mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 20:23:11 +01:00
0aba6c9435
llvm-svn: 62279
378 lines
12 KiB
C++
378 lines
12 KiB
C++
//===- MergeFunctions.cpp - Merge identical functions ---------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass looks for equivalent functions that are mergable and folds them.
|
|
//
|
|
// A Function will not be analyzed if:
|
|
// * it is overridable at runtime (except for weak linkage), or
|
|
// * it is used by anything other than the callee parameter of a call/invoke
|
|
//
|
|
// A hash is computed from the function, based on its type and number of
|
|
// basic blocks.
|
|
//
|
|
// Once all hashes are computed, we perform an expensive equality comparison
|
|
// on each function pair. This takes n^2/2 comparisons per bucket, so it's
|
|
// important that the hash function be high quality. The equality comparison
|
|
// iterates through each instruction in each basic block.
|
|
//
|
|
// When a match is found, the functions are folded. We can only fold two
|
|
// functions when we know that the definition of one of them is not
|
|
// overridable.
|
|
// * fold a function marked internal by replacing all of its users.
|
|
// * fold extern or weak functions by replacing them with a global alias
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Future work:
|
|
//
|
|
// * fold vector<T*>::push_back and vector<S*>::push_back.
|
|
//
|
|
// These two functions have different types, but in a way that doesn't matter
|
|
// to us. As long as we never see an S or T itself, using S* and S** is the
|
|
// same as using a T* and T**.
|
|
//
|
|
// * virtual functions.
|
|
//
|
|
// Many functions have their address taken by the virtual function table for
|
|
// the object they belong to. However, as long as it's only used for a lookup
|
|
// and call, this is irrelevant, and we'd like to fold such implementations.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "mergefunc"
|
|
#include "llvm/Transforms/IPO.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/InlineAsm.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/CallSite.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include <map>
|
|
#include <vector>
|
|
using namespace llvm;
|
|
|
|
STATISTIC(NumFunctionsMerged, "Number of functions merged");
|
|
STATISTIC(NumMergeFails, "Number of identical function pairings not merged");
|
|
|
|
namespace {
|
|
struct VISIBILITY_HIDDEN MergeFunctions : public ModulePass {
|
|
static char ID; // Pass identification, replacement for typeid
|
|
MergeFunctions() : ModulePass((intptr_t)&ID) {}
|
|
|
|
bool runOnModule(Module &M);
|
|
};
|
|
}
|
|
|
|
char MergeFunctions::ID = 0;
|
|
static RegisterPass<MergeFunctions>
|
|
X("mergefunc", "Merge Functions");
|
|
|
|
ModulePass *llvm::createMergeFunctionsPass() {
|
|
return new MergeFunctions();
|
|
}
|
|
|
|
static unsigned long hash(const Function *F) {
|
|
return F->size() ^ reinterpret_cast<unsigned long>(F->getType());
|
|
//return F->size() ^ F->arg_size() ^ F->getReturnType();
|
|
}
|
|
|
|
static bool compare(const Value *V, const Value *U) {
|
|
assert(!isa<BasicBlock>(V) && !isa<BasicBlock>(U) &&
|
|
"Must not compare basic blocks.");
|
|
|
|
assert(V->getType() == U->getType() &&
|
|
"Two of the same operation have operands of different type.");
|
|
|
|
// TODO: If the constant is an expression of F, we should accept that it's
|
|
// equal to the same expression in terms of G.
|
|
if (isa<Constant>(V))
|
|
return V == U;
|
|
|
|
// The caller has ensured that ValueMap[V] != U. Since Arguments are
|
|
// pre-loaded into the ValueMap, and Instructions are added as we go, we know
|
|
// that this can only be a mis-match.
|
|
if (isa<Instruction>(V) || isa<Argument>(V))
|
|
return false;
|
|
|
|
if (isa<InlineAsm>(V) && isa<InlineAsm>(U)) {
|
|
const InlineAsm *IAF = cast<InlineAsm>(V);
|
|
const InlineAsm *IAG = cast<InlineAsm>(U);
|
|
return IAF->getAsmString() == IAG->getAsmString() &&
|
|
IAF->getConstraintString() == IAG->getConstraintString();
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool equals(const BasicBlock *BB1, const BasicBlock *BB2,
|
|
DenseMap<const Value *, const Value *> &ValueMap,
|
|
DenseMap<const Value *, const Value *> &SpeculationMap) {
|
|
// Specutively add it anyways. If it's false, we'll notice a difference later, and
|
|
// this won't matter.
|
|
ValueMap[BB1] = BB2;
|
|
|
|
BasicBlock::const_iterator FI = BB1->begin(), FE = BB1->end();
|
|
BasicBlock::const_iterator GI = BB2->begin(), GE = BB2->end();
|
|
|
|
do {
|
|
if (!FI->isSameOperationAs(const_cast<Instruction *>(&*GI)))
|
|
return false;
|
|
|
|
if (FI->getNumOperands() != GI->getNumOperands())
|
|
return false;
|
|
|
|
if (ValueMap[FI] == GI) {
|
|
++FI, ++GI;
|
|
continue;
|
|
}
|
|
|
|
if (ValueMap[FI] != NULL)
|
|
return false;
|
|
|
|
for (unsigned i = 0, e = FI->getNumOperands(); i != e; ++i) {
|
|
Value *OpF = FI->getOperand(i);
|
|
Value *OpG = GI->getOperand(i);
|
|
|
|
if (ValueMap[OpF] == OpG)
|
|
continue;
|
|
|
|
if (ValueMap[OpF] != NULL)
|
|
return false;
|
|
|
|
assert(OpF->getType() == OpG->getType() &&
|
|
"Two of the same operation has operands of different type.");
|
|
|
|
if (OpF->getValueID() != OpG->getValueID())
|
|
return false;
|
|
|
|
if (isa<PHINode>(FI)) {
|
|
if (SpeculationMap[OpF] == NULL)
|
|
SpeculationMap[OpF] = OpG;
|
|
else if (SpeculationMap[OpF] != OpG)
|
|
return false;
|
|
continue;
|
|
} else if (isa<BasicBlock>(OpF)) {
|
|
assert(isa<TerminatorInst>(FI) &&
|
|
"BasicBlock referenced by non-Terminator non-PHI");
|
|
// This call changes the ValueMap, hence we can't use
|
|
// Value *& = ValueMap[...]
|
|
if (!equals(cast<BasicBlock>(OpF), cast<BasicBlock>(OpG), ValueMap,
|
|
SpeculationMap))
|
|
return false;
|
|
} else {
|
|
if (!compare(OpF, OpG))
|
|
return false;
|
|
}
|
|
|
|
ValueMap[OpF] = OpG;
|
|
}
|
|
|
|
ValueMap[FI] = GI;
|
|
++FI, ++GI;
|
|
} while (FI != FE && GI != GE);
|
|
|
|
return FI == FE && GI == GE;
|
|
}
|
|
|
|
static bool equals(const Function *F, const Function *G) {
|
|
// We need to recheck everything, but check the things that weren't included
|
|
// in the hash first.
|
|
|
|
if (F->getAttributes() != G->getAttributes())
|
|
return false;
|
|
|
|
if (F->hasGC() != G->hasGC())
|
|
return false;
|
|
|
|
if (F->hasGC() && F->getGC() != G->getGC())
|
|
return false;
|
|
|
|
if (F->hasSection() != G->hasSection())
|
|
return false;
|
|
|
|
if (F->hasSection() && F->getSection() != G->getSection())
|
|
return false;
|
|
|
|
// TODO: if it's internal and only used in direct calls, we could handle this
|
|
// case too.
|
|
if (F->getCallingConv() != G->getCallingConv())
|
|
return false;
|
|
|
|
// TODO: We want to permit cases where two functions take T* and S* but
|
|
// only load or store them into T** and S**.
|
|
if (F->getType() != G->getType())
|
|
return false;
|
|
|
|
DenseMap<const Value *, const Value *> ValueMap;
|
|
DenseMap<const Value *, const Value *> SpeculationMap;
|
|
ValueMap[F] = G;
|
|
|
|
assert(F->arg_size() == G->arg_size() &&
|
|
"Identical functions have a different number of args.");
|
|
|
|
for (Function::const_arg_iterator fi = F->arg_begin(), gi = G->arg_begin(),
|
|
fe = F->arg_end(); fi != fe; ++fi, ++gi)
|
|
ValueMap[fi] = gi;
|
|
|
|
if (!equals(&F->getEntryBlock(), &G->getEntryBlock(), ValueMap,
|
|
SpeculationMap))
|
|
return false;
|
|
|
|
for (DenseMap<const Value *, const Value *>::iterator
|
|
I = SpeculationMap.begin(), E = SpeculationMap.end(); I != E; ++I) {
|
|
if (ValueMap[I->first] != I->second)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool fold(std::vector<Function *> &FnVec, unsigned i, unsigned j) {
|
|
if (FnVec[i]->mayBeOverridden() && !FnVec[j]->mayBeOverridden())
|
|
std::swap(FnVec[i], FnVec[j]);
|
|
|
|
Function *F = FnVec[i];
|
|
Function *G = FnVec[j];
|
|
|
|
if (!F->mayBeOverridden()) {
|
|
if (G->hasLocalLinkage()) {
|
|
F->setAlignment(std::max(F->getAlignment(), G->getAlignment()));
|
|
G->replaceAllUsesWith(F);
|
|
G->eraseFromParent();
|
|
++NumFunctionsMerged;
|
|
return true;
|
|
}
|
|
|
|
if (G->hasExternalLinkage() || G->hasWeakLinkage()) {
|
|
GlobalAlias *GA = new GlobalAlias(G->getType(), G->getLinkage(), "",
|
|
F, G->getParent());
|
|
F->setAlignment(std::max(F->getAlignment(), G->getAlignment()));
|
|
GA->takeName(G);
|
|
GA->setVisibility(G->getVisibility());
|
|
G->replaceAllUsesWith(GA);
|
|
G->eraseFromParent();
|
|
++NumFunctionsMerged;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (F->hasWeakLinkage() && G->hasWeakLinkage()) {
|
|
GlobalAlias *GA_F = new GlobalAlias(F->getType(), F->getLinkage(), "",
|
|
0, F->getParent());
|
|
GA_F->takeName(F);
|
|
GA_F->setVisibility(F->getVisibility());
|
|
F->setAlignment(std::max(F->getAlignment(), G->getAlignment()));
|
|
F->replaceAllUsesWith(GA_F);
|
|
F->setName("folded." + GA_F->getName());
|
|
F->setLinkage(GlobalValue::ExternalLinkage);
|
|
GA_F->setAliasee(F);
|
|
|
|
GlobalAlias *GA_G = new GlobalAlias(G->getType(), G->getLinkage(), "",
|
|
F, G->getParent());
|
|
GA_G->takeName(G);
|
|
GA_G->setVisibility(G->getVisibility());
|
|
G->replaceAllUsesWith(GA_G);
|
|
G->eraseFromParent();
|
|
|
|
++NumFunctionsMerged;
|
|
return true;
|
|
}
|
|
|
|
DOUT << "Failed on " << F->getName() << " and " << G->getName() << "\n";
|
|
|
|
++NumMergeFails;
|
|
return false;
|
|
}
|
|
|
|
static bool hasAddressTaken(User *U) {
|
|
for (User::use_iterator I = U->use_begin(), E = U->use_end(); I != E; ++I) {
|
|
User *Use = *I;
|
|
|
|
// 'call (bitcast @F to ...)' happens a lot.
|
|
while (isa<ConstantExpr>(Use) && Use->hasOneUse()) {
|
|
Use = *Use->use_begin();
|
|
}
|
|
|
|
if (isa<ConstantExpr>(Use)) {
|
|
if (hasAddressTaken(Use))
|
|
return true;
|
|
}
|
|
|
|
if (!isa<CallInst>(Use) && !isa<InvokeInst>(Use))
|
|
return true;
|
|
|
|
// Make sure we aren't passing U as a parameter to call instead of the
|
|
// callee.
|
|
if (CallSite(cast<Instruction>(Use)).hasArgument(U))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool MergeFunctions::runOnModule(Module &M) {
|
|
bool Changed = false;
|
|
|
|
std::map<unsigned long, std::vector<Function *> > FnMap;
|
|
|
|
for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
|
|
if (F->isDeclaration() || F->isIntrinsic())
|
|
continue;
|
|
|
|
if (!F->hasLocalLinkage() && !F->hasExternalLinkage() &&
|
|
!F->hasWeakLinkage())
|
|
continue;
|
|
|
|
if (hasAddressTaken(F))
|
|
continue;
|
|
|
|
FnMap[hash(F)].push_back(F);
|
|
}
|
|
|
|
// TODO: instead of running in a loop, we could also fold functions in callgraph
|
|
// order. Constructing the CFG probably isn't cheaper than just running in a loop.
|
|
|
|
bool LocalChanged;
|
|
do {
|
|
LocalChanged = false;
|
|
for (std::map<unsigned long, std::vector<Function *> >::iterator
|
|
I = FnMap.begin(), E = FnMap.end(); I != E; ++I) {
|
|
DOUT << "size: " << FnMap.size() << "\n";
|
|
std::vector<Function *> &FnVec = I->second;
|
|
DOUT << "hash (" << I->first << "): " << FnVec.size() << "\n";
|
|
|
|
for (int i = 0, e = FnVec.size(); i != e; ++i) {
|
|
for (int j = i + 1; j != e; ++j) {
|
|
bool isEqual = equals(FnVec[i], FnVec[j]);
|
|
|
|
DOUT << " " << FnVec[i]->getName()
|
|
<< (isEqual ? " == " : " != ")
|
|
<< FnVec[j]->getName() << "\n";
|
|
|
|
if (isEqual) {
|
|
if (fold(FnVec, i, j)) {
|
|
LocalChanged = true;
|
|
FnVec.erase(FnVec.begin() + j);
|
|
--j, --e;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
Changed |= LocalChanged;
|
|
} while (LocalChanged);
|
|
|
|
return Changed;
|
|
}
|