mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-22 18:54:02 +01:00
1283 lines
51 KiB
C++
1283 lines
51 KiB
C++
//===- StatepointLowering.cpp - SDAGBuilder's statepoint code -------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file includes support code use by SelectionDAGBuilder when lowering a
|
|
// statepoint sequence in SelectionDAG IR.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "StatepointLowering.h"
|
|
#include "SelectionDAGBuilder.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/None.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/CodeGen/FunctionLoweringInfo.h"
|
|
#include "llvm/CodeGen/GCMetadata.h"
|
|
#include "llvm/CodeGen/ISDOpcodes.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineMemOperand.h"
|
|
#include "llvm/CodeGen/RuntimeLibcalls.h"
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
|
#include "llvm/CodeGen/StackMaps.h"
|
|
#include "llvm/CodeGen/TargetLowering.h"
|
|
#include "llvm/CodeGen/TargetOpcodes.h"
|
|
#include "llvm/IR/CallingConv.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/GCStrategy.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Statepoint.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/MachineValueType.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include <cassert>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <iterator>
|
|
#include <tuple>
|
|
#include <utility>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "statepoint-lowering"
|
|
|
|
STATISTIC(NumSlotsAllocatedForStatepoints,
|
|
"Number of stack slots allocated for statepoints");
|
|
STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered");
|
|
STATISTIC(StatepointMaxSlotsRequired,
|
|
"Maximum number of stack slots required for a singe statepoint");
|
|
|
|
cl::opt<bool> UseRegistersForDeoptValues(
|
|
"use-registers-for-deopt-values", cl::Hidden, cl::init(false),
|
|
cl::desc("Allow using registers for non pointer deopt args"));
|
|
|
|
cl::opt<bool> UseRegistersForGCPointersInLandingPad(
|
|
"use-registers-for-gc-values-in-landing-pad", cl::Hidden, cl::init(false),
|
|
cl::desc("Allow using registers for gc pointer in landing pad"));
|
|
|
|
cl::opt<unsigned> MaxRegistersForGCPointers(
|
|
"max-registers-for-gc-values", cl::Hidden, cl::init(0),
|
|
cl::desc("Max number of VRegs allowed to pass GC pointer meta args in"));
|
|
|
|
typedef FunctionLoweringInfo::StatepointRelocationRecord RecordType;
|
|
|
|
static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops,
|
|
SelectionDAGBuilder &Builder, uint64_t Value) {
|
|
SDLoc L = Builder.getCurSDLoc();
|
|
Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L,
|
|
MVT::i64));
|
|
Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64));
|
|
}
|
|
|
|
void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) {
|
|
// Consistency check
|
|
assert(PendingGCRelocateCalls.empty() &&
|
|
"Trying to visit statepoint before finished processing previous one");
|
|
Locations.clear();
|
|
NextSlotToAllocate = 0;
|
|
// Need to resize this on each safepoint - we need the two to stay in sync and
|
|
// the clear patterns of a SelectionDAGBuilder have no relation to
|
|
// FunctionLoweringInfo. Also need to ensure used bits get cleared.
|
|
AllocatedStackSlots.clear();
|
|
AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size());
|
|
}
|
|
|
|
void StatepointLoweringState::clear() {
|
|
Locations.clear();
|
|
AllocatedStackSlots.clear();
|
|
assert(PendingGCRelocateCalls.empty() &&
|
|
"cleared before statepoint sequence completed");
|
|
}
|
|
|
|
SDValue
|
|
StatepointLoweringState::allocateStackSlot(EVT ValueType,
|
|
SelectionDAGBuilder &Builder) {
|
|
NumSlotsAllocatedForStatepoints++;
|
|
MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo();
|
|
|
|
unsigned SpillSize = ValueType.getStoreSize();
|
|
assert((SpillSize * 8) ==
|
|
(-8u & (7 + ValueType.getSizeInBits())) && // Round up modulo 8.
|
|
"Size not in bytes?");
|
|
|
|
// First look for a previously created stack slot which is not in
|
|
// use (accounting for the fact arbitrary slots may already be
|
|
// reserved), or to create a new stack slot and use it.
|
|
|
|
const size_t NumSlots = AllocatedStackSlots.size();
|
|
assert(NextSlotToAllocate <= NumSlots && "Broken invariant");
|
|
|
|
assert(AllocatedStackSlots.size() ==
|
|
Builder.FuncInfo.StatepointStackSlots.size() &&
|
|
"Broken invariant");
|
|
|
|
for (; NextSlotToAllocate < NumSlots; NextSlotToAllocate++) {
|
|
if (!AllocatedStackSlots.test(NextSlotToAllocate)) {
|
|
const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate];
|
|
if (MFI.getObjectSize(FI) == SpillSize) {
|
|
AllocatedStackSlots.set(NextSlotToAllocate);
|
|
// TODO: Is ValueType the right thing to use here?
|
|
return Builder.DAG.getFrameIndex(FI, ValueType);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Couldn't find a free slot, so create a new one:
|
|
|
|
SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType);
|
|
const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
|
|
MFI.markAsStatepointSpillSlotObjectIndex(FI);
|
|
|
|
Builder.FuncInfo.StatepointStackSlots.push_back(FI);
|
|
AllocatedStackSlots.resize(AllocatedStackSlots.size()+1, true);
|
|
assert(AllocatedStackSlots.size() ==
|
|
Builder.FuncInfo.StatepointStackSlots.size() &&
|
|
"Broken invariant");
|
|
|
|
StatepointMaxSlotsRequired.updateMax(
|
|
Builder.FuncInfo.StatepointStackSlots.size());
|
|
|
|
return SpillSlot;
|
|
}
|
|
|
|
/// Utility function for reservePreviousStackSlotForValue. Tries to find
|
|
/// stack slot index to which we have spilled value for previous statepoints.
|
|
/// LookUpDepth specifies maximum DFS depth this function is allowed to look.
|
|
static Optional<int> findPreviousSpillSlot(const Value *Val,
|
|
SelectionDAGBuilder &Builder,
|
|
int LookUpDepth) {
|
|
// Can not look any further - give up now
|
|
if (LookUpDepth <= 0)
|
|
return None;
|
|
|
|
// Spill location is known for gc relocates
|
|
if (const auto *Relocate = dyn_cast<GCRelocateInst>(Val)) {
|
|
const auto &RelocationMap =
|
|
Builder.FuncInfo.StatepointRelocationMaps[Relocate->getStatepoint()];
|
|
|
|
auto It = RelocationMap.find(Relocate->getDerivedPtr());
|
|
if (It == RelocationMap.end())
|
|
return None;
|
|
|
|
auto &Record = It->second;
|
|
if (Record.type != RecordType::Spill)
|
|
return None;
|
|
|
|
return Record.payload.FI;
|
|
}
|
|
|
|
// Look through bitcast instructions.
|
|
if (const BitCastInst *Cast = dyn_cast<BitCastInst>(Val))
|
|
return findPreviousSpillSlot(Cast->getOperand(0), Builder, LookUpDepth - 1);
|
|
|
|
// Look through phi nodes
|
|
// All incoming values should have same known stack slot, otherwise result
|
|
// is unknown.
|
|
if (const PHINode *Phi = dyn_cast<PHINode>(Val)) {
|
|
Optional<int> MergedResult = None;
|
|
|
|
for (auto &IncomingValue : Phi->incoming_values()) {
|
|
Optional<int> SpillSlot =
|
|
findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth - 1);
|
|
if (!SpillSlot.hasValue())
|
|
return None;
|
|
|
|
if (MergedResult.hasValue() && *MergedResult != *SpillSlot)
|
|
return None;
|
|
|
|
MergedResult = SpillSlot;
|
|
}
|
|
return MergedResult;
|
|
}
|
|
|
|
// TODO: We can do better for PHI nodes. In cases like this:
|
|
// ptr = phi(relocated_pointer, not_relocated_pointer)
|
|
// statepoint(ptr)
|
|
// We will return that stack slot for ptr is unknown. And later we might
|
|
// assign different stack slots for ptr and relocated_pointer. This limits
|
|
// llvm's ability to remove redundant stores.
|
|
// Unfortunately it's hard to accomplish in current infrastructure.
|
|
// We use this function to eliminate spill store completely, while
|
|
// in example we still need to emit store, but instead of any location
|
|
// we need to use special "preferred" location.
|
|
|
|
// TODO: handle simple updates. If a value is modified and the original
|
|
// value is no longer live, it would be nice to put the modified value in the
|
|
// same slot. This allows folding of the memory accesses for some
|
|
// instructions types (like an increment).
|
|
// statepoint (i)
|
|
// i1 = i+1
|
|
// statepoint (i1)
|
|
// However we need to be careful for cases like this:
|
|
// statepoint(i)
|
|
// i1 = i+1
|
|
// statepoint(i, i1)
|
|
// Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just
|
|
// put handling of simple modifications in this function like it's done
|
|
// for bitcasts we might end up reserving i's slot for 'i+1' because order in
|
|
// which we visit values is unspecified.
|
|
|
|
// Don't know any information about this instruction
|
|
return None;
|
|
}
|
|
|
|
/// Return true if-and-only-if the given SDValue can be lowered as either a
|
|
/// constant argument or a stack reference. The key point is that the value
|
|
/// doesn't need to be spilled or tracked as a vreg use.
|
|
static bool willLowerDirectly(SDValue Incoming) {
|
|
// We are making an unchecked assumption that the frame size <= 2^16 as that
|
|
// is the largest offset which can be encoded in the stackmap format.
|
|
if (isa<FrameIndexSDNode>(Incoming))
|
|
return true;
|
|
|
|
// The largest constant describeable in the StackMap format is 64 bits.
|
|
// Potential Optimization: Constants values are sign extended by consumer,
|
|
// and thus there are many constants of static type > 64 bits whose value
|
|
// happens to be sext(Con64) and could thus be lowered directly.
|
|
if (Incoming.getValueType().getSizeInBits() > 64)
|
|
return false;
|
|
|
|
return (isa<ConstantSDNode>(Incoming) || isa<ConstantFPSDNode>(Incoming) ||
|
|
Incoming.isUndef());
|
|
}
|
|
|
|
/// Try to find existing copies of the incoming values in stack slots used for
|
|
/// statepoint spilling. If we can find a spill slot for the incoming value,
|
|
/// mark that slot as allocated, and reuse the same slot for this safepoint.
|
|
/// This helps to avoid series of loads and stores that only serve to reshuffle
|
|
/// values on the stack between calls.
|
|
static void reservePreviousStackSlotForValue(const Value *IncomingValue,
|
|
SelectionDAGBuilder &Builder) {
|
|
SDValue Incoming = Builder.getValue(IncomingValue);
|
|
|
|
// If we won't spill this, we don't need to check for previously allocated
|
|
// stack slots.
|
|
if (willLowerDirectly(Incoming))
|
|
return;
|
|
|
|
SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming);
|
|
if (OldLocation.getNode())
|
|
// Duplicates in input
|
|
return;
|
|
|
|
const int LookUpDepth = 6;
|
|
Optional<int> Index =
|
|
findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth);
|
|
if (!Index.hasValue())
|
|
return;
|
|
|
|
const auto &StatepointSlots = Builder.FuncInfo.StatepointStackSlots;
|
|
|
|
auto SlotIt = find(StatepointSlots, *Index);
|
|
assert(SlotIt != StatepointSlots.end() &&
|
|
"Value spilled to the unknown stack slot");
|
|
|
|
// This is one of our dedicated lowering slots
|
|
const int Offset = std::distance(StatepointSlots.begin(), SlotIt);
|
|
if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) {
|
|
// stack slot already assigned to someone else, can't use it!
|
|
// TODO: currently we reserve space for gc arguments after doing
|
|
// normal allocation for deopt arguments. We should reserve for
|
|
// _all_ deopt and gc arguments, then start allocating. This
|
|
// will prevent some moves being inserted when vm state changes,
|
|
// but gc state doesn't between two calls.
|
|
return;
|
|
}
|
|
// Reserve this stack slot
|
|
Builder.StatepointLowering.reserveStackSlot(Offset);
|
|
|
|
// Cache this slot so we find it when going through the normal
|
|
// assignment loop.
|
|
SDValue Loc =
|
|
Builder.DAG.getTargetFrameIndex(*Index, Builder.getFrameIndexTy());
|
|
Builder.StatepointLowering.setLocation(Incoming, Loc);
|
|
}
|
|
|
|
/// Extract call from statepoint, lower it and return pointer to the
|
|
/// call node. Also update NodeMap so that getValue(statepoint) will
|
|
/// reference lowered call result
|
|
static std::pair<SDValue, SDNode *> lowerCallFromStatepointLoweringInfo(
|
|
SelectionDAGBuilder::StatepointLoweringInfo &SI,
|
|
SelectionDAGBuilder &Builder, SmallVectorImpl<SDValue> &PendingExports) {
|
|
SDValue ReturnValue, CallEndVal;
|
|
std::tie(ReturnValue, CallEndVal) =
|
|
Builder.lowerInvokable(SI.CLI, SI.EHPadBB);
|
|
SDNode *CallEnd = CallEndVal.getNode();
|
|
|
|
// Get a call instruction from the call sequence chain. Tail calls are not
|
|
// allowed. The following code is essentially reverse engineering X86's
|
|
// LowerCallTo.
|
|
//
|
|
// We are expecting DAG to have the following form:
|
|
//
|
|
// ch = eh_label (only in case of invoke statepoint)
|
|
// ch, glue = callseq_start ch
|
|
// ch, glue = X86::Call ch, glue
|
|
// ch, glue = callseq_end ch, glue
|
|
// get_return_value ch, glue
|
|
//
|
|
// get_return_value can either be a sequence of CopyFromReg instructions
|
|
// to grab the return value from the return register(s), or it can be a LOAD
|
|
// to load a value returned by reference via a stack slot.
|
|
|
|
bool HasDef = !SI.CLI.RetTy->isVoidTy();
|
|
if (HasDef) {
|
|
if (CallEnd->getOpcode() == ISD::LOAD)
|
|
CallEnd = CallEnd->getOperand(0).getNode();
|
|
else
|
|
while (CallEnd->getOpcode() == ISD::CopyFromReg)
|
|
CallEnd = CallEnd->getOperand(0).getNode();
|
|
}
|
|
|
|
assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!");
|
|
return std::make_pair(ReturnValue, CallEnd->getOperand(0).getNode());
|
|
}
|
|
|
|
static MachineMemOperand* getMachineMemOperand(MachineFunction &MF,
|
|
FrameIndexSDNode &FI) {
|
|
auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FI.getIndex());
|
|
auto MMOFlags = MachineMemOperand::MOStore |
|
|
MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
|
|
auto &MFI = MF.getFrameInfo();
|
|
return MF.getMachineMemOperand(PtrInfo, MMOFlags,
|
|
MFI.getObjectSize(FI.getIndex()),
|
|
MFI.getObjectAlign(FI.getIndex()));
|
|
}
|
|
|
|
/// Spill a value incoming to the statepoint. It might be either part of
|
|
/// vmstate
|
|
/// or gcstate. In both cases unconditionally spill it on the stack unless it
|
|
/// is a null constant. Return pair with first element being frame index
|
|
/// containing saved value and second element with outgoing chain from the
|
|
/// emitted store
|
|
static std::tuple<SDValue, SDValue, MachineMemOperand*>
|
|
spillIncomingStatepointValue(SDValue Incoming, SDValue Chain,
|
|
SelectionDAGBuilder &Builder) {
|
|
SDValue Loc = Builder.StatepointLowering.getLocation(Incoming);
|
|
MachineMemOperand* MMO = nullptr;
|
|
|
|
// Emit new store if we didn't do it for this ptr before
|
|
if (!Loc.getNode()) {
|
|
Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(),
|
|
Builder);
|
|
int Index = cast<FrameIndexSDNode>(Loc)->getIndex();
|
|
// We use TargetFrameIndex so that isel will not select it into LEA
|
|
Loc = Builder.DAG.getTargetFrameIndex(Index, Builder.getFrameIndexTy());
|
|
|
|
// Right now we always allocate spill slots that are of the same
|
|
// size as the value we're about to spill (the size of spillee can
|
|
// vary since we spill vectors of pointers too). At some point we
|
|
// can consider allowing spills of smaller values to larger slots
|
|
// (i.e. change the '==' in the assert below to a '>=').
|
|
MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo();
|
|
assert((MFI.getObjectSize(Index) * 8) ==
|
|
(-8 & (7 + // Round up modulo 8.
|
|
(int64_t)Incoming.getValueSizeInBits())) &&
|
|
"Bad spill: stack slot does not match!");
|
|
|
|
// Note: Using the alignment of the spill slot (rather than the abi or
|
|
// preferred alignment) is required for correctness when dealing with spill
|
|
// slots with preferred alignments larger than frame alignment..
|
|
auto &MF = Builder.DAG.getMachineFunction();
|
|
auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index);
|
|
auto *StoreMMO = MF.getMachineMemOperand(
|
|
PtrInfo, MachineMemOperand::MOStore, MFI.getObjectSize(Index),
|
|
MFI.getObjectAlign(Index));
|
|
Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc,
|
|
StoreMMO);
|
|
|
|
MMO = getMachineMemOperand(MF, *cast<FrameIndexSDNode>(Loc));
|
|
|
|
Builder.StatepointLowering.setLocation(Incoming, Loc);
|
|
}
|
|
|
|
assert(Loc.getNode());
|
|
return std::make_tuple(Loc, Chain, MMO);
|
|
}
|
|
|
|
/// Lower a single value incoming to a statepoint node. This value can be
|
|
/// either a deopt value or a gc value, the handling is the same. We special
|
|
/// case constants and allocas, then fall back to spilling if required.
|
|
static void
|
|
lowerIncomingStatepointValue(SDValue Incoming, bool RequireSpillSlot,
|
|
SmallVectorImpl<SDValue> &Ops,
|
|
SmallVectorImpl<MachineMemOperand *> &MemRefs,
|
|
SelectionDAGBuilder &Builder) {
|
|
|
|
if (willLowerDirectly(Incoming)) {
|
|
if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
|
|
// This handles allocas as arguments to the statepoint (this is only
|
|
// really meaningful for a deopt value. For GC, we'd be trying to
|
|
// relocate the address of the alloca itself?)
|
|
assert(Incoming.getValueType() == Builder.getFrameIndexTy() &&
|
|
"Incoming value is a frame index!");
|
|
Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(),
|
|
Builder.getFrameIndexTy()));
|
|
|
|
auto &MF = Builder.DAG.getMachineFunction();
|
|
auto *MMO = getMachineMemOperand(MF, *FI);
|
|
MemRefs.push_back(MMO);
|
|
return;
|
|
}
|
|
|
|
assert(Incoming.getValueType().getSizeInBits() <= 64);
|
|
|
|
if (Incoming.isUndef()) {
|
|
// Put an easily recognized constant that's unlikely to be a valid
|
|
// value so that uses of undef by the consumer of the stackmap is
|
|
// easily recognized. This is legal since the compiler is always
|
|
// allowed to chose an arbitrary value for undef.
|
|
pushStackMapConstant(Ops, Builder, 0xFEFEFEFE);
|
|
return;
|
|
}
|
|
|
|
// If the original value was a constant, make sure it gets recorded as
|
|
// such in the stackmap. This is required so that the consumer can
|
|
// parse any internal format to the deopt state. It also handles null
|
|
// pointers and other constant pointers in GC states.
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) {
|
|
pushStackMapConstant(Ops, Builder, C->getSExtValue());
|
|
return;
|
|
} else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Incoming)) {
|
|
pushStackMapConstant(Ops, Builder,
|
|
C->getValueAPF().bitcastToAPInt().getZExtValue());
|
|
return;
|
|
}
|
|
|
|
llvm_unreachable("unhandled direct lowering case");
|
|
}
|
|
|
|
|
|
|
|
if (!RequireSpillSlot) {
|
|
// If this value is live in (not live-on-return, or live-through), we can
|
|
// treat it the same way patchpoint treats it's "live in" values. We'll
|
|
// end up folding some of these into stack references, but they'll be
|
|
// handled by the register allocator. Note that we do not have the notion
|
|
// of a late use so these values might be placed in registers which are
|
|
// clobbered by the call. This is fine for live-in. For live-through
|
|
// fix-up pass should be executed to force spilling of such registers.
|
|
Ops.push_back(Incoming);
|
|
} else {
|
|
// Otherwise, locate a spill slot and explicitly spill it so it can be
|
|
// found by the runtime later. Note: We know all of these spills are
|
|
// independent, but don't bother to exploit that chain wise. DAGCombine
|
|
// will happily do so as needed, so doing it here would be a small compile
|
|
// time win at most.
|
|
SDValue Chain = Builder.getRoot();
|
|
auto Res = spillIncomingStatepointValue(Incoming, Chain, Builder);
|
|
Ops.push_back(std::get<0>(Res));
|
|
if (auto *MMO = std::get<2>(Res))
|
|
MemRefs.push_back(MMO);
|
|
Chain = std::get<1>(Res);;
|
|
Builder.DAG.setRoot(Chain);
|
|
}
|
|
|
|
}
|
|
|
|
/// Return true if value V represents the GC value. The behavior is conservative
|
|
/// in case it is not sure that value is not GC the function returns true.
|
|
static bool isGCValue(const Value *V, SelectionDAGBuilder &Builder) {
|
|
auto *Ty = V->getType();
|
|
if (!Ty->isPtrOrPtrVectorTy())
|
|
return false;
|
|
if (auto *GFI = Builder.GFI)
|
|
if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty))
|
|
return *IsManaged;
|
|
return true; // conservative
|
|
}
|
|
|
|
/// Lower deopt state and gc pointer arguments of the statepoint. The actual
|
|
/// lowering is described in lowerIncomingStatepointValue. This function is
|
|
/// responsible for lowering everything in the right position and playing some
|
|
/// tricks to avoid redundant stack manipulation where possible. On
|
|
/// completion, 'Ops' will contain ready to use operands for machine code
|
|
/// statepoint. The chain nodes will have already been created and the DAG root
|
|
/// will be set to the last value spilled (if any were).
|
|
static void
|
|
lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops,
|
|
SmallVectorImpl<MachineMemOperand *> &MemRefs,
|
|
SmallVectorImpl<SDValue> &GCPtrs,
|
|
DenseMap<SDValue, int> &LowerAsVReg,
|
|
SelectionDAGBuilder::StatepointLoweringInfo &SI,
|
|
SelectionDAGBuilder &Builder) {
|
|
// Lower the deopt and gc arguments for this statepoint. Layout will be:
|
|
// deopt argument length, deopt arguments.., gc arguments...
|
|
#ifndef NDEBUG
|
|
if (auto *GFI = Builder.GFI) {
|
|
// Check that each of the gc pointer and bases we've gotten out of the
|
|
// safepoint is something the strategy thinks might be a pointer (or vector
|
|
// of pointers) into the GC heap. This is basically just here to help catch
|
|
// errors during statepoint insertion. TODO: This should actually be in the
|
|
// Verifier, but we can't get to the GCStrategy from there (yet).
|
|
GCStrategy &S = GFI->getStrategy();
|
|
for (const Value *V : SI.Bases) {
|
|
auto Opt = S.isGCManagedPointer(V->getType()->getScalarType());
|
|
if (Opt.hasValue()) {
|
|
assert(Opt.getValue() &&
|
|
"non gc managed base pointer found in statepoint");
|
|
}
|
|
}
|
|
for (const Value *V : SI.Ptrs) {
|
|
auto Opt = S.isGCManagedPointer(V->getType()->getScalarType());
|
|
if (Opt.hasValue()) {
|
|
assert(Opt.getValue() &&
|
|
"non gc managed derived pointer found in statepoint");
|
|
}
|
|
}
|
|
assert(SI.Bases.size() == SI.Ptrs.size() && "Pointer without base!");
|
|
} else {
|
|
assert(SI.Bases.empty() && "No gc specified, so cannot relocate pointers!");
|
|
assert(SI.Ptrs.empty() && "No gc specified, so cannot relocate pointers!");
|
|
}
|
|
#endif
|
|
|
|
// Figure out what lowering strategy we're going to use for each part
|
|
// Note: Is is conservatively correct to lower both "live-in" and "live-out"
|
|
// as "live-through". A "live-through" variable is one which is "live-in",
|
|
// "live-out", and live throughout the lifetime of the call (i.e. we can find
|
|
// it from any PC within the transitive callee of the statepoint). In
|
|
// particular, if the callee spills callee preserved registers we may not
|
|
// be able to find a value placed in that register during the call. This is
|
|
// fine for live-out, but not for live-through. If we were willing to make
|
|
// assumptions about the code generator producing the callee, we could
|
|
// potentially allow live-through values in callee saved registers.
|
|
const bool LiveInDeopt =
|
|
SI.StatepointFlags & (uint64_t)StatepointFlags::DeoptLiveIn;
|
|
|
|
// Decide which deriver pointers will go on VRegs
|
|
unsigned MaxVRegPtrs = MaxRegistersForGCPointers.getValue();
|
|
|
|
// Pointers used on exceptional path of invoke statepoint.
|
|
// We cannot assing them to VRegs.
|
|
SmallSet<SDValue, 8> LPadPointers;
|
|
if (!UseRegistersForGCPointersInLandingPad)
|
|
if (auto *StInvoke = dyn_cast_or_null<InvokeInst>(SI.StatepointInstr)) {
|
|
LandingPadInst *LPI = StInvoke->getLandingPadInst();
|
|
for (auto *Relocate : SI.GCRelocates)
|
|
if (Relocate->getOperand(0) == LPI) {
|
|
LPadPointers.insert(Builder.getValue(Relocate->getBasePtr()));
|
|
LPadPointers.insert(Builder.getValue(Relocate->getDerivedPtr()));
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "Deciding how to lower GC Pointers:\n");
|
|
|
|
// List of unique lowered GC Pointer values.
|
|
SmallSetVector<SDValue, 16> LoweredGCPtrs;
|
|
// Map lowered GC Pointer value to the index in above vector
|
|
DenseMap<SDValue, unsigned> GCPtrIndexMap;
|
|
|
|
unsigned CurNumVRegs = 0;
|
|
|
|
auto canPassGCPtrOnVReg = [&](SDValue SD) {
|
|
if (SD.getValueType().isVector())
|
|
return false;
|
|
if (LPadPointers.count(SD))
|
|
return false;
|
|
return !willLowerDirectly(SD);
|
|
};
|
|
|
|
auto processGCPtr = [&](const Value *V) {
|
|
SDValue PtrSD = Builder.getValue(V);
|
|
if (!LoweredGCPtrs.insert(PtrSD))
|
|
return; // skip duplicates
|
|
GCPtrIndexMap[PtrSD] = LoweredGCPtrs.size() - 1;
|
|
|
|
assert(!LowerAsVReg.count(PtrSD) && "must not have been seen");
|
|
if (LowerAsVReg.size() == MaxVRegPtrs)
|
|
return;
|
|
assert(V->getType()->isVectorTy() == PtrSD.getValueType().isVector() &&
|
|
"IR and SD types disagree");
|
|
if (!canPassGCPtrOnVReg(PtrSD)) {
|
|
LLVM_DEBUG(dbgs() << "direct/spill "; PtrSD.dump(&Builder.DAG));
|
|
return;
|
|
}
|
|
LLVM_DEBUG(dbgs() << "vreg "; PtrSD.dump(&Builder.DAG));
|
|
LowerAsVReg[PtrSD] = CurNumVRegs++;
|
|
};
|
|
|
|
// Process derived pointers first to give them more chance to go on VReg.
|
|
for (const Value *V : SI.Ptrs)
|
|
processGCPtr(V);
|
|
for (const Value *V : SI.Bases)
|
|
processGCPtr(V);
|
|
|
|
LLVM_DEBUG(dbgs() << LowerAsVReg.size() << " pointers will go in vregs\n");
|
|
|
|
auto requireSpillSlot = [&](const Value *V) {
|
|
if (!Builder.DAG.getTargetLoweringInfo().isTypeLegal(
|
|
Builder.getValue(V).getValueType()))
|
|
return true;
|
|
if (isGCValue(V, Builder))
|
|
return !LowerAsVReg.count(Builder.getValue(V));
|
|
return !(LiveInDeopt || UseRegistersForDeoptValues);
|
|
};
|
|
|
|
// Before we actually start lowering (and allocating spill slots for values),
|
|
// reserve any stack slots which we judge to be profitable to reuse for a
|
|
// particular value. This is purely an optimization over the code below and
|
|
// doesn't change semantics at all. It is important for performance that we
|
|
// reserve slots for both deopt and gc values before lowering either.
|
|
for (const Value *V : SI.DeoptState) {
|
|
if (requireSpillSlot(V))
|
|
reservePreviousStackSlotForValue(V, Builder);
|
|
}
|
|
|
|
for (const Value *V : SI.Ptrs) {
|
|
SDValue SDV = Builder.getValue(V);
|
|
if (!LowerAsVReg.count(SDV))
|
|
reservePreviousStackSlotForValue(V, Builder);
|
|
}
|
|
|
|
for (const Value *V : SI.Bases) {
|
|
SDValue SDV = Builder.getValue(V);
|
|
if (!LowerAsVReg.count(SDV))
|
|
reservePreviousStackSlotForValue(V, Builder);
|
|
}
|
|
|
|
// First, prefix the list with the number of unique values to be
|
|
// lowered. Note that this is the number of *Values* not the
|
|
// number of SDValues required to lower them.
|
|
const int NumVMSArgs = SI.DeoptState.size();
|
|
pushStackMapConstant(Ops, Builder, NumVMSArgs);
|
|
|
|
// The vm state arguments are lowered in an opaque manner. We do not know
|
|
// what type of values are contained within.
|
|
LLVM_DEBUG(dbgs() << "Lowering deopt state\n");
|
|
for (const Value *V : SI.DeoptState) {
|
|
SDValue Incoming;
|
|
// If this is a function argument at a static frame index, generate it as
|
|
// the frame index.
|
|
if (const Argument *Arg = dyn_cast<Argument>(V)) {
|
|
int FI = Builder.FuncInfo.getArgumentFrameIndex(Arg);
|
|
if (FI != INT_MAX)
|
|
Incoming = Builder.DAG.getFrameIndex(FI, Builder.getFrameIndexTy());
|
|
}
|
|
if (!Incoming.getNode())
|
|
Incoming = Builder.getValue(V);
|
|
LLVM_DEBUG(dbgs() << "Value " << *V
|
|
<< " requireSpillSlot = " << requireSpillSlot(V) << "\n");
|
|
lowerIncomingStatepointValue(Incoming, requireSpillSlot(V), Ops, MemRefs,
|
|
Builder);
|
|
}
|
|
|
|
// Finally, go ahead and lower all the gc arguments.
|
|
pushStackMapConstant(Ops, Builder, LoweredGCPtrs.size());
|
|
for (SDValue SDV : LoweredGCPtrs)
|
|
lowerIncomingStatepointValue(SDV, !LowerAsVReg.count(SDV), Ops, MemRefs,
|
|
Builder);
|
|
|
|
// Copy to out vector. LoweredGCPtrs will be empty after this point.
|
|
GCPtrs = LoweredGCPtrs.takeVector();
|
|
|
|
// If there are any explicit spill slots passed to the statepoint, record
|
|
// them, but otherwise do not do anything special. These are user provided
|
|
// allocas and give control over placement to the consumer. In this case,
|
|
// it is the contents of the slot which may get updated, not the pointer to
|
|
// the alloca
|
|
SmallVector<SDValue, 4> Allocas;
|
|
for (Value *V : SI.GCArgs) {
|
|
SDValue Incoming = Builder.getValue(V);
|
|
if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
|
|
// This handles allocas as arguments to the statepoint
|
|
assert(Incoming.getValueType() == Builder.getFrameIndexTy() &&
|
|
"Incoming value is a frame index!");
|
|
Allocas.push_back(Builder.DAG.getTargetFrameIndex(
|
|
FI->getIndex(), Builder.getFrameIndexTy()));
|
|
|
|
auto &MF = Builder.DAG.getMachineFunction();
|
|
auto *MMO = getMachineMemOperand(MF, *FI);
|
|
MemRefs.push_back(MMO);
|
|
}
|
|
}
|
|
pushStackMapConstant(Ops, Builder, Allocas.size());
|
|
Ops.append(Allocas.begin(), Allocas.end());
|
|
|
|
// Now construct GC base/derived map;
|
|
pushStackMapConstant(Ops, Builder, SI.Ptrs.size());
|
|
SDLoc L = Builder.getCurSDLoc();
|
|
for (unsigned i = 0; i < SI.Ptrs.size(); ++i) {
|
|
SDValue Base = Builder.getValue(SI.Bases[i]);
|
|
assert(GCPtrIndexMap.count(Base) && "base not found in index map");
|
|
Ops.push_back(
|
|
Builder.DAG.getTargetConstant(GCPtrIndexMap[Base], L, MVT::i64));
|
|
SDValue Derived = Builder.getValue(SI.Ptrs[i]);
|
|
assert(GCPtrIndexMap.count(Derived) && "derived not found in index map");
|
|
Ops.push_back(
|
|
Builder.DAG.getTargetConstant(GCPtrIndexMap[Derived], L, MVT::i64));
|
|
}
|
|
}
|
|
|
|
SDValue SelectionDAGBuilder::LowerAsSTATEPOINT(
|
|
SelectionDAGBuilder::StatepointLoweringInfo &SI) {
|
|
// The basic scheme here is that information about both the original call and
|
|
// the safepoint is encoded in the CallInst. We create a temporary call and
|
|
// lower it, then reverse engineer the calling sequence.
|
|
|
|
NumOfStatepoints++;
|
|
// Clear state
|
|
StatepointLowering.startNewStatepoint(*this);
|
|
assert(SI.Bases.size() == SI.Ptrs.size());
|
|
|
|
LLVM_DEBUG(dbgs() << "Lowering statepoint " << *SI.StatepointInstr << "\n");
|
|
#ifndef NDEBUG
|
|
for (auto *Reloc : SI.GCRelocates)
|
|
if (Reloc->getParent() == SI.StatepointInstr->getParent())
|
|
StatepointLowering.scheduleRelocCall(*Reloc);
|
|
#endif
|
|
|
|
// Lower statepoint vmstate and gcstate arguments
|
|
|
|
// All lowered meta args.
|
|
SmallVector<SDValue, 10> LoweredMetaArgs;
|
|
// Lowered GC pointers (subset of above).
|
|
SmallVector<SDValue, 16> LoweredGCArgs;
|
|
SmallVector<MachineMemOperand*, 16> MemRefs;
|
|
// Maps derived pointer SDValue to statepoint result of relocated pointer.
|
|
DenseMap<SDValue, int> LowerAsVReg;
|
|
lowerStatepointMetaArgs(LoweredMetaArgs, MemRefs, LoweredGCArgs, LowerAsVReg,
|
|
SI, *this);
|
|
|
|
// Now that we've emitted the spills, we need to update the root so that the
|
|
// call sequence is ordered correctly.
|
|
SI.CLI.setChain(getRoot());
|
|
|
|
// Get call node, we will replace it later with statepoint
|
|
SDValue ReturnVal;
|
|
SDNode *CallNode;
|
|
std::tie(ReturnVal, CallNode) =
|
|
lowerCallFromStatepointLoweringInfo(SI, *this, PendingExports);
|
|
|
|
// Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END
|
|
// nodes with all the appropriate arguments and return values.
|
|
|
|
// Call Node: Chain, Target, {Args}, RegMask, [Glue]
|
|
SDValue Chain = CallNode->getOperand(0);
|
|
|
|
SDValue Glue;
|
|
bool CallHasIncomingGlue = CallNode->getGluedNode();
|
|
if (CallHasIncomingGlue) {
|
|
// Glue is always last operand
|
|
Glue = CallNode->getOperand(CallNode->getNumOperands() - 1);
|
|
}
|
|
|
|
// Build the GC_TRANSITION_START node if necessary.
|
|
//
|
|
// The operands to the GC_TRANSITION_{START,END} nodes are laid out in the
|
|
// order in which they appear in the call to the statepoint intrinsic. If
|
|
// any of the operands is a pointer-typed, that operand is immediately
|
|
// followed by a SRCVALUE for the pointer that may be used during lowering
|
|
// (e.g. to form MachinePointerInfo values for loads/stores).
|
|
const bool IsGCTransition =
|
|
(SI.StatepointFlags & (uint64_t)StatepointFlags::GCTransition) ==
|
|
(uint64_t)StatepointFlags::GCTransition;
|
|
if (IsGCTransition) {
|
|
SmallVector<SDValue, 8> TSOps;
|
|
|
|
// Add chain
|
|
TSOps.push_back(Chain);
|
|
|
|
// Add GC transition arguments
|
|
for (const Value *V : SI.GCTransitionArgs) {
|
|
TSOps.push_back(getValue(V));
|
|
if (V->getType()->isPointerTy())
|
|
TSOps.push_back(DAG.getSrcValue(V));
|
|
}
|
|
|
|
// Add glue if necessary
|
|
if (CallHasIncomingGlue)
|
|
TSOps.push_back(Glue);
|
|
|
|
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
|
|
SDValue GCTransitionStart =
|
|
DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps);
|
|
|
|
Chain = GCTransitionStart.getValue(0);
|
|
Glue = GCTransitionStart.getValue(1);
|
|
}
|
|
|
|
// TODO: Currently, all of these operands are being marked as read/write in
|
|
// PrologEpilougeInserter.cpp, we should special case the VMState arguments
|
|
// and flags to be read-only.
|
|
SmallVector<SDValue, 40> Ops;
|
|
|
|
// Add the <id> and <numBytes> constants.
|
|
Ops.push_back(DAG.getTargetConstant(SI.ID, getCurSDLoc(), MVT::i64));
|
|
Ops.push_back(
|
|
DAG.getTargetConstant(SI.NumPatchBytes, getCurSDLoc(), MVT::i32));
|
|
|
|
// Calculate and push starting position of vmstate arguments
|
|
// Get number of arguments incoming directly into call node
|
|
unsigned NumCallRegArgs =
|
|
CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3);
|
|
Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32));
|
|
|
|
// Add call target
|
|
SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0);
|
|
Ops.push_back(CallTarget);
|
|
|
|
// Add call arguments
|
|
// Get position of register mask in the call
|
|
SDNode::op_iterator RegMaskIt;
|
|
if (CallHasIncomingGlue)
|
|
RegMaskIt = CallNode->op_end() - 2;
|
|
else
|
|
RegMaskIt = CallNode->op_end() - 1;
|
|
Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt);
|
|
|
|
// Add a constant argument for the calling convention
|
|
pushStackMapConstant(Ops, *this, SI.CLI.CallConv);
|
|
|
|
// Add a constant argument for the flags
|
|
uint64_t Flags = SI.StatepointFlags;
|
|
assert(((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) &&
|
|
"Unknown flag used");
|
|
pushStackMapConstant(Ops, *this, Flags);
|
|
|
|
// Insert all vmstate and gcstate arguments
|
|
llvm::append_range(Ops, LoweredMetaArgs);
|
|
|
|
// Add register mask from call node
|
|
Ops.push_back(*RegMaskIt);
|
|
|
|
// Add chain
|
|
Ops.push_back(Chain);
|
|
|
|
// Same for the glue, but we add it only if original call had it
|
|
if (Glue.getNode())
|
|
Ops.push_back(Glue);
|
|
|
|
// Compute return values. Provide a glue output since we consume one as
|
|
// input. This allows someone else to chain off us as needed.
|
|
SmallVector<EVT, 8> NodeTys;
|
|
for (auto SD : LoweredGCArgs) {
|
|
if (!LowerAsVReg.count(SD))
|
|
continue;
|
|
NodeTys.push_back(SD.getValueType());
|
|
}
|
|
LLVM_DEBUG(dbgs() << "Statepoint has " << NodeTys.size() << " results\n");
|
|
assert(NodeTys.size() == LowerAsVReg.size() && "Inconsistent GC Ptr lowering");
|
|
NodeTys.push_back(MVT::Other);
|
|
NodeTys.push_back(MVT::Glue);
|
|
|
|
unsigned NumResults = NodeTys.size();
|
|
MachineSDNode *StatepointMCNode =
|
|
DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops);
|
|
DAG.setNodeMemRefs(StatepointMCNode, MemRefs);
|
|
|
|
// For values lowered to tied-defs, create the virtual registers. Note that
|
|
// for simplicity, we *always* create a vreg even within a single block.
|
|
DenseMap<SDValue, Register> VirtRegs;
|
|
for (const auto *Relocate : SI.GCRelocates) {
|
|
Value *Derived = Relocate->getDerivedPtr();
|
|
SDValue SD = getValue(Derived);
|
|
if (!LowerAsVReg.count(SD))
|
|
continue;
|
|
|
|
// Handle multiple gc.relocates of the same input efficiently.
|
|
if (VirtRegs.count(SD))
|
|
continue;
|
|
|
|
SDValue Relocated = SDValue(StatepointMCNode, LowerAsVReg[SD]);
|
|
|
|
auto *RetTy = Relocate->getType();
|
|
Register Reg = FuncInfo.CreateRegs(RetTy);
|
|
RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
|
|
DAG.getDataLayout(), Reg, RetTy, None);
|
|
SDValue Chain = DAG.getRoot();
|
|
RFV.getCopyToRegs(Relocated, DAG, getCurSDLoc(), Chain, nullptr);
|
|
PendingExports.push_back(Chain);
|
|
|
|
VirtRegs[SD] = Reg;
|
|
}
|
|
|
|
// Record for later use how each relocation was lowered. This is needed to
|
|
// allow later gc.relocates to mirror the lowering chosen.
|
|
const Instruction *StatepointInstr = SI.StatepointInstr;
|
|
auto &RelocationMap = FuncInfo.StatepointRelocationMaps[StatepointInstr];
|
|
for (const GCRelocateInst *Relocate : SI.GCRelocates) {
|
|
const Value *V = Relocate->getDerivedPtr();
|
|
SDValue SDV = getValue(V);
|
|
SDValue Loc = StatepointLowering.getLocation(SDV);
|
|
|
|
RecordType Record;
|
|
if (LowerAsVReg.count(SDV)) {
|
|
Record.type = RecordType::VReg;
|
|
assert(VirtRegs.count(SDV));
|
|
Record.payload.Reg = VirtRegs[SDV];
|
|
} else if (Loc.getNode()) {
|
|
Record.type = RecordType::Spill;
|
|
Record.payload.FI = cast<FrameIndexSDNode>(Loc)->getIndex();
|
|
} else {
|
|
Record.type = RecordType::NoRelocate;
|
|
// If we didn't relocate a value, we'll essentialy end up inserting an
|
|
// additional use of the original value when lowering the gc.relocate.
|
|
// We need to make sure the value is available at the new use, which
|
|
// might be in another block.
|
|
if (Relocate->getParent() != StatepointInstr->getParent())
|
|
ExportFromCurrentBlock(V);
|
|
}
|
|
RelocationMap[V] = Record;
|
|
}
|
|
|
|
|
|
|
|
SDNode *SinkNode = StatepointMCNode;
|
|
|
|
// Build the GC_TRANSITION_END node if necessary.
|
|
//
|
|
// See the comment above regarding GC_TRANSITION_START for the layout of
|
|
// the operands to the GC_TRANSITION_END node.
|
|
if (IsGCTransition) {
|
|
SmallVector<SDValue, 8> TEOps;
|
|
|
|
// Add chain
|
|
TEOps.push_back(SDValue(StatepointMCNode, NumResults - 2));
|
|
|
|
// Add GC transition arguments
|
|
for (const Value *V : SI.GCTransitionArgs) {
|
|
TEOps.push_back(getValue(V));
|
|
if (V->getType()->isPointerTy())
|
|
TEOps.push_back(DAG.getSrcValue(V));
|
|
}
|
|
|
|
// Add glue
|
|
TEOps.push_back(SDValue(StatepointMCNode, NumResults - 1));
|
|
|
|
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
|
|
SDValue GCTransitionStart =
|
|
DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps);
|
|
|
|
SinkNode = GCTransitionStart.getNode();
|
|
}
|
|
|
|
// Replace original call
|
|
// Call: ch,glue = CALL ...
|
|
// Statepoint: [gc relocates],ch,glue = STATEPOINT ...
|
|
unsigned NumSinkValues = SinkNode->getNumValues();
|
|
SDValue StatepointValues[2] = {SDValue(SinkNode, NumSinkValues - 2),
|
|
SDValue(SinkNode, NumSinkValues - 1)};
|
|
DAG.ReplaceAllUsesWith(CallNode, StatepointValues);
|
|
// Remove original call node
|
|
DAG.DeleteNode(CallNode);
|
|
|
|
// Since we always emit CopyToRegs (even for local relocates), we must
|
|
// update root, so that they are emitted before any local uses.
|
|
(void)getControlRoot();
|
|
|
|
// TODO: A better future implementation would be to emit a single variable
|
|
// argument, variable return value STATEPOINT node here and then hookup the
|
|
// return value of each gc.relocate to the respective output of the
|
|
// previously emitted STATEPOINT value. Unfortunately, this doesn't appear
|
|
// to actually be possible today.
|
|
|
|
return ReturnVal;
|
|
}
|
|
|
|
void
|
|
SelectionDAGBuilder::LowerStatepoint(const GCStatepointInst &I,
|
|
const BasicBlock *EHPadBB /*= nullptr*/) {
|
|
assert(I.getCallingConv() != CallingConv::AnyReg &&
|
|
"anyregcc is not supported on statepoints!");
|
|
|
|
#ifndef NDEBUG
|
|
// Check that the associated GCStrategy expects to encounter statepoints.
|
|
assert(GFI->getStrategy().useStatepoints() &&
|
|
"GCStrategy does not expect to encounter statepoints");
|
|
#endif
|
|
|
|
SDValue ActualCallee;
|
|
SDValue Callee = getValue(I.getActualCalledOperand());
|
|
|
|
if (I.getNumPatchBytes() > 0) {
|
|
// If we've been asked to emit a nop sequence instead of a call instruction
|
|
// for this statepoint then don't lower the call target, but use a constant
|
|
// `undef` instead. Not lowering the call target lets statepoint clients
|
|
// get away without providing a physical address for the symbolic call
|
|
// target at link time.
|
|
ActualCallee = DAG.getUNDEF(Callee.getValueType());
|
|
} else {
|
|
ActualCallee = Callee;
|
|
}
|
|
|
|
StatepointLoweringInfo SI(DAG);
|
|
populateCallLoweringInfo(SI.CLI, &I, GCStatepointInst::CallArgsBeginPos,
|
|
I.getNumCallArgs(), ActualCallee,
|
|
I.getActualReturnType(), false /* IsPatchPoint */);
|
|
|
|
// There may be duplication in the gc.relocate list; such as two copies of
|
|
// each relocation on normal and exceptional path for an invoke. We only
|
|
// need to spill once and record one copy in the stackmap, but we need to
|
|
// reload once per gc.relocate. (Dedupping gc.relocates is trickier and best
|
|
// handled as a CSE problem elsewhere.)
|
|
// TODO: There a couple of major stackmap size optimizations we could do
|
|
// here if we wished.
|
|
// 1) If we've encountered a derived pair {B, D}, we don't need to actually
|
|
// record {B,B} if it's seen later.
|
|
// 2) Due to rematerialization, actual derived pointers are somewhat rare;
|
|
// given that, we could change the format to record base pointer relocations
|
|
// separately with half the space. This would require a format rev and a
|
|
// fairly major rework of the STATEPOINT node though.
|
|
SmallSet<SDValue, 8> Seen;
|
|
for (const GCRelocateInst *Relocate : I.getGCRelocates()) {
|
|
SI.GCRelocates.push_back(Relocate);
|
|
|
|
SDValue DerivedSD = getValue(Relocate->getDerivedPtr());
|
|
if (Seen.insert(DerivedSD).second) {
|
|
SI.Bases.push_back(Relocate->getBasePtr());
|
|
SI.Ptrs.push_back(Relocate->getDerivedPtr());
|
|
}
|
|
}
|
|
|
|
// If we find a deopt value which isn't explicitly added, we need to
|
|
// ensure it gets lowered such that gc cycles occurring before the
|
|
// deoptimization event during the lifetime of the call don't invalidate
|
|
// the pointer we're deopting with. Note that we assume that all
|
|
// pointers passed to deopt are base pointers; relaxing that assumption
|
|
// would require relatively large changes to how we represent relocations.
|
|
for (Value *V : I.deopt_operands()) {
|
|
if (!isGCValue(V, *this))
|
|
continue;
|
|
if (Seen.insert(getValue(V)).second) {
|
|
SI.Bases.push_back(V);
|
|
SI.Ptrs.push_back(V);
|
|
}
|
|
}
|
|
|
|
SI.GCArgs = ArrayRef<const Use>(I.gc_args_begin(), I.gc_args_end());
|
|
SI.StatepointInstr = &I;
|
|
SI.ID = I.getID();
|
|
|
|
SI.DeoptState = ArrayRef<const Use>(I.deopt_begin(), I.deopt_end());
|
|
SI.GCTransitionArgs = ArrayRef<const Use>(I.gc_transition_args_begin(),
|
|
I.gc_transition_args_end());
|
|
|
|
SI.StatepointFlags = I.getFlags();
|
|
SI.NumPatchBytes = I.getNumPatchBytes();
|
|
SI.EHPadBB = EHPadBB;
|
|
|
|
SDValue ReturnValue = LowerAsSTATEPOINT(SI);
|
|
|
|
// Export the result value if needed
|
|
const std::pair<bool, bool> GCResultLocality = I.getGCResultLocality();
|
|
Type *RetTy = I.getActualReturnType();
|
|
|
|
if (RetTy->isVoidTy() ||
|
|
(!GCResultLocality.first && !GCResultLocality.second)) {
|
|
// The return value is not needed, just generate a poison value.
|
|
setValue(&I, DAG.getIntPtrConstant(-1, getCurSDLoc()));
|
|
return;
|
|
}
|
|
|
|
if (GCResultLocality.first) {
|
|
// Result value will be used in a same basic block. Don't export it or
|
|
// perform any explicit register copies. The gc_result will simply grab
|
|
// this value.
|
|
setValue(&I, ReturnValue);
|
|
}
|
|
|
|
if (!GCResultLocality.second)
|
|
return;
|
|
// Result value will be used in a different basic block so we need to export
|
|
// it now. Default exporting mechanism will not work here because statepoint
|
|
// call has a different type than the actual call. It means that by default
|
|
// llvm will create export register of the wrong type (always i32 in our
|
|
// case). So instead we need to create export register with correct type
|
|
// manually.
|
|
// TODO: To eliminate this problem we can remove gc.result intrinsics
|
|
// completely and make statepoint call to return a tuple.
|
|
unsigned Reg = FuncInfo.CreateRegs(RetTy);
|
|
RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
|
|
DAG.getDataLayout(), Reg, RetTy,
|
|
I.getCallingConv());
|
|
SDValue Chain = DAG.getEntryNode();
|
|
|
|
RFV.getCopyToRegs(ReturnValue, DAG, getCurSDLoc(), Chain, nullptr);
|
|
PendingExports.push_back(Chain);
|
|
FuncInfo.ValueMap[&I] = Reg;
|
|
}
|
|
|
|
void SelectionDAGBuilder::LowerCallSiteWithDeoptBundleImpl(
|
|
const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB,
|
|
bool VarArgDisallowed, bool ForceVoidReturnTy) {
|
|
StatepointLoweringInfo SI(DAG);
|
|
unsigned ArgBeginIndex = Call->arg_begin() - Call->op_begin();
|
|
populateCallLoweringInfo(
|
|
SI.CLI, Call, ArgBeginIndex, Call->getNumArgOperands(), Callee,
|
|
ForceVoidReturnTy ? Type::getVoidTy(*DAG.getContext()) : Call->getType(),
|
|
false);
|
|
if (!VarArgDisallowed)
|
|
SI.CLI.IsVarArg = Call->getFunctionType()->isVarArg();
|
|
|
|
auto DeoptBundle = *Call->getOperandBundle(LLVMContext::OB_deopt);
|
|
|
|
unsigned DefaultID = StatepointDirectives::DeoptBundleStatepointID;
|
|
|
|
auto SD = parseStatepointDirectivesFromAttrs(Call->getAttributes());
|
|
SI.ID = SD.StatepointID.getValueOr(DefaultID);
|
|
SI.NumPatchBytes = SD.NumPatchBytes.getValueOr(0);
|
|
|
|
SI.DeoptState =
|
|
ArrayRef<const Use>(DeoptBundle.Inputs.begin(), DeoptBundle.Inputs.end());
|
|
SI.StatepointFlags = static_cast<uint64_t>(StatepointFlags::None);
|
|
SI.EHPadBB = EHPadBB;
|
|
|
|
// NB! The GC arguments are deliberately left empty.
|
|
|
|
if (SDValue ReturnVal = LowerAsSTATEPOINT(SI)) {
|
|
ReturnVal = lowerRangeToAssertZExt(DAG, *Call, ReturnVal);
|
|
setValue(Call, ReturnVal);
|
|
}
|
|
}
|
|
|
|
void SelectionDAGBuilder::LowerCallSiteWithDeoptBundle(
|
|
const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB) {
|
|
LowerCallSiteWithDeoptBundleImpl(Call, Callee, EHPadBB,
|
|
/* VarArgDisallowed = */ false,
|
|
/* ForceVoidReturnTy = */ false);
|
|
}
|
|
|
|
void SelectionDAGBuilder::visitGCResult(const GCResultInst &CI) {
|
|
// The result value of the gc_result is simply the result of the actual
|
|
// call. We've already emitted this, so just grab the value.
|
|
const GCStatepointInst *SI = CI.getStatepoint();
|
|
|
|
if (SI->getParent() == CI.getParent()) {
|
|
setValue(&CI, getValue(SI));
|
|
return;
|
|
}
|
|
// Statepoint is in different basic block so we should have stored call
|
|
// result in a virtual register.
|
|
// We can not use default getValue() functionality to copy value from this
|
|
// register because statepoint and actual call return types can be
|
|
// different, and getValue() will use CopyFromReg of the wrong type,
|
|
// which is always i32 in our case.
|
|
Type *RetTy = SI->getActualReturnType();
|
|
SDValue CopyFromReg = getCopyFromRegs(SI, RetTy);
|
|
|
|
assert(CopyFromReg.getNode());
|
|
setValue(&CI, CopyFromReg);
|
|
}
|
|
|
|
void SelectionDAGBuilder::visitGCRelocate(const GCRelocateInst &Relocate) {
|
|
#ifndef NDEBUG
|
|
// Consistency check
|
|
// We skip this check for relocates not in the same basic block as their
|
|
// statepoint. It would be too expensive to preserve validation info through
|
|
// different basic blocks.
|
|
if (Relocate.getStatepoint()->getParent() == Relocate.getParent())
|
|
StatepointLowering.relocCallVisited(Relocate);
|
|
|
|
auto *Ty = Relocate.getType()->getScalarType();
|
|
if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty))
|
|
assert(*IsManaged && "Non gc managed pointer relocated!");
|
|
#endif
|
|
|
|
const Value *DerivedPtr = Relocate.getDerivedPtr();
|
|
auto &RelocationMap =
|
|
FuncInfo.StatepointRelocationMaps[Relocate.getStatepoint()];
|
|
auto SlotIt = RelocationMap.find(DerivedPtr);
|
|
assert(SlotIt != RelocationMap.end() && "Relocating not lowered gc value");
|
|
const RecordType &Record = SlotIt->second;
|
|
|
|
// If relocation was done via virtual register..
|
|
if (Record.type == RecordType::VReg) {
|
|
Register InReg = Record.payload.Reg;
|
|
RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
|
|
DAG.getDataLayout(), InReg, Relocate.getType(),
|
|
None); // This is not an ABI copy.
|
|
// We generate copy to/from regs even for local uses, hence we must
|
|
// chain with current root to ensure proper ordering of copies w.r.t.
|
|
// statepoint.
|
|
SDValue Chain = DAG.getRoot();
|
|
SDValue Relocation = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
|
|
Chain, nullptr, nullptr);
|
|
setValue(&Relocate, Relocation);
|
|
return;
|
|
}
|
|
|
|
if (Record.type == RecordType::Spill) {
|
|
unsigned Index = Record.payload.FI;
|
|
SDValue SpillSlot = DAG.getTargetFrameIndex(Index, getFrameIndexTy());
|
|
|
|
// All the reloads are independent and are reading memory only modified by
|
|
// statepoints (i.e. no other aliasing stores); informing SelectionDAG of
|
|
// this this let's CSE kick in for free and allows reordering of
|
|
// instructions if possible. The lowering for statepoint sets the root,
|
|
// so this is ordering all reloads with the either
|
|
// a) the statepoint node itself, or
|
|
// b) the entry of the current block for an invoke statepoint.
|
|
const SDValue Chain = DAG.getRoot(); // != Builder.getRoot()
|
|
|
|
auto &MF = DAG.getMachineFunction();
|
|
auto &MFI = MF.getFrameInfo();
|
|
auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index);
|
|
auto *LoadMMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
|
|
MFI.getObjectSize(Index),
|
|
MFI.getObjectAlign(Index));
|
|
|
|
auto LoadVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
|
|
Relocate.getType());
|
|
|
|
SDValue SpillLoad =
|
|
DAG.getLoad(LoadVT, getCurSDLoc(), Chain, SpillSlot, LoadMMO);
|
|
PendingLoads.push_back(SpillLoad.getValue(1));
|
|
|
|
assert(SpillLoad.getNode());
|
|
setValue(&Relocate, SpillLoad);
|
|
return;
|
|
}
|
|
|
|
assert(Record.type == RecordType::NoRelocate);
|
|
SDValue SD = getValue(DerivedPtr);
|
|
|
|
if (SD.isUndef() && SD.getValueType().getSizeInBits() <= 64) {
|
|
// Lowering relocate(undef) as arbitrary constant. Current constant value
|
|
// is chosen such that it's unlikely to be a valid pointer.
|
|
setValue(&Relocate, DAG.getTargetConstant(0xFEFEFEFE, SDLoc(SD), MVT::i64));
|
|
return;
|
|
}
|
|
|
|
// We didn't need to spill these special cases (constants and allocas).
|
|
// See the handling in spillIncomingValueForStatepoint for detail.
|
|
setValue(&Relocate, SD);
|
|
}
|
|
|
|
void SelectionDAGBuilder::LowerDeoptimizeCall(const CallInst *CI) {
|
|
const auto &TLI = DAG.getTargetLoweringInfo();
|
|
SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(RTLIB::DEOPTIMIZE),
|
|
TLI.getPointerTy(DAG.getDataLayout()));
|
|
|
|
// We don't lower calls to __llvm_deoptimize as varargs, but as a regular
|
|
// call. We also do not lower the return value to any virtual register, and
|
|
// change the immediately following return to a trap instruction.
|
|
LowerCallSiteWithDeoptBundleImpl(CI, Callee, /* EHPadBB = */ nullptr,
|
|
/* VarArgDisallowed = */ true,
|
|
/* ForceVoidReturnTy = */ true);
|
|
}
|
|
|
|
void SelectionDAGBuilder::LowerDeoptimizingReturn() {
|
|
// We do not lower the return value from llvm.deoptimize to any virtual
|
|
// register, and change the immediately following return to a trap
|
|
// instruction.
|
|
if (DAG.getTarget().Options.TrapUnreachable)
|
|
DAG.setRoot(
|
|
DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
|
|
}
|