1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-24 21:42:54 +02:00
llvm-mirror/include/llvm/Target/TargetInstrDesc.h
Evan Cheng ce610bd6b3 Remove ARM isel hacks that fold large immediates into a pair of add, sub, and,
and xor. The 32-bit move immediates can be hoisted out of loops by machine
LICM but the isel hacks were preventing them.

Instead, let peephole optimization pass recognize registers that are defined by
immediates and the ARM target hook will fold the immediates in.

Other changes include 1) do not fold and / xor into cmp to isel TST / TEQ
instructions if there are multiple uses. This happens when the 'and' is live
out, machine sink would have sinked the computation and that ends up pessimizing
code. The peephole pass would recognize situations where the 'and' can be
toggled to define CPSR and eliminate the comparison anyway.

2) Move peephole pass to after machine LICM, sink, and CSE to avoid blocking
important optimizations.

rdar://8663787, rdar://8241368

llvm-svn: 119548
2010-11-17 20:13:28 +00:00

514 lines
20 KiB
C++

//===-- llvm/Target/TargetInstrDesc.h - Instruction Descriptors -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the TargetOperandInfo and TargetInstrDesc classes, which
// are used to describe target instructions and their operands.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TARGET_TARGETINSTRDESC_H
#define LLVM_TARGET_TARGETINSTRDESC_H
#include "llvm/System/DataTypes.h"
namespace llvm {
class TargetRegisterClass;
class TargetRegisterInfo;
//===----------------------------------------------------------------------===//
// Machine Operand Flags and Description
//===----------------------------------------------------------------------===//
namespace TOI {
// Operand constraints
enum OperandConstraint {
TIED_TO = 0, // Must be allocated the same register as.
EARLY_CLOBBER // Operand is an early clobber register operand
};
/// OperandFlags - These are flags set on operands, but should be considered
/// private, all access should go through the TargetOperandInfo accessors.
/// See the accessors for a description of what these are.
enum OperandFlags {
LookupPtrRegClass = 0,
Predicate,
OptionalDef
};
}
/// TargetOperandInfo - This holds information about one operand of a machine
/// instruction, indicating the register class for register operands, etc.
///
class TargetOperandInfo {
public:
/// RegClass - This specifies the register class enumeration of the operand
/// if the operand is a register. If isLookupPtrRegClass is set, then this is
/// an index that is passed to TargetRegisterInfo::getPointerRegClass(x) to
/// get a dynamic register class.
///
/// NOTE: This member should be considered to be private, all access should go
/// through "getRegClass(TRI)" below.
short RegClass;
/// Flags - These are flags from the TOI::OperandFlags enum.
unsigned short Flags;
/// Lower 16 bits are used to specify which constraints are set. The higher 16
/// bits are used to specify the value of constraints (4 bits each).
unsigned Constraints;
/// Currently no other information.
/// getRegClass - Get the register class for the operand, handling resolution
/// of "symbolic" pointer register classes etc. If this is not a register
/// operand, this returns null.
const TargetRegisterClass *getRegClass(const TargetRegisterInfo *TRI) const;
/// isLookupPtrRegClass - Set if this operand is a pointer value and it
/// requires a callback to look up its register class.
bool isLookupPtrRegClass() const { return Flags&(1 <<TOI::LookupPtrRegClass);}
/// isPredicate - Set if this is one of the operands that made up of
/// the predicate operand that controls an isPredicable() instruction.
bool isPredicate() const { return Flags & (1 << TOI::Predicate); }
/// isOptionalDef - Set if this operand is a optional def.
///
bool isOptionalDef() const { return Flags & (1 << TOI::OptionalDef); }
};
//===----------------------------------------------------------------------===//
// Machine Instruction Flags and Description
//===----------------------------------------------------------------------===//
/// TargetInstrDesc flags - These should be considered private to the
/// implementation of the TargetInstrDesc class. Clients should use the
/// predicate methods on TargetInstrDesc, not use these directly. These
/// all correspond to bitfields in the TargetInstrDesc::Flags field.
namespace TID {
enum {
Variadic = 0,
HasOptionalDef,
Return,
Call,
Barrier,
Terminator,
Branch,
IndirectBranch,
Compare,
MoveImm,
DelaySlot,
FoldableAsLoad,
MayLoad,
MayStore,
Predicable,
NotDuplicable,
UnmodeledSideEffects,
Commutable,
ConvertibleTo3Addr,
UsesCustomInserter,
Rematerializable,
CheapAsAMove,
ExtraSrcRegAllocReq,
ExtraDefRegAllocReq
};
}
/// TargetInstrDesc - Describe properties that are true of each
/// instruction in the target description file. This captures information about
/// side effects, register use and many other things. There is one instance of
/// this struct for each target instruction class, and the MachineInstr class
/// points to this struct directly to describe itself.
class TargetInstrDesc {
public:
unsigned short Opcode; // The opcode number
unsigned short NumOperands; // Num of args (may be more if variable_ops)
unsigned short NumDefs; // Num of args that are definitions
unsigned short SchedClass; // enum identifying instr sched class
const char * Name; // Name of the instruction record in td file
unsigned Flags; // Flags identifying machine instr class
uint64_t TSFlags; // Target Specific Flag values
const unsigned *ImplicitUses; // Registers implicitly read by this instr
const unsigned *ImplicitDefs; // Registers implicitly defined by this instr
const TargetRegisterClass **RCBarriers; // Reg classes completely "clobbered"
const TargetOperandInfo *OpInfo; // 'NumOperands' entries about operands
/// getOperandConstraint - Returns the value of the specific constraint if
/// it is set. Returns -1 if it is not set.
int getOperandConstraint(unsigned OpNum,
TOI::OperandConstraint Constraint) const {
if (OpNum < NumOperands &&
(OpInfo[OpNum].Constraints & (1 << Constraint))) {
unsigned Pos = 16 + Constraint * 4;
return (int)(OpInfo[OpNum].Constraints >> Pos) & 0xf;
}
return -1;
}
/// getRegClass - Returns the register class constraint for OpNum, or NULL.
const TargetRegisterClass *getRegClass(unsigned OpNum,
const TargetRegisterInfo *TRI) const {
return OpNum < NumOperands ? OpInfo[OpNum].getRegClass(TRI) : 0;
}
/// getOpcode - Return the opcode number for this descriptor.
unsigned getOpcode() const {
return Opcode;
}
/// getName - Return the name of the record in the .td file for this
/// instruction, for example "ADD8ri".
const char *getName() const {
return Name;
}
/// getNumOperands - Return the number of declared MachineOperands for this
/// MachineInstruction. Note that variadic (isVariadic() returns true)
/// instructions may have additional operands at the end of the list, and note
/// that the machine instruction may include implicit register def/uses as
/// well.
unsigned getNumOperands() const {
return NumOperands;
}
/// getNumDefs - Return the number of MachineOperands that are register
/// definitions. Register definitions always occur at the start of the
/// machine operand list. This is the number of "outs" in the .td file,
/// and does not include implicit defs.
unsigned getNumDefs() const {
return NumDefs;
}
/// isVariadic - Return true if this instruction can have a variable number of
/// operands. In this case, the variable operands will be after the normal
/// operands but before the implicit definitions and uses (if any are
/// present).
bool isVariadic() const {
return Flags & (1 << TID::Variadic);
}
/// hasOptionalDef - Set if this instruction has an optional definition, e.g.
/// ARM instructions which can set condition code if 's' bit is set.
bool hasOptionalDef() const {
return Flags & (1 << TID::HasOptionalDef);
}
/// getImplicitUses - Return a list of registers that are potentially
/// read by any instance of this machine instruction. For example, on X86,
/// the "adc" instruction adds two register operands and adds the carry bit in
/// from the flags register. In this case, the instruction is marked as
/// implicitly reading the flags. Likewise, the variable shift instruction on
/// X86 is marked as implicitly reading the 'CL' register, which it always
/// does.
///
/// This method returns null if the instruction has no implicit uses.
const unsigned *getImplicitUses() const {
return ImplicitUses;
}
/// getNumImplicitUses - Return the number of implicit uses this instruction
/// has.
unsigned getNumImplicitUses() const {
if (ImplicitUses == 0) return 0;
unsigned i = 0;
for (; ImplicitUses[i]; ++i) /*empty*/;
return i;
}
/// getImplicitDefs - Return a list of registers that are potentially
/// written by any instance of this machine instruction. For example, on X86,
/// many instructions implicitly set the flags register. In this case, they
/// are marked as setting the FLAGS. Likewise, many instructions always
/// deposit their result in a physical register. For example, the X86 divide
/// instruction always deposits the quotient and remainder in the EAX/EDX
/// registers. For that instruction, this will return a list containing the
/// EAX/EDX/EFLAGS registers.
///
/// This method returns null if the instruction has no implicit defs.
const unsigned *getImplicitDefs() const {
return ImplicitDefs;
}
/// getNumImplicitDefs - Return the number of implicit defs this instruction
/// has.
unsigned getNumImplicitDefs() const {
if (ImplicitDefs == 0) return 0;
unsigned i = 0;
for (; ImplicitDefs[i]; ++i) /*empty*/;
return i;
}
/// hasImplicitUseOfPhysReg - Return true if this instruction implicitly
/// uses the specified physical register.
bool hasImplicitUseOfPhysReg(unsigned Reg) const {
if (const unsigned *ImpUses = ImplicitUses)
for (; *ImpUses; ++ImpUses)
if (*ImpUses == Reg) return true;
return false;
}
/// hasImplicitDefOfPhysReg - Return true if this instruction implicitly
/// defines the specified physical register.
bool hasImplicitDefOfPhysReg(unsigned Reg) const {
if (const unsigned *ImpDefs = ImplicitDefs)
for (; *ImpDefs; ++ImpDefs)
if (*ImpDefs == Reg) return true;
return false;
}
/// getRegClassBarriers - Return a list of register classes that are
/// completely clobbered by this machine instruction. For example, on X86
/// the call instructions will completely clobber all the registers in the
/// fp stack and XMM classes.
///
/// This method returns null if the instruction doesn't completely clobber
/// any register class.
const TargetRegisterClass **getRegClassBarriers() const {
return RCBarriers;
}
/// getSchedClass - Return the scheduling class for this instruction. The
/// scheduling class is an index into the InstrItineraryData table. This
/// returns zero if there is no known scheduling information for the
/// instruction.
///
unsigned getSchedClass() const {
return SchedClass;
}
bool isReturn() const {
return Flags & (1 << TID::Return);
}
bool isCall() const {
return Flags & (1 << TID::Call);
}
/// isBarrier - Returns true if the specified instruction stops control flow
/// from executing the instruction immediately following it. Examples include
/// unconditional branches and return instructions.
bool isBarrier() const {
return Flags & (1 << TID::Barrier);
}
/// isTerminator - Returns true if this instruction part of the terminator for
/// a basic block. Typically this is things like return and branch
/// instructions.
///
/// Various passes use this to insert code into the bottom of a basic block,
/// but before control flow occurs.
bool isTerminator() const {
return Flags & (1 << TID::Terminator);
}
/// isBranch - Returns true if this is a conditional, unconditional, or
/// indirect branch. Predicates below can be used to discriminate between
/// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to
/// get more information.
bool isBranch() const {
return Flags & (1 << TID::Branch);
}
/// isIndirectBranch - Return true if this is an indirect branch, such as a
/// branch through a register.
bool isIndirectBranch() const {
return Flags & (1 << TID::IndirectBranch);
}
/// isConditionalBranch - Return true if this is a branch which may fall
/// through to the next instruction or may transfer control flow to some other
/// block. The TargetInstrInfo::AnalyzeBranch method can be used to get more
/// information about this branch.
bool isConditionalBranch() const {
return isBranch() & !isBarrier() & !isIndirectBranch();
}
/// isUnconditionalBranch - Return true if this is a branch which always
/// transfers control flow to some other block. The
/// TargetInstrInfo::AnalyzeBranch method can be used to get more information
/// about this branch.
bool isUnconditionalBranch() const {
return isBranch() & isBarrier() & !isIndirectBranch();
}
// isPredicable - Return true if this instruction has a predicate operand that
// controls execution. It may be set to 'always', or may be set to other
/// values. There are various methods in TargetInstrInfo that can be used to
/// control and modify the predicate in this instruction.
bool isPredicable() const {
return Flags & (1 << TID::Predicable);
}
/// isCompare - Return true if this instruction is a comparison.
bool isCompare() const {
return Flags & (1 << TID::Compare);
}
/// isMoveImmediate - Return true if this instruction is a move immediate
/// (including conditional moves) instruction.
bool isMoveImmediate() const {
return Flags & (1 << TID::MoveImm);
}
/// isNotDuplicable - Return true if this instruction cannot be safely
/// duplicated. For example, if the instruction has a unique labels attached
/// to it, duplicating it would cause multiple definition errors.
bool isNotDuplicable() const {
return Flags & (1 << TID::NotDuplicable);
}
/// hasDelaySlot - Returns true if the specified instruction has a delay slot
/// which must be filled by the code generator.
bool hasDelaySlot() const {
return Flags & (1 << TID::DelaySlot);
}
/// canFoldAsLoad - Return true for instructions that can be folded as
/// memory operands in other instructions. The most common use for this
/// is instructions that are simple loads from memory that don't modify
/// the loaded value in any way, but it can also be used for instructions
/// that can be expressed as constant-pool loads, such as V_SETALLONES
/// on x86, to allow them to be folded when it is beneficial.
/// This should only be set on instructions that return a value in their
/// only virtual register definition.
bool canFoldAsLoad() const {
return Flags & (1 << TID::FoldableAsLoad);
}
//===--------------------------------------------------------------------===//
// Side Effect Analysis
//===--------------------------------------------------------------------===//
/// mayLoad - Return true if this instruction could possibly read memory.
/// Instructions with this flag set are not necessarily simple load
/// instructions, they may load a value and modify it, for example.
bool mayLoad() const {
return Flags & (1 << TID::MayLoad);
}
/// mayStore - Return true if this instruction could possibly modify memory.
/// Instructions with this flag set are not necessarily simple store
/// instructions, they may store a modified value based on their operands, or
/// may not actually modify anything, for example.
bool mayStore() const {
return Flags & (1 << TID::MayStore);
}
/// hasUnmodeledSideEffects - Return true if this instruction has side
/// effects that are not modeled by other flags. This does not return true
/// for instructions whose effects are captured by:
///
/// 1. Their operand list and implicit definition/use list. Register use/def
/// info is explicit for instructions.
/// 2. Memory accesses. Use mayLoad/mayStore.
/// 3. Calling, branching, returning: use isCall/isReturn/isBranch.
///
/// Examples of side effects would be modifying 'invisible' machine state like
/// a control register, flushing a cache, modifying a register invisible to
/// LLVM, etc.
///
bool hasUnmodeledSideEffects() const {
return Flags & (1 << TID::UnmodeledSideEffects);
}
//===--------------------------------------------------------------------===//
// Flags that indicate whether an instruction can be modified by a method.
//===--------------------------------------------------------------------===//
/// isCommutable - Return true if this may be a 2- or 3-address
/// instruction (of the form "X = op Y, Z, ..."), which produces the same
/// result if Y and Z are exchanged. If this flag is set, then the
/// TargetInstrInfo::commuteInstruction method may be used to hack on the
/// instruction.
///
/// Note that this flag may be set on instructions that are only commutable
/// sometimes. In these cases, the call to commuteInstruction will fail.
/// Also note that some instructions require non-trivial modification to
/// commute them.
bool isCommutable() const {
return Flags & (1 << TID::Commutable);
}
/// isConvertibleTo3Addr - Return true if this is a 2-address instruction
/// which can be changed into a 3-address instruction if needed. Doing this
/// transformation can be profitable in the register allocator, because it
/// means that the instruction can use a 2-address form if possible, but
/// degrade into a less efficient form if the source and dest register cannot
/// be assigned to the same register. For example, this allows the x86
/// backend to turn a "shl reg, 3" instruction into an LEA instruction, which
/// is the same speed as the shift but has bigger code size.
///
/// If this returns true, then the target must implement the
/// TargetInstrInfo::convertToThreeAddress method for this instruction, which
/// is allowed to fail if the transformation isn't valid for this specific
/// instruction (e.g. shl reg, 4 on x86).
///
bool isConvertibleTo3Addr() const {
return Flags & (1 << TID::ConvertibleTo3Addr);
}
/// usesCustomInsertionHook - Return true if this instruction requires
/// custom insertion support when the DAG scheduler is inserting it into a
/// machine basic block. If this is true for the instruction, it basically
/// means that it is a pseudo instruction used at SelectionDAG time that is
/// expanded out into magic code by the target when MachineInstrs are formed.
///
/// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
/// is used to insert this into the MachineBasicBlock.
bool usesCustomInsertionHook() const {
return Flags & (1 << TID::UsesCustomInserter);
}
/// isRematerializable - Returns true if this instruction is a candidate for
/// remat. This flag is deprecated, please don't use it anymore. If this
/// flag is set, the isReallyTriviallyReMaterializable() method is called to
/// verify the instruction is really rematable.
bool isRematerializable() const {
return Flags & (1 << TID::Rematerializable);
}
/// isAsCheapAsAMove - Returns true if this instruction has the same cost (or
/// less) than a move instruction. This is useful during certain types of
/// optimizations (e.g., remat during two-address conversion or machine licm)
/// where we would like to remat or hoist the instruction, but not if it costs
/// more than moving the instruction into the appropriate register. Note, we
/// are not marking copies from and to the same register class with this flag.
bool isAsCheapAsAMove() const {
return Flags & (1 << TID::CheapAsAMove);
}
/// hasExtraSrcRegAllocReq - Returns true if this instruction source operands
/// have special register allocation requirements that are not captured by the
/// operand register classes. e.g. ARM::STRD's two source registers must be an
/// even / odd pair, ARM::STM registers have to be in ascending order.
/// Post-register allocation passes should not attempt to change allocations
/// for sources of instructions with this flag.
bool hasExtraSrcRegAllocReq() const {
return Flags & (1 << TID::ExtraSrcRegAllocReq);
}
/// hasExtraDefRegAllocReq - Returns true if this instruction def operands
/// have special register allocation requirements that are not captured by the
/// operand register classes. e.g. ARM::LDRD's two def registers must be an
/// even / odd pair, ARM::LDM registers have to be in ascending order.
/// Post-register allocation passes should not attempt to change allocations
/// for definitions of instructions with this flag.
bool hasExtraDefRegAllocReq() const {
return Flags & (1 << TID::ExtraDefRegAllocReq);
}
};
} // end namespace llvm
#endif