1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-29 23:12:55 +01:00
llvm-mirror/test/CodeGen/PowerPC/splat-bug.ll
Bill Schmidt b806d02b5b [PATCH] Correct type used for VADD_SPLAT optimization on PowerPC
In PPCISelLowering.cpp: PPCTargetLowering::LowerBUILD_VECTOR(), there
is an optimization for certain patterns to generate one or two vector
splats followed by a vector add or subtract.  This operation is
represented by a VADD_SPLAT in the selection DAG.  Prior to this
patch, it was possible for the VADD_SPLAT to be assigned the wrong
data type, causing incorrect code generation.  This patch corrects the
problem.

Specifically, the code previously assigned the value type of the
BUILD_VECTOR node to the newly generated VADD_SPLAT node.  This is
correct much of the time, but not always.  The problem is that the
call to isConstantSplat() may return a SplatBitSize that is not the
same as the number of bits in the original element vector type.  The
correct type to assign is a vector type with the same element bit size
as SplatBitSize.

The included test case shows an example of this, where the
BUILD_VECTOR node has a type of v16i8.  The vector to be built is {0,
16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16}.  isConstantSplat
detects that we can generate a splat of 16 for type v8i16, which is
the type we must assign to the VADD_SPLAT node.  If we do not, we
generate a vspltisb of 8 and a vaddubm, which generates the incorrect
result {16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
16}.  The correct code generation is a vspltish of 8 and a vadduhm.

This patch also corrected code generation for
CodeGen/PowerPC/2008-07-10-SplatMiscompile.ll, which had been marked
as an XFAIL, so we can remove the XFAIL from the test case.

llvm-svn: 209662
2014-05-27 15:57:51 +00:00

19 lines
641 B
LLVM

; RUN: llc -mcpu=ppc64 -O0 -fast-isel=false < %s | FileCheck %s
; Checks for a previous bug where vspltisb/vaddubm were issued in place
; of vsplitsh/vadduhm.
target datalayout = "E-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v128:128:128-n32:64"
target triple = "powerpc64-unknown-linux-gnu"
@a = external global <16 x i8>
define void @foo() nounwind ssp {
; CHECK: foo:
store <16 x i8> <i8 0, i8 16, i8 0, i8 16, i8 0, i8 16, i8 0, i8 16, i8 0, i8 16, i8 0, i8 16, i8 0, i8 16, i8 0, i8 16>, <16 x i8>* @a
; CHECK: vspltish [[REG:[0-9]+]], 8
; CHECK: vadduhm {{[0-9]+}}, [[REG]], [[REG]]
ret void
}