected basic block number.");
MBBReachingDefs[MBBNumber].resize(NumRegUnits);
// Reset instruction counter in each basic block.
CurInstr = 0;
// Set up LiveRegs to represent registers entering MBB.
// Default values are 'nothing happened a long time ago'.
if (LiveRegs.empty())
LiveRegs.assign(NumRegUnits, ReachingDefDefaultVal);
// This is the entry block.
if (MBB->pred_empty()) {
for (const auto &LI : MBB->liveins()) {
for (MCRegUnitIterator Unit(LI.PhysReg, TRI); Unit.isValid(); ++Unit) {
// Treat function live-ins as if they were defined just before the first
// instruction. Usually, function arguments are set up immediately
// before the call.
if (LiveRegs[*Unit] != -1) {
LiveRegs[*Unit] = -1;
MBBReachingDefs[MBBNumber][*Unit].push_back(-1);
}
}
}
LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << ": entry\n");
return;
}
// Try to coalesce live-out registers from predecessors.
for (MachineBasicBlock *pred : MBB->predecessors()) {
assert(unsigned(pred->getNumber()) < MBBOutRegsInfos.size() &&
"Should have pre-allocated MBBInfos for all MBBs");
const LiveRegsDefInfo &Incoming = MBBOutRegsInfos[pred->getNumber()];
// Incoming is null if this is a backedge from a BB
// we haven't processed yet
if (Incoming.empty())
continue;
// Find the most recent reaching definition from a predecessor.
for (unsigned Unit = 0; Unit != NumRegUnits; ++Unit)
LiveRegs[Unit] = std::max(LiveRegs[Unit], Incoming[Unit]);
}
// Insert the most recent reaching definition we found.
for (unsigned Unit = 0; Unit != NumRegUnits; ++Unit)
if (LiveRegs[Unit] != ReachingDefDefaultVal)
MBBReachingDefs[MBBNumber][Unit].push_back(LiveRegs[Unit]);
}
void ReachingDefAnalysis::leaveBasicBlock(MachineBasicBlock *MBB) {
assert(!LiveRegs.empty() && "Must enter basic block first.");
unsigned MBBNumber = MBB->getNumber();
assert(MBBNumber < MBBOutRegsInfos.size() &&
"Unexpected basic block number.");
// Save register clearances at end of MBB - used by enterBasicBlock().
MBBOutRegsInfos[MBBNumber] = LiveRegs;
// While processing the basic block, we kept `Def` relative to the start
// of the basic block for convenience. However, future use of this information
// only cares about the clearance from the end of the block, so adjust
// everything to be relative to the end of the basic block.
for (int &OutLiveReg : MBBOutRegsInfos[MBBNumber])
if (OutLiveReg != ReachingDefDefaultVal)
OutLiveReg -= CurInstr;
LiveRegs.clear();
}
void ReachingDefAnalysis::processDefs(MachineInstr *MI) {
assert(!MI->isDebugInstr() && "Won't process debug instructions");
unsigned MBBNumber = MI->getParent()->getNumber();
assert(MBBNumber < MBBReachingDefs.size() &&
"Unexpected basic block number.");
for (auto &MO : MI->operands()) {
if (!isValidRegDef(MO))
continue;
for (MCRegUnitIterator Unit(MO.getReg(), TRI); Unit.isValid(); ++Unit) {
// This instruction explicitly defines the current reg unit.
LLVM_DEBUG(dbgs() << printReg(*Unit, TRI) << ":\t" << CurInstr
<< '\t' << *MI);
// How many instructions since this reg unit was last written?
if (LiveRegs[*Unit] != CurInstr) {
LiveRegs[*Unit] = CurInstr;
MBBReachingDefs[MBBNumber][*Unit].push_back(CurInstr);
}
}
}
InstIds[MI] = CurInstr;
++CurInstr;
}
void ReachingDefAnalysis::reprocessBasicBlock(MachineBasicBlock *MBB) {
unsigned MBBNumber = MBB->getNumber();
assert(MBBNumber < MBBReachingDefs.size() &&
"Unexpected basic block number.");
// Count number of non-debug instructions for end of block adjustment.
int NumInsts = 0;
for (const MachineInstr &MI : *MBB)
if (!MI.isDebugInstr())
NumInsts++;
// When reprocessing a block, the only thing we need to do is check whether
// there is now a more recent incoming reaching definition from a predecessor.
for (MachineBasicBlock *pred : MBB->predecessors()) {
assert(unsigned(pred->getNumber()) < MBBOutRegsInfos.size() &&
"Should have pre-allocated MBBInfos for all MBBs");
const LiveRegsDefInfo &Incoming = MBBOutRegsInfos[pred->getNumber()];
// Incoming may be empty for dead predecessors.
if (Incoming.empty())
continue;
for (unsigned Unit = 0; Unit != NumRegUnits; ++Unit) {
int Def = Incoming[Unit];
if (Def == ReachingDefDefaultVal)
continue;
auto Start = MBBReachingDefs[MBBNumber][Unit].begin();
if (Start != MBBReachingDefs[MBBNumber][Unit].end() && *Start < 0) {
if (*Start >= Def)
continue;
// Update existing reaching def from predecessor to a more recent one.
*Start = Def;
} else {
// Insert new reaching def from predecessor.
MBBReachingDefs[MBBNumber][Unit].insert(Start, Def);
}
// Update reaching def at end of of BB. Keep in mind that these are
// adjusted relative to the end of the basic block.
if (MBBOutRegsInfos[MBBNumber][Unit] < Def - NumInsts)
MBBOutRegsInfos[MBBNumber][Unit] = Def - NumInsts;
}
}
}
void ReachingDefAnalysis::processBasicBlock(
const LoopTraversal::TraversedMBBInfo &TraversedMBB) {
MachineBasicBlock *MBB = TraversedMBB.MBB;
LLVM_DEBUG(dbgs() << printMBBReference(*MBB)
<< (!TraversedMBB.IsDone ? ": incomplete\n"
: ": all preds known\n"));
if (!TraversedMBB.PrimaryPass) {
// Reprocess MBB that is part of a loop.
reprocessBasicBlock(MBB);
return;
}
enterBasicBlock(MBB);
for (MachineInstr &MI : *MBB) {
if (!MI.isDebugInstr())
processDefs(&MI);
}
leaveBasicBlock(MBB);
}
bool ReachingDefAnalysis::runOnMachineFunction(MachineFunction &mf) {
MF = &mf;
TRI = MF->getSubtarget().getRegisterInfo();
LLVM_DEBUG(dbgs() << "********** REACHING DEFINITION ANALYSIS **********\n");
init();
traverse();
return false;
}
void ReachingDefAnalysis::releaseMemory() {
// Clear the internal vectors.
MBBOutRegsInfos.clear();
MBBReachingDefs.clear();
InstIds.clear();
LiveRegs.clear();
}
void ReachingDefAnalysis::reset() {
releaseMemory();
init();
traverse();
}
void ReachingDefAnalysis::init() {
NumRegUnits = TRI->getNumRegUnits();
MBBReachingDefs.resize(MF->getNumBlockIDs());
// Initialize the MBBOutRegsInfos
MBBOutRegsInfos.resize(MF->getNumBlockIDs());
LoopTraversal Traversal;
TraversedMBBOrder = Traversal.traverse(*MF);
}
void ReachingDefAnalysis::traverse() {
// Traverse the basic blocks.
for (LoopTraversal::TraversedMBBInfo TraversedMBB : TraversedMBBOrder)
processBasicBlock(TraversedMBB);
#ifndef NDEBUG
// Make sure reaching defs are sorted and unique.
for (MBBDefsInfo &MBBDefs : MBBReachingDefs) {
for (MBBRegUnitDefs &RegUnitDefs : MBBDefs) {
int LastDef = ReachingDefDefaultVal;
for (int Def : RegUnitDefs) {
assert(Def > LastDef && "Defs must be sorted and unique");
LastDef = Def;
}
}
}
#endif
}
int ReachingDefAnalysis::getReachingDef(MachineInstr *MI, int PhysReg) const {
assert(InstIds.count(MI) && "Unexpected machine instuction.");
int InstId = InstIds.lookup(MI);
int DefRes = ReachingDefDefaultVal;
unsigned MBBNumber = MI->getParent()->getNumber();
assert(MBBNumber < MBBReachingDefs.size() &&
"Unexpected basic block number.");
int LatestDef = ReachingDefDefaultVal;
for (MCRegUnitIterator Unit(PhysReg, TRI); Unit.isValid(); ++Unit) {
for (int Def : MBBReachingDefs[MBBNumber][*Unit]) {
if (Def >= InstId)
break;
DefRes = Def;
}
LatestDef = std::max(LatestDef, DefRes);
}
return LatestDef;
}
MachineInstr* ReachingDefAnalysis::getReachingLocalMIDef(MachineInstr *MI,
int PhysReg) const {
return getInstFromId(MI->getParent(), getReachingDef(MI, PhysReg));
}
bool ReachingDefAnalysis::hasSameReachingDef(MachineInstr *A, MachineInstr *B,
int PhysReg) const {
MachineBasicBlock *ParentA = A->getParent();
MachineBasicBlock *ParentB = B->getParent();
if (ParentA != ParentB)
return false;
return getReachingDef(A, PhysReg) == getReachingDef(B, PhysReg);
}
MachineInstr *ReachingDefAnalysis::getInstFromId(MachineBasicBlock *MBB,
int InstId) const {
assert(static_cast<size_t>(MBB->getNumber()) < MBBReachingDefs.size() &&
"Unexpected basic block number.");
assert(InstId < static_cast<int>(MBB->size()) &&
"Unexpected instruction id.");
if (InstId < 0)
return nullptr;
for (auto &MI : *MBB) {
auto F = InstIds.find(&MI);
if (F != InstIds.end() && F->second == InstId)
return &MI;
}
return nullptr;
}
int
ReachingDefAnalysis::getClearance(MachineInstr *MI, MCPhysReg PhysReg) const {
assert(InstIds.count(MI) && "Unexpected machine instuction.");
return InstIds.lookup(MI) - getReachingDef(MI, PhysReg);
}
bool
ReachingDefAnalysis::hasLocalDefBefore(MachineInstr *MI, int PhysReg) const {
return getReachingDef(MI, PhysReg) >= 0;
}
void ReachingDefAnalysis::getReachingLocalUses(MachineInstr *Def, int PhysReg,
InstSet &Uses) const {
MachineBasicBlock *MBB = Def->getParent();
MachineBasicBlock::iterator MI = MachineBasicBlock::iterator(Def);
while (++MI != MBB->end()) {
if (MI->isDebugInstr())
continue;
// If/when we find a new reaching def, we know that there's no more uses
// of 'Def'.
if (getReachingLocalMIDef(&*MI, PhysReg) != Def)
return;
for (auto &MO : MI->operands()) {
if (!isValidRegUseOf(MO, PhysReg))
continue;
Uses.insert(&*MI);
if (MO.isKill())
return;
}
}
}
bool
ReachingDefAnalysis::getLiveInUses(MachineBasicBlock *MBB, int PhysReg,
InstSet &Uses) const {
for (auto &MI : *MBB) {
if (MI.isDebugInstr())
continue;
for (auto &MO : MI.operands()) {
if (!isValidRegUseOf(MO, PhysReg))
continue;
if (getReachingDef(&MI, PhysReg) >= 0)
return false;
Uses.insert(&MI);
}
}
return isReachingDefLiveOut(&MBB->back(), PhysReg);
}
void
ReachingDefAnalysis::getGlobalUses(MachineInstr *MI, int PhysReg,
InstSet &Uses) const {
MachineBasicBlock *MBB = MI->getParent();
// Collect the uses that each def touches within the block.
getReachingLocalUses(MI, PhysReg, Uses);
// Handle live-out values.
if (auto *LiveOut = getLocalLiveOutMIDef(MI->getParent(), PhysReg)) {
if (LiveOut != MI)
return;
SmallVector<MachineBasicBlock*, 4> ToVisit;
ToVisit.insert(ToVisit.begin(), MBB->successors().begin(),
MBB->successors().end());
SmallPtrSet<MachineBasicBlock*, 4>Visited;
while (!ToVisit.empty()) {
MachineBasicBlock *MBB = ToVisit.back();
ToVisit.pop_back();
if (Visited.count(MBB) || !MBB->isLiveIn(PhysReg))
continue;
if (getLiveInUses(MBB, PhysReg, Uses))
ToVisit.insert(ToVisit.end(), MBB->successors().begin(),
MBB->successors().end());
Visited.insert(MBB);
}
}
}
void
ReachingDefAnalysis::getLiveOuts(MachineBasicBlock *MBB, int PhysReg,
InstSet &Defs, BlockSet &VisitedBBs) const {
if (VisitedBBs.count(MBB))
return;
VisitedBBs.insert(MBB);
LivePhysRegs LiveRegs(*TRI);
LiveRegs.addLiveOuts(*MBB);
if (!LiveRegs.contains(PhysReg))
return;
if (auto *Def = getLocalLiveOutMIDef(MBB, PhysReg))
Defs.insert(Def);
else
for (auto *Pred : MBB->predecessors())
getLiveOuts(Pred, PhysReg, Defs, VisitedBBs);
}
MachineInstr *ReachingDefAnalysis::getUniqueReachingMIDef(MachineInstr *MI,
int PhysReg) const {
// If there's a local def before MI, return it.
MachineInstr *LocalDef = getReachingLocalMIDef(MI, PhysReg);
if (LocalDef && InstIds.lookup(LocalDef) < InstIds.lookup(MI))
return LocalDef;
SmallPtrSet<MachineBasicBlock*, 4> VisitedBBs;
SmallPtrSet<MachineInstr*, 2> Incoming;
for (auto *Pred : MI->getParent()->predecessors())
getLiveOuts(Pred, PhysReg, Incoming, VisitedBBs);
// If we have a local def and an incoming instruction, then there's not a
// unique instruction def.
if (!Incoming.empty() && LocalDef)
return nullptr;
else if (Incoming.size() == 1)
return *Incoming.begin();
else
return LocalDef;
}
MachineInstr *ReachingDefAnalysis::getMIOperand(MachineInstr *MI,
unsigned Idx) const {
assert(MI->getOperand(Idx).isReg() && "Expected register operand");
return getUniqueReachingMIDef(MI, MI->getOperand(Idx).getReg());
}
MachineInstr *ReachingDefAnalysis::getMIOperand(MachineInstr *MI,
MachineOperand &MO) const {
assert(MO.isReg() && "Expected register operand");
return getUniqueReachingMIDef(MI, MO.getReg());
}
bool ReachingDefAnalysis::isRegUsedAfter(MachineInstr *MI, int PhysReg) const {
MachineBasicBlock *MBB = MI->getParent();
LivePhysRegs LiveRegs(*TRI);
LiveRegs.addLiveOuts(*MBB);
// Yes if the register is live out of the basic block.
if (LiveRegs.contains(PhysReg))
return true;
// Walk backwards through the block to see if the register is live at some
// point.
for (auto Last = MBB->rbegin(), End = MBB->rend(); Last != End; ++Last) {
LiveRegs.stepBackward(*Last);
if (LiveRegs.contains(PhysReg))
return InstIds.lookup(&*Last) > InstIds.lookup(MI);
}
return false;
}
bool ReachingDefAnalysis::isRegDefinedAfter(MachineInstr *MI,
int PhysReg) const {
MachineBasicBlock *MBB = MI->getParent();
if (getReachingDef(MI, PhysReg) != getReachingDef(&MBB->back(), PhysReg))
return true;
if (auto *Def = getLocalLiveOutMIDef(MBB, PhysReg))
return Def == getReachingLocalMIDef(MI, PhysReg);
return false;
}
bool
ReachingDefAnalysis::isReachingDefLiveOut(MachineInstr *MI, int PhysReg) const {
MachineBasicBlock *MBB = MI->getParent();
LivePhysRegs LiveRegs(*TRI);
LiveRegs.addLiveOuts(*MBB);
if (!LiveRegs.contains(PhysReg))
return false;
MachineInstr *Last = &MBB->back();
int Def = getReachingDef(MI, PhysReg);
if (getReachingDef(Last, PhysReg) != Def)
return false;
// Finally check that the last instruction doesn't redefine the register.
for (auto &MO : Last->operands())
if (isValidRegDefOf(MO, PhysReg))
return false;
return true;
}
MachineInstr* ReachingDefAnalysis::getLocalLiveOutMIDef(MachineBasicBlock *MBB,
int PhysReg) const {
LivePhysRegs LiveRegs(*TRI);
LiveRegs.addLiveOuts(*MBB);
if (!LiveRegs.contains(PhysReg))
return nullptr;
MachineInstr *Last = &MBB->back();
int Def = getReachingDef(Last, PhysReg);
for (auto &MO : Last->operands())
if (isValidRegDefOf(MO, PhysReg))
return Last;
return Def < 0 ? nullptr : getInstFromId(MBB, Def);
}
static bool mayHaveSideEffects(MachineInstr &MI) {
return MI.mayLoadOrStore() || MI.mayRaiseFPException() ||
MI.hasUnmodeledSideEffects() || MI.isTerminator() ||
MI.isCall() || MI.isBarrier() || MI.isBranch() || MI.isReturn();
}
// Can we safely move 'From' to just before 'To'? To satisfy this, 'From' must
// not define a register that is used by any instructions, after and including,
// 'To'. These instructions also must not redefine any of Froms operands.
template<typename Iterator>
bool ReachingDefAnalysis::isSafeToMove(MachineInstr *From,
MachineInstr *To) const {
if (From->getParent() != To->getParent())
return false;
SmallSet<int, 2> Defs;
// First check that From would compute the same value if moved.
for (auto &MO : From->operands()) {
if (!isValidReg(MO))
continue;
if (MO.isDef())
Defs.insert(MO.getReg());
else if (!hasSameReachingDef(From, To, MO.getReg()))
return false;
}
// Now walk checking that the rest of the instructions will compute the same
// value and that we're not overwriting anything. Don't move the instruction
// past any memory, control-flow or other ambigious instructions.
for (auto I = ++Iterator(From), E = Iterator(To); I != E; ++I) {
if (mayHaveSideEffects(*I))
return false;
for (auto &MO : I->operands())
if (MO.isReg() && MO.getReg() && Defs.count(MO.getReg()))
return false;
}
return true;
}
bool ReachingDefAnalysis::isSafeToMoveForwards(MachineInstr *From,
MachineInstr *To) const {
return isSafeToMove<MachineBasicBlock::reverse_iterator>(From, To);
}
bool ReachingDefAnalysis::isSafeToMoveBackwards(MachineInstr *From,
MachineInstr *To) const {
return isSafeToMove<MachineBasicBlock::iterator>(From, To);
}
bool ReachingDefAnalysis::isSafeToRemove(MachineInstr *MI,
InstSet &ToRemove) const {
SmallPtrSet<MachineInstr*, 1> Ignore;
SmallPtrSet<MachineInstr*, 2> Visited;
return isSafeToRemove(MI, Visited, ToRemove, Ignore);
}
bool
ReachingDefAnalysis::isSafeToRemove(MachineInstr *MI, InstSet &ToRemove,
InstSet &Ignore) const {
SmallPtrSet<MachineInstr*, 2> Visited;
return isSafeToRemove(MI, Visited, ToRemove, Ignore);
}
bool
ReachingDefAnalysis::isSafeToRemove(MachineInstr *MI, InstSet &Visited,
InstSet &ToRemove, InstSet &Ignore) const {
if (Visited.count(MI) || Ignore.count(MI))
return true;
else if (mayHaveSideEffects(*MI)) {
// Unless told to ignore the instruction, don't remove anything which has
// side effects.
return false;
}
Visited.insert(MI);
for (auto &MO : MI->operands()) {
if (!isValidRegDef(MO))
continue;
SmallPtrSet<MachineInstr*, 4> Uses;
getGlobalUses(MI, MO.getReg(), Uses);
for (auto I : Uses) {
if (Ignore.count(I) || ToRemove.count(I))
continue;
if (!isSafeToRemove(I, Visited, ToRemove, Ignore))
return false;
}
}
ToRemove.insert(MI);
return true;
}
void ReachingDefAnalysis::collectKilledOperands(MachineInstr *MI,
InstSet &Dead) const {
Dead.insert(MI);
auto IsDead = [this, &Dead](MachineInstr *Def, int PhysReg) {
unsigned LiveDefs = 0;
for (auto &MO : Def->operands()) {
if (!isValidRegDef(MO))
continue;
if (!MO.isDead())
++LiveDefs;
}
if (LiveDefs > 1)
return false;
SmallPtrSet<MachineInstr*, 4> Uses;
getGlobalUses(Def, PhysReg, Uses);
for (auto *Use : Uses)
if (!Dead.count(Use))
return false;
return true;
};
for (auto &MO : MI->operands()) {
if (!isValidRegUse(MO))
continue;
if (MachineInstr *Def = getMIOperand(MI, MO))
if (IsDead(Def, MO.getReg()))
collectKilledOperands(Def, Dead);
}
}
bool ReachingDefAnalysis::isSafeToDefRegAt(MachineInstr *MI,
int PhysReg) const {
SmallPtrSet<MachineInstr*, 1> Ignore;
return isSafeToDefRegAt(MI, PhysReg, Ignore);
}
bool ReachingDefAnalysis::isSafeToDefRegAt(MachineInstr *MI, int PhysReg,
InstSet &Ignore) const {
// Check for any uses of the register after MI.
if (isRegUsedAfter(MI, PhysReg)) {
if (auto *Def = getReachingLocalMIDef(MI, PhysReg)) {
SmallPtrSet<MachineInstr*, 2> Uses;
getReachingLocalUses(Def, PhysReg, Uses);
for (auto *Use : Uses)
if (!Ignore.count(Use))
return false;
} else
return false;
}
MachineBasicBlock *MBB = MI->getParent();
// Check for any defs after MI.
if (isRegDefinedAfter(MI, PhysReg)) {
auto I = MachineBasicBlock::iterator(MI);
for (auto E = MBB->end(); I != E; ++I) {
if (Ignore.count(&*I))
continue;
for (auto &MO : I->operands())
if (isValidRegDefOf(MO, PhysReg))
return false;
}
}
return true;
}