mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 04:02:41 +01:00
603a11de4e
identifying the malloc as a non-array malloc. This broke GlobalOpt's optimization of stores of mallocs to global variables. The fix is to classify malloc's into 3 categories: 1. non-array mallocs 2. array mallocs whose array size can be determined 3. mallocs that cannot be determined to be of type 1 or 2 and cannot be optimized getMallocArraySize() returns NULL for category 3, and all users of this function must avoid their malloc optimization if this function returns NULL. Eventually, currently unexpected codegen for computing the malloc's size argument will be supported in isArrayMalloc() and getMallocArraySize(), extending malloc optimizations to those examples. llvm-svn: 84199
267 lines
9.1 KiB
C++
267 lines
9.1 KiB
C++
//===- PointerTracking.cpp - Pointer Bounds Tracking ------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements tracking of pointer bounds.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#include "llvm/Analysis/ConstantFolding.h"
|
|
#include "llvm/Analysis/Dominators.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/MallocHelper.h"
|
|
#include "llvm/Analysis/PointerTracking.h"
|
|
#include "llvm/Analysis/ScalarEvolution.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/Value.h"
|
|
#include "llvm/Support/CallSite.h"
|
|
#include "llvm/Support/InstIterator.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
using namespace llvm;
|
|
|
|
char PointerTracking::ID = 0;
|
|
PointerTracking::PointerTracking() : FunctionPass(&ID) {}
|
|
|
|
bool PointerTracking::runOnFunction(Function &F) {
|
|
predCache.clear();
|
|
assert(analyzing.empty());
|
|
FF = &F;
|
|
TD = getAnalysisIfAvailable<TargetData>();
|
|
SE = &getAnalysis<ScalarEvolution>();
|
|
LI = &getAnalysis<LoopInfo>();
|
|
DT = &getAnalysis<DominatorTree>();
|
|
return false;
|
|
}
|
|
|
|
void PointerTracking::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.addRequiredTransitive<DominatorTree>();
|
|
AU.addRequiredTransitive<LoopInfo>();
|
|
AU.addRequiredTransitive<ScalarEvolution>();
|
|
AU.setPreservesAll();
|
|
}
|
|
|
|
bool PointerTracking::doInitialization(Module &M) {
|
|
const Type *PTy = Type::getInt8PtrTy(M.getContext());
|
|
|
|
// Find calloc(i64, i64) or calloc(i32, i32).
|
|
callocFunc = M.getFunction("calloc");
|
|
if (callocFunc) {
|
|
const FunctionType *Ty = callocFunc->getFunctionType();
|
|
|
|
std::vector<const Type*> args, args2;
|
|
args.push_back(Type::getInt64Ty(M.getContext()));
|
|
args.push_back(Type::getInt64Ty(M.getContext()));
|
|
args2.push_back(Type::getInt32Ty(M.getContext()));
|
|
args2.push_back(Type::getInt32Ty(M.getContext()));
|
|
const FunctionType *Calloc1Type =
|
|
FunctionType::get(PTy, args, false);
|
|
const FunctionType *Calloc2Type =
|
|
FunctionType::get(PTy, args2, false);
|
|
if (Ty != Calloc1Type && Ty != Calloc2Type)
|
|
callocFunc = 0; // Give up
|
|
}
|
|
|
|
// Find realloc(i8*, i64) or realloc(i8*, i32).
|
|
reallocFunc = M.getFunction("realloc");
|
|
if (reallocFunc) {
|
|
const FunctionType *Ty = reallocFunc->getFunctionType();
|
|
std::vector<const Type*> args, args2;
|
|
args.push_back(PTy);
|
|
args.push_back(Type::getInt64Ty(M.getContext()));
|
|
args2.push_back(PTy);
|
|
args2.push_back(Type::getInt32Ty(M.getContext()));
|
|
|
|
const FunctionType *Realloc1Type =
|
|
FunctionType::get(PTy, args, false);
|
|
const FunctionType *Realloc2Type =
|
|
FunctionType::get(PTy, args2, false);
|
|
if (Ty != Realloc1Type && Ty != Realloc2Type)
|
|
reallocFunc = 0; // Give up
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Calculates the number of elements allocated for pointer P,
|
|
// the type of the element is stored in Ty.
|
|
const SCEV *PointerTracking::computeAllocationCount(Value *P,
|
|
const Type *&Ty) const {
|
|
Value *V = P->stripPointerCasts();
|
|
if (AllocationInst *AI = dyn_cast<AllocationInst>(V)) {
|
|
Value *arraySize = AI->getArraySize();
|
|
Ty = AI->getAllocatedType();
|
|
// arraySize elements of type Ty.
|
|
return SE->getSCEV(arraySize);
|
|
}
|
|
|
|
if (CallInst *CI = extractMallocCall(V)) {
|
|
Value *arraySize = getMallocArraySize(CI, P->getContext(), TD);
|
|
const Type* AllocTy = getMallocAllocatedType(CI);
|
|
if (!AllocTy || !arraySize) return SE->getCouldNotCompute();
|
|
Ty = AllocTy;
|
|
// arraySize elements of type Ty.
|
|
return SE->getSCEV(arraySize);
|
|
}
|
|
|
|
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
|
|
if (GV->hasDefinitiveInitializer()) {
|
|
Constant *C = GV->getInitializer();
|
|
if (const ArrayType *ATy = dyn_cast<ArrayType>(C->getType())) {
|
|
Ty = ATy->getElementType();
|
|
return SE->getConstant(Type::getInt32Ty(P->getContext()),
|
|
ATy->getNumElements());
|
|
}
|
|
}
|
|
Ty = GV->getType();
|
|
return SE->getConstant(Type::getInt32Ty(P->getContext()), 1);
|
|
//TODO: implement more tracking for globals
|
|
}
|
|
|
|
if (CallInst *CI = dyn_cast<CallInst>(V)) {
|
|
CallSite CS(CI);
|
|
Function *F = dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
|
|
const Loop *L = LI->getLoopFor(CI->getParent());
|
|
if (F == callocFunc) {
|
|
Ty = Type::getInt8Ty(P->getContext());
|
|
// calloc allocates arg0*arg1 bytes.
|
|
return SE->getSCEVAtScope(SE->getMulExpr(SE->getSCEV(CS.getArgument(0)),
|
|
SE->getSCEV(CS.getArgument(1))),
|
|
L);
|
|
} else if (F == reallocFunc) {
|
|
Ty = Type::getInt8Ty(P->getContext());
|
|
// realloc allocates arg1 bytes.
|
|
return SE->getSCEVAtScope(CS.getArgument(1), L);
|
|
}
|
|
}
|
|
|
|
return SE->getCouldNotCompute();
|
|
}
|
|
|
|
// Calculates the number of elements of type Ty allocated for P.
|
|
const SCEV *PointerTracking::computeAllocationCountForType(Value *P,
|
|
const Type *Ty)
|
|
const {
|
|
const Type *elementTy;
|
|
const SCEV *Count = computeAllocationCount(P, elementTy);
|
|
if (isa<SCEVCouldNotCompute>(Count))
|
|
return Count;
|
|
if (elementTy == Ty)
|
|
return Count;
|
|
|
|
if (!TD) // need TargetData from this point forward
|
|
return SE->getCouldNotCompute();
|
|
|
|
uint64_t elementSize = TD->getTypeAllocSize(elementTy);
|
|
uint64_t wantSize = TD->getTypeAllocSize(Ty);
|
|
if (elementSize == wantSize)
|
|
return Count;
|
|
if (elementSize % wantSize) //fractional counts not possible
|
|
return SE->getCouldNotCompute();
|
|
return SE->getMulExpr(Count, SE->getConstant(Count->getType(),
|
|
elementSize/wantSize));
|
|
}
|
|
|
|
const SCEV *PointerTracking::getAllocationElementCount(Value *V) const {
|
|
// We only deal with pointers.
|
|
const PointerType *PTy = cast<PointerType>(V->getType());
|
|
return computeAllocationCountForType(V, PTy->getElementType());
|
|
}
|
|
|
|
const SCEV *PointerTracking::getAllocationSizeInBytes(Value *V) const {
|
|
return computeAllocationCountForType(V, Type::getInt8Ty(V->getContext()));
|
|
}
|
|
|
|
// Helper for isLoopGuardedBy that checks the swapped and inverted predicate too
|
|
enum SolverResult PointerTracking::isLoopGuardedBy(const Loop *L,
|
|
Predicate Pred,
|
|
const SCEV *A,
|
|
const SCEV *B) const {
|
|
if (SE->isLoopGuardedByCond(L, Pred, A, B))
|
|
return AlwaysTrue;
|
|
Pred = ICmpInst::getSwappedPredicate(Pred);
|
|
if (SE->isLoopGuardedByCond(L, Pred, B, A))
|
|
return AlwaysTrue;
|
|
|
|
Pred = ICmpInst::getInversePredicate(Pred);
|
|
if (SE->isLoopGuardedByCond(L, Pred, B, A))
|
|
return AlwaysFalse;
|
|
Pred = ICmpInst::getSwappedPredicate(Pred);
|
|
if (SE->isLoopGuardedByCond(L, Pred, A, B))
|
|
return AlwaysTrue;
|
|
return Unknown;
|
|
}
|
|
|
|
enum SolverResult PointerTracking::checkLimits(const SCEV *Offset,
|
|
const SCEV *Limit,
|
|
BasicBlock *BB)
|
|
{
|
|
//FIXME: merge implementation
|
|
return Unknown;
|
|
}
|
|
|
|
void PointerTracking::getPointerOffset(Value *Pointer, Value *&Base,
|
|
const SCEV *&Limit,
|
|
const SCEV *&Offset) const
|
|
{
|
|
Pointer = Pointer->stripPointerCasts();
|
|
Base = Pointer->getUnderlyingObject();
|
|
Limit = getAllocationSizeInBytes(Base);
|
|
if (isa<SCEVCouldNotCompute>(Limit)) {
|
|
Base = 0;
|
|
Offset = Limit;
|
|
return;
|
|
}
|
|
|
|
Offset = SE->getMinusSCEV(SE->getSCEV(Pointer), SE->getSCEV(Base));
|
|
if (isa<SCEVCouldNotCompute>(Offset)) {
|
|
Base = 0;
|
|
Limit = Offset;
|
|
}
|
|
}
|
|
|
|
void PointerTracking::print(raw_ostream &OS, const Module* M) const {
|
|
// Calling some PT methods may cause caches to be updated, however
|
|
// this should be safe for the same reason its safe for SCEV.
|
|
PointerTracking &PT = *const_cast<PointerTracking*>(this);
|
|
for (inst_iterator I=inst_begin(*FF), E=inst_end(*FF); I != E; ++I) {
|
|
if (!isa<PointerType>(I->getType()))
|
|
continue;
|
|
Value *Base;
|
|
const SCEV *Limit, *Offset;
|
|
getPointerOffset(&*I, Base, Limit, Offset);
|
|
if (!Base)
|
|
continue;
|
|
|
|
if (Base == &*I) {
|
|
const SCEV *S = getAllocationElementCount(Base);
|
|
OS << *Base << " ==> " << *S << " elements, ";
|
|
OS << *Limit << " bytes allocated\n";
|
|
continue;
|
|
}
|
|
OS << &*I << " -- base: " << *Base;
|
|
OS << " offset: " << *Offset;
|
|
|
|
enum SolverResult res = PT.checkLimits(Offset, Limit, I->getParent());
|
|
switch (res) {
|
|
case AlwaysTrue:
|
|
OS << " always safe\n";
|
|
break;
|
|
case AlwaysFalse:
|
|
OS << " always unsafe\n";
|
|
break;
|
|
case Unknown:
|
|
OS << " <<unknown>>\n";
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static RegisterPass<PointerTracking> X("pointertracking",
|
|
"Track pointer bounds", false, true);
|