1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 18:54:02 +01:00
llvm-mirror/unittests/Support/EndianTest.cpp
Pavel Labath aa70828a6f [Support/Endian] Add support for endian-specific enums
Summary:
Binary formats often include various enumerations or bitsets, but using
endian-specific types for accessing them is tricky because they
currently only support integral types. This is particularly true for
scoped enums (enum class), as these are not implicitly convertible to
integral types, and so one has to perform two casts just to read the
enum value.

This fixes that support by adding first-class support for enumeration
types to endian-specific types. The support for them was already almost
working -- all I needed to do was overload getSwappedBytes for
enumeration types (which casts the enum to its underlying type and performs the
conversion there). I also add some convenience template aliases to simplify
declaring endian-specific enums.

Reviewers: Bigcheese, zturner

Subscribers: kristina, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D59141

llvm-svn: 355812
2019-03-11 09:06:18 +00:00

213 lines
7.8 KiB
C++

//===- unittests/Support/EndianTest.cpp - Endian.h tests ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/Endian.h"
#include "llvm/Support/DataTypes.h"
#include "gtest/gtest.h"
#include <cstdlib>
#include <ctime>
using namespace llvm;
using namespace support;
#undef max
namespace {
TEST(Endian, Read) {
// These are 5 bytes so we can be sure at least one of the reads is unaligned.
unsigned char bigval[] = {0x00, 0x01, 0x02, 0x03, 0x04};
unsigned char littleval[] = {0x00, 0x04, 0x03, 0x02, 0x01};
int32_t BigAsHost = 0x00010203;
EXPECT_EQ(BigAsHost, (endian::read<int32_t, big, unaligned>(bigval)));
int32_t LittleAsHost = 0x02030400;
EXPECT_EQ(LittleAsHost,(endian::read<int32_t, little, unaligned>(littleval)));
EXPECT_EQ((endian::read<int32_t, big, unaligned>(bigval + 1)),
(endian::read<int32_t, little, unaligned>(littleval + 1)));
}
TEST(Endian, ReadBitAligned) {
// Simple test to make sure we properly pull out the 0x0 word.
unsigned char littleval[] = {0x3f, 0x00, 0x00, 0x00, 0xc0, 0xff, 0xff, 0xff};
unsigned char bigval[] = {0x00, 0x00, 0x00, 0x3f, 0xff, 0xff, 0xff, 0xc0};
EXPECT_EQ(
(endian::readAtBitAlignment<int, little, unaligned>(&littleval[0], 6)),
0x0);
EXPECT_EQ((endian::readAtBitAlignment<int, big, unaligned>(&bigval[0], 6)),
0x0);
// Test to make sure that signed right shift of 0xf0000000 is masked
// properly.
unsigned char littleval2[] = {0x00, 0x00, 0x00, 0xf0, 0x00, 0x00, 0x00, 0x00};
unsigned char bigval2[] = {0xf0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
EXPECT_EQ(
(endian::readAtBitAlignment<int, little, unaligned>(&littleval2[0], 4)),
0x0f000000);
EXPECT_EQ((endian::readAtBitAlignment<int, big, unaligned>(&bigval2[0], 4)),
0x0f000000);
// Test to make sure left shift of start bit doesn't overflow.
EXPECT_EQ(
(endian::readAtBitAlignment<int, little, unaligned>(&littleval2[0], 1)),
0x78000000);
EXPECT_EQ((endian::readAtBitAlignment<int, big, unaligned>(&bigval2[0], 1)),
0x78000000);
// Test to make sure 64-bit int doesn't overflow.
unsigned char littleval3[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xf0,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
unsigned char bigval3[] = {0xf0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
EXPECT_EQ((endian::readAtBitAlignment<int64_t, little, unaligned>(
&littleval3[0], 4)),
0x0f00000000000000);
EXPECT_EQ(
(endian::readAtBitAlignment<int64_t, big, unaligned>(&bigval3[0], 4)),
0x0f00000000000000);
}
TEST(Endian, WriteBitAligned) {
// This test ensures that signed right shift of 0xffffaa is masked
// properly.
unsigned char bigval[8] = {0x00};
endian::writeAtBitAlignment<int32_t, big, unaligned>(bigval, (int)0xffffaaaa,
4);
EXPECT_EQ(bigval[0], 0xff);
EXPECT_EQ(bigval[1], 0xfa);
EXPECT_EQ(bigval[2], 0xaa);
EXPECT_EQ(bigval[3], 0xa0);
EXPECT_EQ(bigval[4], 0x00);
EXPECT_EQ(bigval[5], 0x00);
EXPECT_EQ(bigval[6], 0x00);
EXPECT_EQ(bigval[7], 0x0f);
unsigned char littleval[8] = {0x00};
endian::writeAtBitAlignment<int32_t, little, unaligned>(littleval,
(int)0xffffaaaa, 4);
EXPECT_EQ(littleval[0], 0xa0);
EXPECT_EQ(littleval[1], 0xaa);
EXPECT_EQ(littleval[2], 0xfa);
EXPECT_EQ(littleval[3], 0xff);
EXPECT_EQ(littleval[4], 0x0f);
EXPECT_EQ(littleval[5], 0x00);
EXPECT_EQ(littleval[6], 0x00);
EXPECT_EQ(littleval[7], 0x00);
// This test makes sure 1<<31 doesn't overflow.
// Test to make sure left shift of start bit doesn't overflow.
unsigned char bigval2[8] = {0x00};
endian::writeAtBitAlignment<int32_t, big, unaligned>(bigval2, (int)0xffffffff,
1);
EXPECT_EQ(bigval2[0], 0xff);
EXPECT_EQ(bigval2[1], 0xff);
EXPECT_EQ(bigval2[2], 0xff);
EXPECT_EQ(bigval2[3], 0xfe);
EXPECT_EQ(bigval2[4], 0x00);
EXPECT_EQ(bigval2[5], 0x00);
EXPECT_EQ(bigval2[6], 0x00);
EXPECT_EQ(bigval2[7], 0x01);
unsigned char littleval2[8] = {0x00};
endian::writeAtBitAlignment<int32_t, little, unaligned>(littleval2,
(int)0xffffffff, 1);
EXPECT_EQ(littleval2[0], 0xfe);
EXPECT_EQ(littleval2[1], 0xff);
EXPECT_EQ(littleval2[2], 0xff);
EXPECT_EQ(littleval2[3], 0xff);
EXPECT_EQ(littleval2[4], 0x01);
EXPECT_EQ(littleval2[5], 0x00);
EXPECT_EQ(littleval2[6], 0x00);
EXPECT_EQ(littleval2[7], 0x00);
// Test to make sure 64-bit int doesn't overflow.
unsigned char bigval64[16] = {0x00};
endian::writeAtBitAlignment<int64_t, big, unaligned>(
bigval64, (int64_t)0xffffffffffffffff, 1);
EXPECT_EQ(bigval64[0], 0xff);
EXPECT_EQ(bigval64[1], 0xff);
EXPECT_EQ(bigval64[2], 0xff);
EXPECT_EQ(bigval64[3], 0xff);
EXPECT_EQ(bigval64[4], 0xff);
EXPECT_EQ(bigval64[5], 0xff);
EXPECT_EQ(bigval64[6], 0xff);
EXPECT_EQ(bigval64[7], 0xfe);
EXPECT_EQ(bigval64[8], 0x00);
EXPECT_EQ(bigval64[9], 0x00);
EXPECT_EQ(bigval64[10], 0x00);
EXPECT_EQ(bigval64[11], 0x00);
EXPECT_EQ(bigval64[12], 0x00);
EXPECT_EQ(bigval64[13], 0x00);
EXPECT_EQ(bigval64[14], 0x00);
EXPECT_EQ(bigval64[15], 0x01);
unsigned char littleval64[16] = {0x00};
endian::writeAtBitAlignment<int64_t, little, unaligned>(
littleval64, (int64_t)0xffffffffffffffff, 1);
EXPECT_EQ(littleval64[0], 0xfe);
EXPECT_EQ(littleval64[1], 0xff);
EXPECT_EQ(littleval64[2], 0xff);
EXPECT_EQ(littleval64[3], 0xff);
EXPECT_EQ(littleval64[4], 0xff);
EXPECT_EQ(littleval64[5], 0xff);
EXPECT_EQ(littleval64[6], 0xff);
EXPECT_EQ(littleval64[7], 0xff);
EXPECT_EQ(littleval64[8], 0x01);
EXPECT_EQ(littleval64[9], 0x00);
EXPECT_EQ(littleval64[10], 0x00);
EXPECT_EQ(littleval64[11], 0x00);
EXPECT_EQ(littleval64[12], 0x00);
EXPECT_EQ(littleval64[13], 0x00);
EXPECT_EQ(littleval64[14], 0x00);
EXPECT_EQ(littleval64[15], 0x00);
}
TEST(Endian, Write) {
unsigned char data[5];
endian::write<int32_t, big, unaligned>(data, -1362446643);
EXPECT_EQ(data[0], 0xAE);
EXPECT_EQ(data[1], 0xCA);
EXPECT_EQ(data[2], 0xB6);
EXPECT_EQ(data[3], 0xCD);
endian::write<int32_t, big, unaligned>(data + 1, -1362446643);
EXPECT_EQ(data[1], 0xAE);
EXPECT_EQ(data[2], 0xCA);
EXPECT_EQ(data[3], 0xB6);
EXPECT_EQ(data[4], 0xCD);
endian::write<int32_t, little, unaligned>(data, -1362446643);
EXPECT_EQ(data[0], 0xCD);
EXPECT_EQ(data[1], 0xB6);
EXPECT_EQ(data[2], 0xCA);
EXPECT_EQ(data[3], 0xAE);
endian::write<int32_t, little, unaligned>(data + 1, -1362446643);
EXPECT_EQ(data[1], 0xCD);
EXPECT_EQ(data[2], 0xB6);
EXPECT_EQ(data[3], 0xCA);
EXPECT_EQ(data[4], 0xAE);
}
TEST(Endian, PackedEndianSpecificIntegral) {
// These are 5 bytes so we can be sure at least one of the reads is unaligned.
unsigned char big[] = {0x00, 0x01, 0x02, 0x03, 0x04};
unsigned char little[] = {0x00, 0x04, 0x03, 0x02, 0x01};
big32_t *big_val =
reinterpret_cast<big32_t *>(big + 1);
little32_t *little_val =
reinterpret_cast<little32_t *>(little + 1);
EXPECT_EQ(*big_val, *little_val);
}
TEST(Endian, PacketEndianSpecificIntegralAsEnum) {
enum class Test : uint16_t { ONETWO = 0x0102, TWOONE = 0x0201 };
unsigned char bytes[] = {0x01, 0x02};
using LittleTest = little_t<Test>;
using BigTest = big_t<Test>;
EXPECT_EQ(Test::TWOONE, *reinterpret_cast<LittleTest *>(bytes));
EXPECT_EQ(Test::ONETWO, *reinterpret_cast<BigTest *>(bytes));
}
} // end anon namespace