1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 11:42:57 +01:00
llvm-mirror/include/llvm/IR/PassManager.h
2015-10-30 22:58:15 +00:00

897 lines
34 KiB
C++

//===- PassManager.h - Pass management infrastructure -----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
///
/// This header defines various interfaces for pass management in LLVM. There
/// is no "pass" interface in LLVM per se. Instead, an instance of any class
/// which supports a method to 'run' it over a unit of IR can be used as
/// a pass. A pass manager is generally a tool to collect a sequence of passes
/// which run over a particular IR construct, and run each of them in sequence
/// over each such construct in the containing IR construct. As there is no
/// containing IR construct for a Module, a manager for passes over modules
/// forms the base case which runs its managed passes in sequence over the
/// single module provided.
///
/// The core IR library provides managers for running passes over
/// modules and functions.
///
/// * FunctionPassManager can run over a Module, runs each pass over
/// a Function.
/// * ModulePassManager must be directly run, runs each pass over the Module.
///
/// Note that the implementations of the pass managers use concept-based
/// polymorphism as outlined in the "Value Semantics and Concept-based
/// Polymorphism" talk (or its abbreviated sibling "Inheritance Is The Base
/// Class of Evil") by Sean Parent:
/// * http://github.com/sean-parent/sean-parent.github.com/wiki/Papers-and-Presentations
/// * http://www.youtube.com/watch?v=_BpMYeUFXv8
/// * http://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_IR_PASSMANAGER_H
#define LLVM_IR_PASSMANAGER_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManagerInternal.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/type_traits.h"
#include <list>
#include <memory>
#include <vector>
namespace llvm {
class Module;
class Function;
/// \brief An abstract set of preserved analyses following a transformation pass
/// run.
///
/// When a transformation pass is run, it can return a set of analyses whose
/// results were preserved by that transformation. The default set is "none",
/// and preserving analyses must be done explicitly.
///
/// There is also an explicit all state which can be used (for example) when
/// the IR is not mutated at all.
class PreservedAnalyses {
public:
// We have to explicitly define all the special member functions because MSVC
// refuses to generate them.
PreservedAnalyses() {}
PreservedAnalyses(const PreservedAnalyses &Arg)
: PreservedPassIDs(Arg.PreservedPassIDs) {}
PreservedAnalyses(PreservedAnalyses &&Arg)
: PreservedPassIDs(std::move(Arg.PreservedPassIDs)) {}
friend void swap(PreservedAnalyses &LHS, PreservedAnalyses &RHS) {
using std::swap;
swap(LHS.PreservedPassIDs, RHS.PreservedPassIDs);
}
PreservedAnalyses &operator=(PreservedAnalyses RHS) {
swap(*this, RHS);
return *this;
}
/// \brief Convenience factory function for the empty preserved set.
static PreservedAnalyses none() { return PreservedAnalyses(); }
/// \brief Construct a special preserved set that preserves all passes.
static PreservedAnalyses all() {
PreservedAnalyses PA;
PA.PreservedPassIDs.insert((void *)AllPassesID);
return PA;
}
/// \brief Mark a particular pass as preserved, adding it to the set.
template <typename PassT> void preserve() { preserve(PassT::ID()); }
/// \brief Mark an abstract PassID as preserved, adding it to the set.
void preserve(void *PassID) {
if (!areAllPreserved())
PreservedPassIDs.insert(PassID);
}
/// \brief Intersect this set with another in place.
///
/// This is a mutating operation on this preserved set, removing all
/// preserved passes which are not also preserved in the argument.
void intersect(const PreservedAnalyses &Arg) {
if (Arg.areAllPreserved())
return;
if (areAllPreserved()) {
PreservedPassIDs = Arg.PreservedPassIDs;
return;
}
for (void *P : PreservedPassIDs)
if (!Arg.PreservedPassIDs.count(P))
PreservedPassIDs.erase(P);
}
/// \brief Intersect this set with a temporary other set in place.
///
/// This is a mutating operation on this preserved set, removing all
/// preserved passes which are not also preserved in the argument.
void intersect(PreservedAnalyses &&Arg) {
if (Arg.areAllPreserved())
return;
if (areAllPreserved()) {
PreservedPassIDs = std::move(Arg.PreservedPassIDs);
return;
}
for (void *P : PreservedPassIDs)
if (!Arg.PreservedPassIDs.count(P))
PreservedPassIDs.erase(P);
}
/// \brief Query whether a pass is marked as preserved by this set.
template <typename PassT> bool preserved() const {
return preserved(PassT::ID());
}
/// \brief Query whether an abstract pass ID is marked as preserved by this
/// set.
bool preserved(void *PassID) const {
return PreservedPassIDs.count((void *)AllPassesID) ||
PreservedPassIDs.count(PassID);
}
/// \brief Test whether all passes are preserved.
///
/// This is used primarily to optimize for the case of no changes which will
/// common in many scenarios.
bool areAllPreserved() const {
return PreservedPassIDs.count((void *)AllPassesID);
}
private:
// Note that this must not be -1 or -2 as those are already used by the
// SmallPtrSet.
static const uintptr_t AllPassesID = (intptr_t)(-3);
SmallPtrSet<void *, 2> PreservedPassIDs;
};
// Forward declare the analysis manager template.
template <typename IRUnitT> class AnalysisManager;
/// \brief Manages a sequence of passes over units of IR.
///
/// A pass manager contains a sequence of passes to run over units of IR. It is
/// itself a valid pass over that unit of IR, and when over some given IR will
/// run each pass in sequence. This is the primary and most basic building
/// block of a pass pipeline.
///
/// If it is run with an \c AnalysisManager<IRUnitT> argument, it will propagate
/// that analysis manager to each pass it runs, as well as calling the analysis
/// manager's invalidation routine with the PreservedAnalyses of each pass it
/// runs.
template <typename IRUnitT> class PassManager {
public:
/// \brief Construct a pass manager.
///
/// It can be passed a flag to get debug logging as the passes are run.
PassManager(bool DebugLogging = false) : DebugLogging(DebugLogging) {}
// We have to explicitly define all the special member functions because MSVC
// refuses to generate them.
PassManager(PassManager &&Arg)
: Passes(std::move(Arg.Passes)),
DebugLogging(std::move(Arg.DebugLogging)) {}
PassManager &operator=(PassManager &&RHS) {
Passes = std::move(RHS.Passes);
DebugLogging = std::move(RHS.DebugLogging);
return *this;
}
/// \brief Run all of the passes in this manager over the IR.
PreservedAnalyses run(IRUnitT &IR, AnalysisManager<IRUnitT> *AM = nullptr) {
PreservedAnalyses PA = PreservedAnalyses::all();
if (DebugLogging)
dbgs() << "Starting pass manager run.\n";
for (unsigned Idx = 0, Size = Passes.size(); Idx != Size; ++Idx) {
if (DebugLogging)
dbgs() << "Running pass: " << Passes[Idx]->name() << " on "
<< IR.getName() << "\n";
PreservedAnalyses PassPA = Passes[Idx]->run(IR, AM);
// If we have an active analysis manager at this level we want to ensure
// we update it as each pass runs and potentially invalidates analyses.
// We also update the preserved set of analyses based on what analyses we
// have already handled the invalidation for here and don't need to
// invalidate when finished.
if (AM)
PassPA = AM->invalidate(IR, std::move(PassPA));
// Finally, we intersect the final preserved analyses to compute the
// aggregate preserved set for this pass manager.
PA.intersect(std::move(PassPA));
// FIXME: Historically, the pass managers all called the LLVM context's
// yield function here. We don't have a generic way to acquire the
// context and it isn't yet clear what the right pattern is for yielding
// in the new pass manager so it is currently omitted.
//IR.getContext().yield();
}
if (DebugLogging)
dbgs() << "Finished pass manager run.\n";
return PA;
}
template <typename PassT> void addPass(PassT Pass) {
typedef detail::PassModel<IRUnitT, PassT> PassModelT;
Passes.emplace_back(new PassModelT(std::move(Pass)));
}
static StringRef name() { return "PassManager"; }
private:
typedef detail::PassConcept<IRUnitT> PassConceptT;
PassManager(const PassManager &) = delete;
PassManager &operator=(const PassManager &) = delete;
std::vector<std::unique_ptr<PassConceptT>> Passes;
/// \brief Flag indicating whether we should do debug logging.
bool DebugLogging;
};
/// \brief Convenience typedef for a pass manager over modules.
typedef PassManager<Module> ModulePassManager;
/// \brief Convenience typedef for a pass manager over functions.
typedef PassManager<Function> FunctionPassManager;
namespace detail {
/// \brief A CRTP base used to implement analysis managers.
///
/// This class template serves as the boiler plate of an analysis manager. Any
/// analysis manager can be implemented on top of this base class. Any
/// implementation will be required to provide specific hooks:
///
/// - getResultImpl
/// - getCachedResultImpl
/// - invalidateImpl
///
/// The details of the call pattern are within.
///
/// Note that there is also a generic analysis manager template which implements
/// the above required functions along with common datastructures used for
/// managing analyses. This base class is factored so that if you need to
/// customize the handling of a specific IR unit, you can do so without
/// replicating *all* of the boilerplate.
template <typename DerivedT, typename IRUnitT> class AnalysisManagerBase {
DerivedT *derived_this() { return static_cast<DerivedT *>(this); }
const DerivedT *derived_this() const {
return static_cast<const DerivedT *>(this);
}
AnalysisManagerBase(const AnalysisManagerBase &) = delete;
AnalysisManagerBase &
operator=(const AnalysisManagerBase &) = delete;
protected:
typedef detail::AnalysisResultConcept<IRUnitT> ResultConceptT;
typedef detail::AnalysisPassConcept<IRUnitT> PassConceptT;
// FIXME: Provide template aliases for the models when we're using C++11 in
// a mode supporting them.
// We have to explicitly define all the special member functions because MSVC
// refuses to generate them.
AnalysisManagerBase() {}
AnalysisManagerBase(AnalysisManagerBase &&Arg)
: AnalysisPasses(std::move(Arg.AnalysisPasses)) {}
AnalysisManagerBase &operator=(AnalysisManagerBase &&RHS) {
AnalysisPasses = std::move(RHS.AnalysisPasses);
return *this;
}
public:
/// \brief Get the result of an analysis pass for this module.
///
/// If there is not a valid cached result in the manager already, this will
/// re-run the analysis to produce a valid result.
template <typename PassT> typename PassT::Result &getResult(IRUnitT &IR) {
assert(AnalysisPasses.count(PassT::ID()) &&
"This analysis pass was not registered prior to being queried");
ResultConceptT &ResultConcept =
derived_this()->getResultImpl(PassT::ID(), IR);
typedef detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result>
ResultModelT;
return static_cast<ResultModelT &>(ResultConcept).Result;
}
/// \brief Get the cached result of an analysis pass for this module.
///
/// This method never runs the analysis.
///
/// \returns null if there is no cached result.
template <typename PassT>
typename PassT::Result *getCachedResult(IRUnitT &IR) const {
assert(AnalysisPasses.count(PassT::ID()) &&
"This analysis pass was not registered prior to being queried");
ResultConceptT *ResultConcept =
derived_this()->getCachedResultImpl(PassT::ID(), IR);
if (!ResultConcept)
return nullptr;
typedef detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result>
ResultModelT;
return &static_cast<ResultModelT *>(ResultConcept)->Result;
}
/// \brief Register an analysis pass with the manager.
///
/// This provides an initialized and set-up analysis pass to the analysis
/// manager. Whomever is setting up analysis passes must use this to populate
/// the manager with all of the analysis passes available.
template <typename PassT> void registerPass(PassT Pass) {
assert(!AnalysisPasses.count(PassT::ID()) &&
"Registered the same analysis pass twice!");
typedef detail::AnalysisPassModel<IRUnitT, PassT> PassModelT;
AnalysisPasses[PassT::ID()].reset(new PassModelT(std::move(Pass)));
}
/// \brief Invalidate a specific analysis pass for an IR module.
///
/// Note that the analysis result can disregard invalidation.
template <typename PassT> void invalidate(IRUnitT &IR) {
assert(AnalysisPasses.count(PassT::ID()) &&
"This analysis pass was not registered prior to being invalidated");
derived_this()->invalidateImpl(PassT::ID(), IR);
}
/// \brief Invalidate analyses cached for an IR unit.
///
/// Walk through all of the analyses pertaining to this unit of IR and
/// invalidate them unless they are preserved by the PreservedAnalyses set.
/// We accept the PreservedAnalyses set by value and update it with each
/// analyis pass which has been successfully invalidated and thus can be
/// preserved going forward. The updated set is returned.
PreservedAnalyses invalidate(IRUnitT &IR, PreservedAnalyses PA) {
return derived_this()->invalidateImpl(IR, std::move(PA));
}
protected:
/// \brief Lookup a registered analysis pass.
PassConceptT &lookupPass(void *PassID) {
typename AnalysisPassMapT::iterator PI = AnalysisPasses.find(PassID);
assert(PI != AnalysisPasses.end() &&
"Analysis passes must be registered prior to being queried!");
return *PI->second;
}
/// \brief Lookup a registered analysis pass.
const PassConceptT &lookupPass(void *PassID) const {
typename AnalysisPassMapT::const_iterator PI = AnalysisPasses.find(PassID);
assert(PI != AnalysisPasses.end() &&
"Analysis passes must be registered prior to being queried!");
return *PI->second;
}
private:
/// \brief Map type from module analysis pass ID to pass concept pointer.
typedef DenseMap<void *, std::unique_ptr<PassConceptT>> AnalysisPassMapT;
/// \brief Collection of module analysis passes, indexed by ID.
AnalysisPassMapT AnalysisPasses;
};
} // End namespace detail
/// \brief A generic analysis pass manager with lazy running and caching of
/// results.
///
/// This analysis manager can be used for any IR unit where the address of the
/// IR unit sufficies as its identity. It manages the cache for a unit of IR via
/// the address of each unit of IR cached.
template <typename IRUnitT>
class AnalysisManager
: public detail::AnalysisManagerBase<AnalysisManager<IRUnitT>, IRUnitT> {
friend class detail::AnalysisManagerBase<AnalysisManager<IRUnitT>, IRUnitT>;
typedef detail::AnalysisManagerBase<AnalysisManager<IRUnitT>, IRUnitT> BaseT;
typedef typename BaseT::ResultConceptT ResultConceptT;
typedef typename BaseT::PassConceptT PassConceptT;
public:
// Most public APIs are inherited from the CRTP base class.
/// \brief Construct an empty analysis manager.
///
/// A flag can be passed to indicate that the manager should perform debug
/// logging.
AnalysisManager(bool DebugLogging = false) : DebugLogging(DebugLogging) {}
// We have to explicitly define all the special member functions because MSVC
// refuses to generate them.
AnalysisManager(AnalysisManager &&Arg)
: BaseT(std::move(static_cast<BaseT &>(Arg))),
AnalysisResults(std::move(Arg.AnalysisResults)),
DebugLogging(std::move(Arg.DebugLogging)) {}
AnalysisManager &operator=(AnalysisManager &&RHS) {
BaseT::operator=(std::move(static_cast<BaseT &>(RHS)));
AnalysisResults = std::move(RHS.AnalysisResults);
DebugLogging = std::move(RHS.DebugLogging);
return *this;
}
/// \brief Returns true if the analysis manager has an empty results cache.
bool empty() const {
assert(AnalysisResults.empty() == AnalysisResultLists.empty() &&
"The storage and index of analysis results disagree on how many "
"there are!");
return AnalysisResults.empty();
}
/// \brief Clear the analysis result cache.
///
/// This routine allows cleaning up when the set of IR units itself has
/// potentially changed, and thus we can't even look up a a result and
/// invalidate it directly. Notably, this does *not* call invalidate functions
/// as there is nothing to be done for them.
void clear() {
AnalysisResults.clear();
AnalysisResultLists.clear();
}
private:
AnalysisManager(const AnalysisManager &) = delete;
AnalysisManager &operator=(const AnalysisManager &) = delete;
/// \brief Get an analysis result, running the pass if necessary.
ResultConceptT &getResultImpl(void *PassID, IRUnitT &IR) {
typename AnalysisResultMapT::iterator RI;
bool Inserted;
std::tie(RI, Inserted) = AnalysisResults.insert(std::make_pair(
std::make_pair(PassID, &IR), typename AnalysisResultListT::iterator()));
// If we don't have a cached result for this function, look up the pass and
// run it to produce a result, which we then add to the cache.
if (Inserted) {
auto &P = this->lookupPass(PassID);
if (DebugLogging)
dbgs() << "Running analysis: " << P.name() << "\n";
AnalysisResultListT &ResultList = AnalysisResultLists[&IR];
ResultList.emplace_back(PassID, P.run(IR, this));
// P.run may have inserted elements into AnalysisResults and invalidated
// RI.
RI = AnalysisResults.find(std::make_pair(PassID, &IR));
assert(RI != AnalysisResults.end() && "we just inserted it!");
RI->second = std::prev(ResultList.end());
}
return *RI->second->second;
}
/// \brief Get a cached analysis result or return null.
ResultConceptT *getCachedResultImpl(void *PassID, IRUnitT &IR) const {
typename AnalysisResultMapT::const_iterator RI =
AnalysisResults.find(std::make_pair(PassID, &IR));
return RI == AnalysisResults.end() ? nullptr : &*RI->second->second;
}
/// \brief Invalidate a function pass result.
void invalidateImpl(void *PassID, IRUnitT &IR) {
typename AnalysisResultMapT::iterator RI =
AnalysisResults.find(std::make_pair(PassID, &IR));
if (RI == AnalysisResults.end())
return;
if (DebugLogging)
dbgs() << "Invalidating analysis: " << this->lookupPass(PassID).name()
<< "\n";
AnalysisResultLists[&IR].erase(RI->second);
AnalysisResults.erase(RI);
}
/// \brief Invalidate the results for a function..
PreservedAnalyses invalidateImpl(IRUnitT &IR, PreservedAnalyses PA) {
// Short circuit for a common case of all analyses being preserved.
if (PA.areAllPreserved())
return PA;
if (DebugLogging)
dbgs() << "Invalidating all non-preserved analyses for: "
<< IR.getName() << "\n";
// Clear all the invalidated results associated specifically with this
// function.
SmallVector<void *, 8> InvalidatedPassIDs;
AnalysisResultListT &ResultsList = AnalysisResultLists[&IR];
for (typename AnalysisResultListT::iterator I = ResultsList.begin(),
E = ResultsList.end();
I != E;) {
void *PassID = I->first;
// Pass the invalidation down to the pass itself to see if it thinks it is
// necessary. The analysis pass can return false if no action on the part
// of the analysis manager is required for this invalidation event.
if (I->second->invalidate(IR, PA)) {
if (DebugLogging)
dbgs() << "Invalidating analysis: " << this->lookupPass(PassID).name()
<< "\n";
InvalidatedPassIDs.push_back(I->first);
I = ResultsList.erase(I);
} else {
++I;
}
// After handling each pass, we mark it as preserved. Once we've
// invalidated any stale results, the rest of the system is allowed to
// start preserving this analysis again.
PA.preserve(PassID);
}
while (!InvalidatedPassIDs.empty())
AnalysisResults.erase(
std::make_pair(InvalidatedPassIDs.pop_back_val(), &IR));
if (ResultsList.empty())
AnalysisResultLists.erase(&IR);
return PA;
}
/// \brief List of function analysis pass IDs and associated concept pointers.
///
/// Requires iterators to be valid across appending new entries and arbitrary
/// erases. Provides both the pass ID and concept pointer such that it is
/// half of a bijection and provides storage for the actual result concept.
typedef std::list<std::pair<
void *, std::unique_ptr<detail::AnalysisResultConcept<IRUnitT>>>>
AnalysisResultListT;
/// \brief Map type from function pointer to our custom list type.
typedef DenseMap<IRUnitT *, AnalysisResultListT> AnalysisResultListMapT;
/// \brief Map from function to a list of function analysis results.
///
/// Provides linear time removal of all analysis results for a function and
/// the ultimate storage for a particular cached analysis result.
AnalysisResultListMapT AnalysisResultLists;
/// \brief Map type from a pair of analysis ID and function pointer to an
/// iterator into a particular result list.
typedef DenseMap<std::pair<void *, IRUnitT *>,
typename AnalysisResultListT::iterator> AnalysisResultMapT;
/// \brief Map from an analysis ID and function to a particular cached
/// analysis result.
AnalysisResultMapT AnalysisResults;
/// \brief A flag indicating whether debug logging is enabled.
bool DebugLogging;
};
/// \brief Convenience typedef for the Module analysis manager.
typedef AnalysisManager<Module> ModuleAnalysisManager;
/// \brief Convenience typedef for the Function analysis manager.
typedef AnalysisManager<Function> FunctionAnalysisManager;
/// \brief A module analysis which acts as a proxy for a function analysis
/// manager.
///
/// This primarily proxies invalidation information from the module analysis
/// manager and module pass manager to a function analysis manager. You should
/// never use a function analysis manager from within (transitively) a module
/// pass manager unless your parent module pass has received a proxy result
/// object for it.
class FunctionAnalysisManagerModuleProxy {
public:
class Result;
static void *ID() { return (void *)&PassID; }
static StringRef name() { return "FunctionAnalysisManagerModuleProxy"; }
explicit FunctionAnalysisManagerModuleProxy(FunctionAnalysisManager &FAM)
: FAM(&FAM) {}
// We have to explicitly define all the special member functions because MSVC
// refuses to generate them.
FunctionAnalysisManagerModuleProxy(
const FunctionAnalysisManagerModuleProxy &Arg)
: FAM(Arg.FAM) {}
FunctionAnalysisManagerModuleProxy(FunctionAnalysisManagerModuleProxy &&Arg)
: FAM(std::move(Arg.FAM)) {}
FunctionAnalysisManagerModuleProxy &
operator=(FunctionAnalysisManagerModuleProxy RHS) {
std::swap(FAM, RHS.FAM);
return *this;
}
/// \brief Run the analysis pass and create our proxy result object.
///
/// This doesn't do any interesting work, it is primarily used to insert our
/// proxy result object into the module analysis cache so that we can proxy
/// invalidation to the function analysis manager.
///
/// In debug builds, it will also assert that the analysis manager is empty
/// as no queries should arrive at the function analysis manager prior to
/// this analysis being requested.
Result run(Module &M);
private:
static char PassID;
FunctionAnalysisManager *FAM;
};
/// \brief The result proxy object for the
/// \c FunctionAnalysisManagerModuleProxy.
///
/// See its documentation for more information.
class FunctionAnalysisManagerModuleProxy::Result {
public:
explicit Result(FunctionAnalysisManager &FAM) : FAM(&FAM) {}
// We have to explicitly define all the special member functions because MSVC
// refuses to generate them.
Result(const Result &Arg) : FAM(Arg.FAM) {}
Result(Result &&Arg) : FAM(std::move(Arg.FAM)) {}
Result &operator=(Result RHS) {
std::swap(FAM, RHS.FAM);
return *this;
}
~Result();
/// \brief Accessor for the \c FunctionAnalysisManager.
FunctionAnalysisManager &getManager() { return *FAM; }
/// \brief Handler for invalidation of the module.
///
/// If this analysis itself is preserved, then we assume that the set of \c
/// Function objects in the \c Module hasn't changed and thus we don't need
/// to invalidate *all* cached data associated with a \c Function* in the \c
/// FunctionAnalysisManager.
///
/// Regardless of whether this analysis is marked as preserved, all of the
/// analyses in the \c FunctionAnalysisManager are potentially invalidated
/// based on the set of preserved analyses.
bool invalidate(Module &M, const PreservedAnalyses &PA);
private:
FunctionAnalysisManager *FAM;
};
/// \brief A function analysis which acts as a proxy for a module analysis
/// manager.
///
/// This primarily provides an accessor to a parent module analysis manager to
/// function passes. Only the const interface of the module analysis manager is
/// provided to indicate that once inside of a function analysis pass you
/// cannot request a module analysis to actually run. Instead, the user must
/// rely on the \c getCachedResult API.
///
/// This proxy *doesn't* manage the invalidation in any way. That is handled by
/// the recursive return path of each layer of the pass manager and the
/// returned PreservedAnalysis set.
class ModuleAnalysisManagerFunctionProxy {
public:
/// \brief Result proxy object for \c ModuleAnalysisManagerFunctionProxy.
class Result {
public:
explicit Result(const ModuleAnalysisManager &MAM) : MAM(&MAM) {}
// We have to explicitly define all the special member functions because
// MSVC refuses to generate them.
Result(const Result &Arg) : MAM(Arg.MAM) {}
Result(Result &&Arg) : MAM(std::move(Arg.MAM)) {}
Result &operator=(Result RHS) {
std::swap(MAM, RHS.MAM);
return *this;
}
const ModuleAnalysisManager &getManager() const { return *MAM; }
/// \brief Handle invalidation by ignoring it, this pass is immutable.
bool invalidate(Function &) { return false; }
private:
const ModuleAnalysisManager *MAM;
};
static void *ID() { return (void *)&PassID; }
static StringRef name() { return "ModuleAnalysisManagerFunctionProxy"; }
ModuleAnalysisManagerFunctionProxy(const ModuleAnalysisManager &MAM)
: MAM(&MAM) {}
// We have to explicitly define all the special member functions because MSVC
// refuses to generate them.
ModuleAnalysisManagerFunctionProxy(
const ModuleAnalysisManagerFunctionProxy &Arg)
: MAM(Arg.MAM) {}
ModuleAnalysisManagerFunctionProxy(ModuleAnalysisManagerFunctionProxy &&Arg)
: MAM(std::move(Arg.MAM)) {}
ModuleAnalysisManagerFunctionProxy &
operator=(ModuleAnalysisManagerFunctionProxy RHS) {
std::swap(MAM, RHS.MAM);
return *this;
}
/// \brief Run the analysis pass and create our proxy result object.
/// Nothing to see here, it just forwards the \c MAM reference into the
/// result.
Result run(Function &) { return Result(*MAM); }
private:
static char PassID;
const ModuleAnalysisManager *MAM;
};
/// \brief Trivial adaptor that maps from a module to its functions.
///
/// Designed to allow composition of a FunctionPass(Manager) and
/// a ModulePassManager. Note that if this pass is constructed with a pointer
/// to a \c ModuleAnalysisManager it will run the
/// \c FunctionAnalysisManagerModuleProxy analysis prior to running the function
/// pass over the module to enable a \c FunctionAnalysisManager to be used
/// within this run safely.
///
/// Function passes run within this adaptor can rely on having exclusive access
/// to the function they are run over. They should not read or modify any other
/// functions! Other threads or systems may be manipulating other functions in
/// the module, and so their state should never be relied on.
/// FIXME: Make the above true for all of LLVM's actual passes, some still
/// violate this principle.
///
/// Function passes can also read the module containing the function, but they
/// should not modify that module outside of the use lists of various globals.
/// For example, a function pass is not permitted to add functions to the
/// module.
/// FIXME: Make the above true for all of LLVM's actual passes, some still
/// violate this principle.
template <typename FunctionPassT> class ModuleToFunctionPassAdaptor {
public:
explicit ModuleToFunctionPassAdaptor(FunctionPassT Pass)
: Pass(std::move(Pass)) {}
// We have to explicitly define all the special member functions because MSVC
// refuses to generate them.
ModuleToFunctionPassAdaptor(const ModuleToFunctionPassAdaptor &Arg)
: Pass(Arg.Pass) {}
ModuleToFunctionPassAdaptor(ModuleToFunctionPassAdaptor &&Arg)
: Pass(std::move(Arg.Pass)) {}
friend void swap(ModuleToFunctionPassAdaptor &LHS,
ModuleToFunctionPassAdaptor &RHS) {
using std::swap;
swap(LHS.Pass, RHS.Pass);
}
ModuleToFunctionPassAdaptor &operator=(ModuleToFunctionPassAdaptor RHS) {
swap(*this, RHS);
return *this;
}
/// \brief Runs the function pass across every function in the module.
PreservedAnalyses run(Module &M, ModuleAnalysisManager *AM) {
FunctionAnalysisManager *FAM = nullptr;
if (AM)
// Setup the function analysis manager from its proxy.
FAM = &AM->getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
PreservedAnalyses PA = PreservedAnalyses::all();
for (Function &F : M) {
if (F.isDeclaration())
continue;
PreservedAnalyses PassPA = Pass.run(F, FAM);
// We know that the function pass couldn't have invalidated any other
// function's analyses (that's the contract of a function pass), so
// directly handle the function analysis manager's invalidation here and
// update our preserved set to reflect that these have already been
// handled.
if (FAM)
PassPA = FAM->invalidate(F, std::move(PassPA));
// Then intersect the preserved set so that invalidation of module
// analyses will eventually occur when the module pass completes.
PA.intersect(std::move(PassPA));
}
// By definition we preserve the proxy. This precludes *any* invalidation
// of function analyses by the proxy, but that's OK because we've taken
// care to invalidate analyses in the function analysis manager
// incrementally above.
PA.preserve<FunctionAnalysisManagerModuleProxy>();
return PA;
}
static StringRef name() { return "ModuleToFunctionPassAdaptor"; }
private:
FunctionPassT Pass;
};
/// \brief A function to deduce a function pass type and wrap it in the
/// templated adaptor.
template <typename FunctionPassT>
ModuleToFunctionPassAdaptor<FunctionPassT>
createModuleToFunctionPassAdaptor(FunctionPassT Pass) {
return ModuleToFunctionPassAdaptor<FunctionPassT>(std::move(Pass));
}
/// \brief A template utility pass to force an analysis result to be available.
///
/// This is a no-op pass which simply forces a specific analysis pass's result
/// to be available when it is run.
template <typename AnalysisT> struct RequireAnalysisPass {
/// \brief Run this pass over some unit of IR.
///
/// This pass can be run over any unit of IR and use any analysis manager
/// provided they satisfy the basic API requirements. When this pass is
/// created, these methods can be instantiated to satisfy whatever the
/// context requires.
template <typename IRUnitT>
PreservedAnalyses run(IRUnitT &Arg, AnalysisManager<IRUnitT> *AM) {
if (AM)
(void)AM->template getResult<AnalysisT>(Arg);
return PreservedAnalyses::all();
}
static StringRef name() { return "RequireAnalysisPass"; }
};
/// \brief A template utility pass to force an analysis result to be
/// invalidated.
///
/// This is a no-op pass which simply forces a specific analysis result to be
/// invalidated when it is run.
template <typename AnalysisT> struct InvalidateAnalysisPass {
/// \brief Run this pass over some unit of IR.
///
/// This pass can be run over any unit of IR and use any analysis manager
/// provided they satisfy the basic API requirements. When this pass is
/// created, these methods can be instantiated to satisfy whatever the
/// context requires.
template <typename IRUnitT>
PreservedAnalyses run(IRUnitT &Arg, AnalysisManager<IRUnitT> *AM) {
if (AM)
// We have to directly invalidate the analysis result as we can't
// enumerate all other analyses and use the preserved set to control it.
(void)AM->template invalidate<AnalysisT>(Arg);
return PreservedAnalyses::all();
}
static StringRef name() { return "InvalidateAnalysisPass"; }
};
/// \brief A utility pass that does nothing but preserves no analyses.
///
/// As a consequence fo not preserving any analyses, this pass will force all
/// analysis passes to be re-run to produce fresh results if any are needed.
struct InvalidateAllAnalysesPass {
/// \brief Run this pass over some unit of IR.
template <typename IRUnitT> PreservedAnalyses run(IRUnitT &Arg) {
return PreservedAnalyses::none();
}
static StringRef name() { return "InvalidateAllAnalysesPass"; }
};
}
#endif