1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-21 20:12:56 +02:00
llvm-mirror/include/llvm/Analysis/CallGraph.h
Chandler Carruth 4cad16d76c [PM] Remove support for omitting the AnalysisManager argument to new
pass manager passes' `run` methods.

This removes a bunch of SFINAE goop from the pass manager and just
requires pass authors to accept `AnalysisManager<IRUnitT> &` as a dead
argument. This is a small price to pay for the simplicity of the system
as a whole, despite the noise that changing it causes at this stage.

This will also helpfull allow us to make the signature of the run
methods much more flexible for different kinds af passes to support
things like intelligently updating the pass's progression over IR units.

While this touches many, many, files, the changes are really boring.
Mostly made with the help of my trusty perl one liners.

Thanks to Sean and Hal for bouncing ideas for this with me in IRC.

llvm-svn: 272978
2016-06-17 00:11:01 +00:00

504 lines
18 KiB
C++

//===- CallGraph.h - Build a Module's call graph ----------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
///
/// This file provides interfaces used to build and manipulate a call graph,
/// which is a very useful tool for interprocedural optimization.
///
/// Every function in a module is represented as a node in the call graph. The
/// callgraph node keeps track of which functions are called by the function
/// corresponding to the node.
///
/// A call graph may contain nodes where the function that they correspond to
/// is null. These 'external' nodes are used to represent control flow that is
/// not represented (or analyzable) in the module. In particular, this
/// analysis builds one external node such that:
/// 1. All functions in the module without internal linkage will have edges
/// from this external node, indicating that they could be called by
/// functions outside of the module.
/// 2. All functions whose address is used for something more than a direct
/// call, for example being stored into a memory location will also have
/// an edge from this external node. Since they may be called by an
/// unknown caller later, they must be tracked as such.
///
/// There is a second external node added for calls that leave this module.
/// Functions have a call edge to the external node iff:
/// 1. The function is external, reflecting the fact that they could call
/// anything without internal linkage or that has its address taken.
/// 2. The function contains an indirect function call.
///
/// As an extension in the future, there may be multiple nodes with a null
/// function. These will be used when we can prove (through pointer analysis)
/// that an indirect call site can call only a specific set of functions.
///
/// Because of these properties, the CallGraph captures a conservative superset
/// of all of the caller-callee relationships, which is useful for
/// transformations.
///
/// The CallGraph class also attempts to figure out what the root of the
/// CallGraph is, which it currently does by looking for a function named
/// 'main'. If no function named 'main' is found, the external node is used as
/// the entry node, reflecting the fact that any function without internal
/// linkage could be called into (which is common for libraries).
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_CALLGRAPH_H
#define LLVM_ANALYSIS_CALLGRAPH_H
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Pass.h"
#include <map>
namespace llvm {
class Function;
class Module;
class CallGraphNode;
/// \brief The basic data container for the call graph of a \c Module of IR.
///
/// This class exposes both the interface to the call graph for a module of IR.
///
/// The core call graph itself can also be updated to reflect changes to the IR.
class CallGraph {
Module &M;
typedef std::map<const Function *, std::unique_ptr<CallGraphNode>>
FunctionMapTy;
/// \brief A map from \c Function* to \c CallGraphNode*.
FunctionMapTy FunctionMap;
/// \brief Root is root of the call graph, or the external node if a 'main'
/// function couldn't be found.
CallGraphNode *Root;
/// \brief This node has edges to all external functions and those internal
/// functions that have their address taken.
CallGraphNode *ExternalCallingNode;
/// \brief This node has edges to it from all functions making indirect calls
/// or calling an external function.
std::unique_ptr<CallGraphNode> CallsExternalNode;
/// \brief Replace the function represented by this node by another.
///
/// This does not rescan the body of the function, so it is suitable when
/// splicing the body of one function to another while also updating all
/// callers from the old function to the new.
void spliceFunction(const Function *From, const Function *To);
/// \brief Add a function to the call graph, and link the node to all of the
/// functions that it calls.
void addToCallGraph(Function *F);
public:
explicit CallGraph(Module &M);
CallGraph(CallGraph &&Arg);
~CallGraph();
void print(raw_ostream &OS) const;
void dump() const;
typedef FunctionMapTy::iterator iterator;
typedef FunctionMapTy::const_iterator const_iterator;
/// \brief Returns the module the call graph corresponds to.
Module &getModule() const { return M; }
inline iterator begin() { return FunctionMap.begin(); }
inline iterator end() { return FunctionMap.end(); }
inline const_iterator begin() const { return FunctionMap.begin(); }
inline const_iterator end() const { return FunctionMap.end(); }
/// \brief Returns the call graph node for the provided function.
inline const CallGraphNode *operator[](const Function *F) const {
const_iterator I = FunctionMap.find(F);
assert(I != FunctionMap.end() && "Function not in callgraph!");
return I->second.get();
}
/// \brief Returns the call graph node for the provided function.
inline CallGraphNode *operator[](const Function *F) {
const_iterator I = FunctionMap.find(F);
assert(I != FunctionMap.end() && "Function not in callgraph!");
return I->second.get();
}
/// \brief Returns the \c CallGraphNode which is used to represent
/// undetermined calls into the callgraph.
CallGraphNode *getExternalCallingNode() const { return ExternalCallingNode; }
CallGraphNode *getCallsExternalNode() const {
return CallsExternalNode.get();
}
//===---------------------------------------------------------------------
// Functions to keep a call graph up to date with a function that has been
// modified.
//
/// \brief Unlink the function from this module, returning it.
///
/// Because this removes the function from the module, the call graph node is
/// destroyed. This is only valid if the function does not call any other
/// functions (ie, there are no edges in it's CGN). The easiest way to do
/// this is to dropAllReferences before calling this.
Function *removeFunctionFromModule(CallGraphNode *CGN);
/// \brief Similar to operator[], but this will insert a new CallGraphNode for
/// \c F if one does not already exist.
CallGraphNode *getOrInsertFunction(const Function *F);
};
/// \brief A node in the call graph for a module.
///
/// Typically represents a function in the call graph. There are also special
/// "null" nodes used to represent theoretical entries in the call graph.
class CallGraphNode {
public:
/// \brief A pair of the calling instruction (a call or invoke)
/// and the call graph node being called.
typedef std::pair<WeakVH, CallGraphNode *> CallRecord;
public:
typedef std::vector<CallRecord> CalledFunctionsVector;
/// \brief Creates a node for the specified function.
inline CallGraphNode(Function *F) : F(F), NumReferences(0) {}
~CallGraphNode() {
assert(NumReferences == 0 && "Node deleted while references remain");
}
typedef std::vector<CallRecord>::iterator iterator;
typedef std::vector<CallRecord>::const_iterator const_iterator;
/// \brief Returns the function that this call graph node represents.
Function *getFunction() const { return F; }
inline iterator begin() { return CalledFunctions.begin(); }
inline iterator end() { return CalledFunctions.end(); }
inline const_iterator begin() const { return CalledFunctions.begin(); }
inline const_iterator end() const { return CalledFunctions.end(); }
inline bool empty() const { return CalledFunctions.empty(); }
inline unsigned size() const { return (unsigned)CalledFunctions.size(); }
/// \brief Returns the number of other CallGraphNodes in this CallGraph that
/// reference this node in their callee list.
unsigned getNumReferences() const { return NumReferences; }
/// \brief Returns the i'th called function.
CallGraphNode *operator[](unsigned i) const {
assert(i < CalledFunctions.size() && "Invalid index");
return CalledFunctions[i].second;
}
/// \brief Print out this call graph node.
void dump() const;
void print(raw_ostream &OS) const;
//===---------------------------------------------------------------------
// Methods to keep a call graph up to date with a function that has been
// modified
//
/// \brief Removes all edges from this CallGraphNode to any functions it
/// calls.
void removeAllCalledFunctions() {
while (!CalledFunctions.empty()) {
CalledFunctions.back().second->DropRef();
CalledFunctions.pop_back();
}
}
/// \brief Moves all the callee information from N to this node.
void stealCalledFunctionsFrom(CallGraphNode *N) {
assert(CalledFunctions.empty() &&
"Cannot steal callsite information if I already have some");
std::swap(CalledFunctions, N->CalledFunctions);
}
/// \brief Adds a function to the list of functions called by this one.
void addCalledFunction(CallSite CS, CallGraphNode *M) {
assert(!CS.getInstruction() || !CS.getCalledFunction() ||
!CS.getCalledFunction()->isIntrinsic() ||
!Intrinsic::isLeaf(CS.getCalledFunction()->getIntrinsicID()));
CalledFunctions.emplace_back(CS.getInstruction(), M);
M->AddRef();
}
void removeCallEdge(iterator I) {
I->second->DropRef();
*I = CalledFunctions.back();
CalledFunctions.pop_back();
}
/// \brief Removes the edge in the node for the specified call site.
///
/// Note that this method takes linear time, so it should be used sparingly.
void removeCallEdgeFor(CallSite CS);
/// \brief Removes all call edges from this node to the specified callee
/// function.
///
/// This takes more time to execute than removeCallEdgeTo, so it should not
/// be used unless necessary.
void removeAnyCallEdgeTo(CallGraphNode *Callee);
/// \brief Removes one edge associated with a null callsite from this node to
/// the specified callee function.
void removeOneAbstractEdgeTo(CallGraphNode *Callee);
/// \brief Replaces the edge in the node for the specified call site with a
/// new one.
///
/// Note that this method takes linear time, so it should be used sparingly.
void replaceCallEdge(CallSite CS, CallSite NewCS, CallGraphNode *NewNode);
private:
friend class CallGraph;
AssertingVH<Function> F;
std::vector<CallRecord> CalledFunctions;
/// \brief The number of times that this CallGraphNode occurs in the
/// CalledFunctions array of this or other CallGraphNodes.
unsigned NumReferences;
CallGraphNode(const CallGraphNode &) = delete;
void operator=(const CallGraphNode &) = delete;
void DropRef() { --NumReferences; }
void AddRef() { ++NumReferences; }
/// \brief A special function that should only be used by the CallGraph class.
void allReferencesDropped() { NumReferences = 0; }
};
/// \brief An analysis pass to compute the \c CallGraph for a \c Module.
///
/// This class implements the concept of an analysis pass used by the \c
/// ModuleAnalysisManager to run an analysis over a module and cache the
/// resulting data.
class CallGraphAnalysis : public AnalysisInfoMixin<CallGraphAnalysis> {
friend AnalysisInfoMixin<CallGraphAnalysis>;
static char PassID;
public:
/// \brief A formulaic typedef to inform clients of the result type.
typedef CallGraph Result;
/// \brief Compute the \c CallGraph for the module \c M.
///
/// The real work here is done in the \c CallGraph constructor.
CallGraph run(Module &M, ModuleAnalysisManager &) { return CallGraph(M); }
};
/// \brief Printer pass for the \c CallGraphAnalysis results.
class CallGraphPrinterPass : public PassInfoMixin<CallGraphPrinterPass> {
raw_ostream &OS;
public:
explicit CallGraphPrinterPass(raw_ostream &OS) : OS(OS) {}
PreservedAnalyses run(Module &M, AnalysisManager<Module> &AM);
};
/// \brief The \c ModulePass which wraps up a \c CallGraph and the logic to
/// build it.
///
/// This class exposes both the interface to the call graph container and the
/// module pass which runs over a module of IR and produces the call graph. The
/// call graph interface is entirelly a wrapper around a \c CallGraph object
/// which is stored internally for each module.
class CallGraphWrapperPass : public ModulePass {
std::unique_ptr<CallGraph> G;
public:
static char ID; // Class identification, replacement for typeinfo
CallGraphWrapperPass();
~CallGraphWrapperPass() override;
/// \brief The internal \c CallGraph around which the rest of this interface
/// is wrapped.
const CallGraph &getCallGraph() const { return *G; }
CallGraph &getCallGraph() { return *G; }
typedef CallGraph::iterator iterator;
typedef CallGraph::const_iterator const_iterator;
/// \brief Returns the module the call graph corresponds to.
Module &getModule() const { return G->getModule(); }
inline iterator begin() { return G->begin(); }
inline iterator end() { return G->end(); }
inline const_iterator begin() const { return G->begin(); }
inline const_iterator end() const { return G->end(); }
/// \brief Returns the call graph node for the provided function.
inline const CallGraphNode *operator[](const Function *F) const {
return (*G)[F];
}
/// \brief Returns the call graph node for the provided function.
inline CallGraphNode *operator[](const Function *F) { return (*G)[F]; }
/// \brief Returns the \c CallGraphNode which is used to represent
/// undetermined calls into the callgraph.
CallGraphNode *getExternalCallingNode() const {
return G->getExternalCallingNode();
}
CallGraphNode *getCallsExternalNode() const {
return G->getCallsExternalNode();
}
//===---------------------------------------------------------------------
// Functions to keep a call graph up to date with a function that has been
// modified.
//
/// \brief Unlink the function from this module, returning it.
///
/// Because this removes the function from the module, the call graph node is
/// destroyed. This is only valid if the function does not call any other
/// functions (ie, there are no edges in it's CGN). The easiest way to do
/// this is to dropAllReferences before calling this.
Function *removeFunctionFromModule(CallGraphNode *CGN) {
return G->removeFunctionFromModule(CGN);
}
/// \brief Similar to operator[], but this will insert a new CallGraphNode for
/// \c F if one does not already exist.
CallGraphNode *getOrInsertFunction(const Function *F) {
return G->getOrInsertFunction(F);
}
//===---------------------------------------------------------------------
// Implementation of the ModulePass interface needed here.
//
void getAnalysisUsage(AnalysisUsage &AU) const override;
bool runOnModule(Module &M) override;
void releaseMemory() override;
void print(raw_ostream &o, const Module *) const override;
void dump() const;
};
//===----------------------------------------------------------------------===//
// GraphTraits specializations for call graphs so that they can be treated as
// graphs by the generic graph algorithms.
//
// Provide graph traits for tranversing call graphs using standard graph
// traversals.
template <> struct GraphTraits<CallGraphNode *> {
typedef CallGraphNode NodeType;
typedef CallGraphNode::CallRecord CGNPairTy;
typedef std::pointer_to_unary_function<CGNPairTy, CallGraphNode *>
CGNDerefFun;
static NodeType *getEntryNode(CallGraphNode *CGN) { return CGN; }
typedef mapped_iterator<NodeType::iterator, CGNDerefFun> ChildIteratorType;
static inline ChildIteratorType child_begin(NodeType *N) {
return map_iterator(N->begin(), CGNDerefFun(CGNDeref));
}
static inline ChildIteratorType child_end(NodeType *N) {
return map_iterator(N->end(), CGNDerefFun(CGNDeref));
}
static CallGraphNode *CGNDeref(CGNPairTy P) { return P.second; }
};
template <> struct GraphTraits<const CallGraphNode *> {
typedef const CallGraphNode NodeType;
typedef CallGraphNode::CallRecord CGNPairTy;
typedef std::pointer_to_unary_function<CGNPairTy, const CallGraphNode *>
CGNDerefFun;
static NodeType *getEntryNode(const CallGraphNode *CGN) { return CGN; }
typedef mapped_iterator<NodeType::const_iterator, CGNDerefFun>
ChildIteratorType;
static inline ChildIteratorType child_begin(NodeType *N) {
return map_iterator(N->begin(), CGNDerefFun(CGNDeref));
}
static inline ChildIteratorType child_end(NodeType *N) {
return map_iterator(N->end(), CGNDerefFun(CGNDeref));
}
static const CallGraphNode *CGNDeref(CGNPairTy P) { return P.second; }
};
template <>
struct GraphTraits<CallGraph *> : public GraphTraits<CallGraphNode *> {
static NodeType *getEntryNode(CallGraph *CGN) {
return CGN->getExternalCallingNode(); // Start at the external node!
}
typedef std::pair<const Function *const, std::unique_ptr<CallGraphNode>>
PairTy;
typedef std::pointer_to_unary_function<const PairTy &, CallGraphNode &>
DerefFun;
// nodes_iterator/begin/end - Allow iteration over all nodes in the graph
typedef mapped_iterator<CallGraph::iterator, DerefFun> nodes_iterator;
static nodes_iterator nodes_begin(CallGraph *CG) {
return map_iterator(CG->begin(), DerefFun(CGdereference));
}
static nodes_iterator nodes_end(CallGraph *CG) {
return map_iterator(CG->end(), DerefFun(CGdereference));
}
static CallGraphNode &CGdereference(const PairTy &P) { return *P.second; }
};
template <>
struct GraphTraits<const CallGraph *> : public GraphTraits<
const CallGraphNode *> {
static NodeType *getEntryNode(const CallGraph *CGN) {
return CGN->getExternalCallingNode(); // Start at the external node!
}
typedef std::pair<const Function *const, std::unique_ptr<CallGraphNode>>
PairTy;
typedef std::pointer_to_unary_function<const PairTy &, const CallGraphNode &>
DerefFun;
// nodes_iterator/begin/end - Allow iteration over all nodes in the graph
typedef mapped_iterator<CallGraph::const_iterator, DerefFun> nodes_iterator;
static nodes_iterator nodes_begin(const CallGraph *CG) {
return map_iterator(CG->begin(), DerefFun(CGdereference));
}
static nodes_iterator nodes_end(const CallGraph *CG) {
return map_iterator(CG->end(), DerefFun(CGdereference));
}
static const CallGraphNode &CGdereference(const PairTy &P) {
return *P.second;
}
};
} // End llvm namespace
#endif