mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-26 04:32:44 +01:00
d25938d612
This reverts commit 20013d02f3352a88d0838eed349abc9a2b0e9cc0.
495 lines
20 KiB
C++
495 lines
20 KiB
C++
//===- LiveIntervals.h - Live Interval Analysis -----------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file This file implements the LiveInterval analysis pass. Given some
|
|
/// numbering of each the machine instructions (in this implemention depth-first
|
|
/// order) an interval [i, j) is said to be a live interval for register v if
|
|
/// there is no instruction with number j' > j such that v is live at j' and
|
|
/// there is no instruction with number i' < i such that v is live at i'. In
|
|
/// this implementation intervals can have holes, i.e. an interval might look
|
|
/// like [1,20), [50,65), [1000,1001).
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_CODEGEN_LIVEINTERVALS_H
|
|
#define LLVM_CODEGEN_LIVEINTERVALS_H
|
|
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/IndexedMap.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/CodeGen/LiveInterval.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/SlotIndexes.h"
|
|
#include "llvm/CodeGen/TargetRegisterInfo.h"
|
|
#include "llvm/MC/LaneBitmask.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <utility>
|
|
|
|
namespace llvm {
|
|
|
|
extern cl::opt<bool> UseSegmentSetForPhysRegs;
|
|
|
|
class AAResults;
|
|
class BitVector;
|
|
class LiveIntervalCalc;
|
|
class MachineBlockFrequencyInfo;
|
|
class MachineDominatorTree;
|
|
class MachineFunction;
|
|
class MachineInstr;
|
|
class MachineRegisterInfo;
|
|
class raw_ostream;
|
|
class TargetInstrInfo;
|
|
class VirtRegMap;
|
|
|
|
class LiveIntervals : public MachineFunctionPass {
|
|
MachineFunction* MF;
|
|
MachineRegisterInfo* MRI;
|
|
const TargetRegisterInfo* TRI;
|
|
const TargetInstrInfo* TII;
|
|
AAResults *AA;
|
|
SlotIndexes* Indexes;
|
|
MachineDominatorTree *DomTree = nullptr;
|
|
LiveIntervalCalc *LICalc = nullptr;
|
|
|
|
/// Special pool allocator for VNInfo's (LiveInterval val#).
|
|
VNInfo::Allocator VNInfoAllocator;
|
|
|
|
/// Live interval pointers for all the virtual registers.
|
|
IndexedMap<LiveInterval*, VirtReg2IndexFunctor> VirtRegIntervals;
|
|
|
|
/// Sorted list of instructions with register mask operands. Always use the
|
|
/// 'r' slot, RegMasks are normal clobbers, not early clobbers.
|
|
SmallVector<SlotIndex, 8> RegMaskSlots;
|
|
|
|
/// This vector is parallel to RegMaskSlots, it holds a pointer to the
|
|
/// corresponding register mask. This pointer can be recomputed as:
|
|
///
|
|
/// MI = Indexes->getInstructionFromIndex(RegMaskSlot[N]);
|
|
/// unsigned OpNum = findRegMaskOperand(MI);
|
|
/// RegMaskBits[N] = MI->getOperand(OpNum).getRegMask();
|
|
///
|
|
/// This is kept in a separate vector partly because some standard
|
|
/// libraries don't support lower_bound() with mixed objects, partly to
|
|
/// improve locality when searching in RegMaskSlots.
|
|
/// Also see the comment in LiveInterval::find().
|
|
SmallVector<const uint32_t*, 8> RegMaskBits;
|
|
|
|
/// For each basic block number, keep (begin, size) pairs indexing into the
|
|
/// RegMaskSlots and RegMaskBits arrays.
|
|
/// Note that basic block numbers may not be layout contiguous, that's why
|
|
/// we can't just keep track of the first register mask in each basic
|
|
/// block.
|
|
SmallVector<std::pair<unsigned, unsigned>, 8> RegMaskBlocks;
|
|
|
|
/// Keeps a live range set for each register unit to track fixed physreg
|
|
/// interference.
|
|
SmallVector<LiveRange*, 0> RegUnitRanges;
|
|
|
|
public:
|
|
static char ID;
|
|
|
|
LiveIntervals();
|
|
~LiveIntervals() override;
|
|
|
|
/// Calculate the spill weight to assign to a single instruction.
|
|
static float getSpillWeight(bool isDef, bool isUse,
|
|
const MachineBlockFrequencyInfo *MBFI,
|
|
const MachineInstr &MI);
|
|
|
|
/// Calculate the spill weight to assign to a single instruction.
|
|
static float getSpillWeight(bool isDef, bool isUse,
|
|
const MachineBlockFrequencyInfo *MBFI,
|
|
const MachineBasicBlock *MBB);
|
|
|
|
LiveInterval &getInterval(Register Reg) {
|
|
if (hasInterval(Reg))
|
|
return *VirtRegIntervals[Reg.id()];
|
|
|
|
return createAndComputeVirtRegInterval(Reg);
|
|
}
|
|
|
|
const LiveInterval &getInterval(Register Reg) const {
|
|
return const_cast<LiveIntervals*>(this)->getInterval(Reg);
|
|
}
|
|
|
|
bool hasInterval(Register Reg) const {
|
|
return VirtRegIntervals.inBounds(Reg.id()) &&
|
|
VirtRegIntervals[Reg.id()];
|
|
}
|
|
|
|
/// Interval creation.
|
|
LiveInterval &createEmptyInterval(Register Reg) {
|
|
assert(!hasInterval(Reg) && "Interval already exists!");
|
|
VirtRegIntervals.grow(Reg.id());
|
|
VirtRegIntervals[Reg.id()] = createInterval(Reg);
|
|
return *VirtRegIntervals[Reg.id()];
|
|
}
|
|
|
|
LiveInterval &createAndComputeVirtRegInterval(Register Reg) {
|
|
LiveInterval &LI = createEmptyInterval(Reg);
|
|
computeVirtRegInterval(LI);
|
|
return LI;
|
|
}
|
|
|
|
/// Interval removal.
|
|
void removeInterval(Register Reg) {
|
|
delete VirtRegIntervals[Reg];
|
|
VirtRegIntervals[Reg] = nullptr;
|
|
}
|
|
|
|
/// Given a register and an instruction, adds a live segment from that
|
|
/// instruction to the end of its MBB.
|
|
LiveInterval::Segment addSegmentToEndOfBlock(Register Reg,
|
|
MachineInstr &startInst);
|
|
|
|
/// After removing some uses of a register, shrink its live range to just
|
|
/// the remaining uses. This method does not compute reaching defs for new
|
|
/// uses, and it doesn't remove dead defs.
|
|
/// Dead PHIDef values are marked as unused. New dead machine instructions
|
|
/// are added to the dead vector. Returns true if the interval may have been
|
|
/// separated into multiple connected components.
|
|
bool shrinkToUses(LiveInterval *li,
|
|
SmallVectorImpl<MachineInstr*> *dead = nullptr);
|
|
|
|
/// Specialized version of
|
|
/// shrinkToUses(LiveInterval *li, SmallVectorImpl<MachineInstr*> *dead)
|
|
/// that works on a subregister live range and only looks at uses matching
|
|
/// the lane mask of the subregister range.
|
|
/// This may leave the subrange empty which needs to be cleaned up with
|
|
/// LiveInterval::removeEmptySubranges() afterwards.
|
|
void shrinkToUses(LiveInterval::SubRange &SR, Register Reg);
|
|
|
|
/// Extend the live range \p LR to reach all points in \p Indices. The
|
|
/// points in the \p Indices array must be jointly dominated by the union
|
|
/// of the existing defs in \p LR and points in \p Undefs.
|
|
///
|
|
/// PHI-defs are added as needed to maintain SSA form.
|
|
///
|
|
/// If a SlotIndex in \p Indices is the end index of a basic block, \p LR
|
|
/// will be extended to be live out of the basic block.
|
|
/// If a SlotIndex in \p Indices is jointy dominated only by points in
|
|
/// \p Undefs, the live range will not be extended to that point.
|
|
///
|
|
/// See also LiveRangeCalc::extend().
|
|
void extendToIndices(LiveRange &LR, ArrayRef<SlotIndex> Indices,
|
|
ArrayRef<SlotIndex> Undefs);
|
|
|
|
void extendToIndices(LiveRange &LR, ArrayRef<SlotIndex> Indices) {
|
|
extendToIndices(LR, Indices, /*Undefs=*/{});
|
|
}
|
|
|
|
/// If \p LR has a live value at \p Kill, prune its live range by removing
|
|
/// any liveness reachable from Kill. Add live range end points to
|
|
/// EndPoints such that extendToIndices(LI, EndPoints) will reconstruct the
|
|
/// value's live range.
|
|
///
|
|
/// Calling pruneValue() and extendToIndices() can be used to reconstruct
|
|
/// SSA form after adding defs to a virtual register.
|
|
void pruneValue(LiveRange &LR, SlotIndex Kill,
|
|
SmallVectorImpl<SlotIndex> *EndPoints);
|
|
|
|
/// This function should not be used. Its intent is to tell you that you are
|
|
/// doing something wrong if you call pruneValue directly on a
|
|
/// LiveInterval. Indeed, you are supposed to call pruneValue on the main
|
|
/// LiveRange and all the LiveRanges of the subranges if any.
|
|
LLVM_ATTRIBUTE_UNUSED void pruneValue(LiveInterval &, SlotIndex,
|
|
SmallVectorImpl<SlotIndex> *) {
|
|
llvm_unreachable(
|
|
"Use pruneValue on the main LiveRange and on each subrange");
|
|
}
|
|
|
|
SlotIndexes *getSlotIndexes() const {
|
|
return Indexes;
|
|
}
|
|
|
|
AAResults *getAliasAnalysis() const {
|
|
return AA;
|
|
}
|
|
|
|
/// Returns true if the specified machine instr has been removed or was
|
|
/// never entered in the map.
|
|
bool isNotInMIMap(const MachineInstr &Instr) const {
|
|
return !Indexes->hasIndex(Instr);
|
|
}
|
|
|
|
/// Returns the base index of the given instruction.
|
|
SlotIndex getInstructionIndex(const MachineInstr &Instr) const {
|
|
return Indexes->getInstructionIndex(Instr);
|
|
}
|
|
|
|
/// Returns the instruction associated with the given index.
|
|
MachineInstr* getInstructionFromIndex(SlotIndex index) const {
|
|
return Indexes->getInstructionFromIndex(index);
|
|
}
|
|
|
|
/// Return the first index in the given basic block.
|
|
SlotIndex getMBBStartIdx(const MachineBasicBlock *mbb) const {
|
|
return Indexes->getMBBStartIdx(mbb);
|
|
}
|
|
|
|
/// Return the last index in the given basic block.
|
|
SlotIndex getMBBEndIdx(const MachineBasicBlock *mbb) const {
|
|
return Indexes->getMBBEndIdx(mbb);
|
|
}
|
|
|
|
bool isLiveInToMBB(const LiveRange &LR,
|
|
const MachineBasicBlock *mbb) const {
|
|
return LR.liveAt(getMBBStartIdx(mbb));
|
|
}
|
|
|
|
bool isLiveOutOfMBB(const LiveRange &LR,
|
|
const MachineBasicBlock *mbb) const {
|
|
return LR.liveAt(getMBBEndIdx(mbb).getPrevSlot());
|
|
}
|
|
|
|
MachineBasicBlock* getMBBFromIndex(SlotIndex index) const {
|
|
return Indexes->getMBBFromIndex(index);
|
|
}
|
|
|
|
void insertMBBInMaps(MachineBasicBlock *MBB) {
|
|
Indexes->insertMBBInMaps(MBB);
|
|
assert(unsigned(MBB->getNumber()) == RegMaskBlocks.size() &&
|
|
"Blocks must be added in order.");
|
|
RegMaskBlocks.push_back(std::make_pair(RegMaskSlots.size(), 0));
|
|
}
|
|
|
|
SlotIndex InsertMachineInstrInMaps(MachineInstr &MI) {
|
|
return Indexes->insertMachineInstrInMaps(MI);
|
|
}
|
|
|
|
void InsertMachineInstrRangeInMaps(MachineBasicBlock::iterator B,
|
|
MachineBasicBlock::iterator E) {
|
|
for (MachineBasicBlock::iterator I = B; I != E; ++I)
|
|
Indexes->insertMachineInstrInMaps(*I);
|
|
}
|
|
|
|
void RemoveMachineInstrFromMaps(MachineInstr &MI) {
|
|
Indexes->removeMachineInstrFromMaps(MI);
|
|
}
|
|
|
|
SlotIndex ReplaceMachineInstrInMaps(MachineInstr &MI, MachineInstr &NewMI) {
|
|
return Indexes->replaceMachineInstrInMaps(MI, NewMI);
|
|
}
|
|
|
|
VNInfo::Allocator& getVNInfoAllocator() { return VNInfoAllocator; }
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override;
|
|
void releaseMemory() override;
|
|
|
|
/// Pass entry point; Calculates LiveIntervals.
|
|
bool runOnMachineFunction(MachineFunction&) override;
|
|
|
|
/// Implement the dump method.
|
|
void print(raw_ostream &O, const Module* = nullptr) const override;
|
|
|
|
/// If LI is confined to a single basic block, return a pointer to that
|
|
/// block. If LI is live in to or out of any block, return NULL.
|
|
MachineBasicBlock *intervalIsInOneMBB(const LiveInterval &LI) const;
|
|
|
|
/// Returns true if VNI is killed by any PHI-def values in LI.
|
|
/// This may conservatively return true to avoid expensive computations.
|
|
bool hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const;
|
|
|
|
/// Add kill flags to any instruction that kills a virtual register.
|
|
void addKillFlags(const VirtRegMap*);
|
|
|
|
/// Call this method to notify LiveIntervals that instruction \p MI has been
|
|
/// moved within a basic block. This will update the live intervals for all
|
|
/// operands of \p MI. Moves between basic blocks are not supported.
|
|
///
|
|
/// \param UpdateFlags Update live intervals for nonallocatable physregs.
|
|
void handleMove(MachineInstr &MI, bool UpdateFlags = false);
|
|
|
|
/// Update intervals of operands of all instructions in the newly
|
|
/// created bundle specified by \p BundleStart.
|
|
///
|
|
/// \param UpdateFlags Update live intervals for nonallocatable physregs.
|
|
///
|
|
/// Assumes existing liveness is accurate.
|
|
/// \pre BundleStart should be the first instruction in the Bundle.
|
|
/// \pre BundleStart should not have a have SlotIndex as one will be assigned.
|
|
void handleMoveIntoNewBundle(MachineInstr &BundleStart,
|
|
bool UpdateFlags = false);
|
|
|
|
/// Update live intervals for instructions in a range of iterators. It is
|
|
/// intended for use after target hooks that may insert or remove
|
|
/// instructions, and is only efficient for a small number of instructions.
|
|
///
|
|
/// OrigRegs is a vector of registers that were originally used by the
|
|
/// instructions in the range between the two iterators.
|
|
///
|
|
/// Currently, the only only changes that are supported are simple removal
|
|
/// and addition of uses.
|
|
void repairIntervalsInRange(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator Begin,
|
|
MachineBasicBlock::iterator End,
|
|
ArrayRef<Register> OrigRegs);
|
|
|
|
// Register mask functions.
|
|
//
|
|
// Machine instructions may use a register mask operand to indicate that a
|
|
// large number of registers are clobbered by the instruction. This is
|
|
// typically used for calls.
|
|
//
|
|
// For compile time performance reasons, these clobbers are not recorded in
|
|
// the live intervals for individual physical registers. Instead,
|
|
// LiveIntervalAnalysis maintains a sorted list of instructions with
|
|
// register mask operands.
|
|
|
|
/// Returns a sorted array of slot indices of all instructions with
|
|
/// register mask operands.
|
|
ArrayRef<SlotIndex> getRegMaskSlots() const { return RegMaskSlots; }
|
|
|
|
/// Returns a sorted array of slot indices of all instructions with register
|
|
/// mask operands in the basic block numbered \p MBBNum.
|
|
ArrayRef<SlotIndex> getRegMaskSlotsInBlock(unsigned MBBNum) const {
|
|
std::pair<unsigned, unsigned> P = RegMaskBlocks[MBBNum];
|
|
return getRegMaskSlots().slice(P.first, P.second);
|
|
}
|
|
|
|
/// Returns an array of register mask pointers corresponding to
|
|
/// getRegMaskSlots().
|
|
ArrayRef<const uint32_t*> getRegMaskBits() const { return RegMaskBits; }
|
|
|
|
/// Returns an array of mask pointers corresponding to
|
|
/// getRegMaskSlotsInBlock(MBBNum).
|
|
ArrayRef<const uint32_t*> getRegMaskBitsInBlock(unsigned MBBNum) const {
|
|
std::pair<unsigned, unsigned> P = RegMaskBlocks[MBBNum];
|
|
return getRegMaskBits().slice(P.first, P.second);
|
|
}
|
|
|
|
/// Test if \p LI is live across any register mask instructions, and
|
|
/// compute a bit mask of physical registers that are not clobbered by any
|
|
/// of them.
|
|
///
|
|
/// Returns false if \p LI doesn't cross any register mask instructions. In
|
|
/// that case, the bit vector is not filled in.
|
|
bool checkRegMaskInterference(LiveInterval &LI,
|
|
BitVector &UsableRegs);
|
|
|
|
// Register unit functions.
|
|
//
|
|
// Fixed interference occurs when MachineInstrs use physregs directly
|
|
// instead of virtual registers. This typically happens when passing
|
|
// arguments to a function call, or when instructions require operands in
|
|
// fixed registers.
|
|
//
|
|
// Each physreg has one or more register units, see MCRegisterInfo. We
|
|
// track liveness per register unit to handle aliasing registers more
|
|
// efficiently.
|
|
|
|
/// Return the live range for register unit \p Unit. It will be computed if
|
|
/// it doesn't exist.
|
|
LiveRange &getRegUnit(unsigned Unit) {
|
|
LiveRange *LR = RegUnitRanges[Unit];
|
|
if (!LR) {
|
|
// Compute missing ranges on demand.
|
|
// Use segment set to speed-up initial computation of the live range.
|
|
RegUnitRanges[Unit] = LR = new LiveRange(UseSegmentSetForPhysRegs);
|
|
computeRegUnitRange(*LR, Unit);
|
|
}
|
|
return *LR;
|
|
}
|
|
|
|
/// Return the live range for register unit \p Unit if it has already been
|
|
/// computed, or nullptr if it hasn't been computed yet.
|
|
LiveRange *getCachedRegUnit(unsigned Unit) {
|
|
return RegUnitRanges[Unit];
|
|
}
|
|
|
|
const LiveRange *getCachedRegUnit(unsigned Unit) const {
|
|
return RegUnitRanges[Unit];
|
|
}
|
|
|
|
/// Remove computed live range for register unit \p Unit. Subsequent uses
|
|
/// should rely on on-demand recomputation.
|
|
void removeRegUnit(unsigned Unit) {
|
|
delete RegUnitRanges[Unit];
|
|
RegUnitRanges[Unit] = nullptr;
|
|
}
|
|
|
|
/// Remove associated live ranges for the register units associated with \p
|
|
/// Reg. Subsequent uses should rely on on-demand recomputation. \note This
|
|
/// method can result in inconsistent liveness tracking if multiple phyical
|
|
/// registers share a regunit, and should be used cautiously.
|
|
void removeAllRegUnitsForPhysReg(MCRegister Reg) {
|
|
for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
|
|
removeRegUnit(*Units);
|
|
}
|
|
|
|
/// Remove value numbers and related live segments starting at position
|
|
/// \p Pos that are part of any liverange of physical register \p Reg or one
|
|
/// of its subregisters.
|
|
void removePhysRegDefAt(MCRegister Reg, SlotIndex Pos);
|
|
|
|
/// Remove value number and related live segments of \p LI and its subranges
|
|
/// that start at position \p Pos.
|
|
void removeVRegDefAt(LiveInterval &LI, SlotIndex Pos);
|
|
|
|
/// Split separate components in LiveInterval \p LI into separate intervals.
|
|
void splitSeparateComponents(LiveInterval &LI,
|
|
SmallVectorImpl<LiveInterval*> &SplitLIs);
|
|
|
|
/// For live interval \p LI with correct SubRanges construct matching
|
|
/// information for the main live range. Expects the main live range to not
|
|
/// have any segments or value numbers.
|
|
void constructMainRangeFromSubranges(LiveInterval &LI);
|
|
|
|
private:
|
|
/// Compute live intervals for all virtual registers.
|
|
void computeVirtRegs();
|
|
|
|
/// Compute RegMaskSlots and RegMaskBits.
|
|
void computeRegMasks();
|
|
|
|
/// Walk the values in \p LI and check for dead values:
|
|
/// - Dead PHIDef values are marked as unused.
|
|
/// - Dead operands are marked as such.
|
|
/// - Completely dead machine instructions are added to the \p dead vector
|
|
/// if it is not nullptr.
|
|
/// Returns true if any PHI value numbers have been removed which may
|
|
/// have separated the interval into multiple connected components.
|
|
bool computeDeadValues(LiveInterval &LI,
|
|
SmallVectorImpl<MachineInstr*> *dead);
|
|
|
|
static LiveInterval *createInterval(Register Reg);
|
|
|
|
void printInstrs(raw_ostream &O) const;
|
|
void dumpInstrs() const;
|
|
|
|
void computeLiveInRegUnits();
|
|
void computeRegUnitRange(LiveRange&, unsigned Unit);
|
|
bool computeVirtRegInterval(LiveInterval&);
|
|
|
|
using ShrinkToUsesWorkList = SmallVector<std::pair<SlotIndex, VNInfo*>, 16>;
|
|
void extendSegmentsToUses(LiveRange &Segments,
|
|
ShrinkToUsesWorkList &WorkList, Register Reg,
|
|
LaneBitmask LaneMask);
|
|
|
|
/// Helper function for repairIntervalsInRange(), walks backwards and
|
|
/// creates/modifies live segments in \p LR to match the operands found.
|
|
/// Only full operands or operands with subregisters matching \p LaneMask
|
|
/// are considered.
|
|
void repairOldRegInRange(MachineBasicBlock::iterator Begin,
|
|
MachineBasicBlock::iterator End,
|
|
const SlotIndex endIdx, LiveRange &LR,
|
|
Register Reg,
|
|
LaneBitmask LaneMask = LaneBitmask::getAll());
|
|
|
|
class HMEditor;
|
|
};
|
|
|
|
} // end namespace llvm
|
|
|
|
#endif
|