1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 18:54:02 +01:00
llvm-mirror/lib/Transforms/Vectorize/LoopVectorize.cpp
David Sherwood cdd50ed2ff [LoopVectorize] Don't interleave scalar ordered reductions for inner loops
Consider the following loop:

  void foo(float *dst, float *src, int N) {
    for (int i = 0; i < N; i++) {
      dst[i] = 0.0;
      for (int j = 0; j < N; j++) {
        dst[i] += src[(i * N) + j];
      }
    }
  }

When we are not building with -Ofast we may attempt to vectorise the
inner loop using ordered reductions instead. In addition we also try
to select an appropriate interleave count for the inner loop. However,
when choosing a VF=1 the inner loop will be scalar and there is existing
code in selectInterleaveCount that limits the interleave count to 2
for reductions due to concerns about increasing the critical path.
For ordered reductions this problem is even worse due to the additional
data dependency, and so I've added code to simply disable interleaving
for scalar ordered reductions for now.

Test added here:

  Transforms/LoopVectorize/AArch64/strict-fadd-vf1.ll

Differential Revision: https://reviews.llvm.org/D106646
2021-07-27 17:41:01 +01:00

10458 lines
434 KiB
C++

//===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
// and generates target-independent LLVM-IR.
// The vectorizer uses the TargetTransformInfo analysis to estimate the costs
// of instructions in order to estimate the profitability of vectorization.
//
// The loop vectorizer combines consecutive loop iterations into a single
// 'wide' iteration. After this transformation the index is incremented
// by the SIMD vector width, and not by one.
//
// This pass has three parts:
// 1. The main loop pass that drives the different parts.
// 2. LoopVectorizationLegality - A unit that checks for the legality
// of the vectorization.
// 3. InnerLoopVectorizer - A unit that performs the actual
// widening of instructions.
// 4. LoopVectorizationCostModel - A unit that checks for the profitability
// of vectorization. It decides on the optimal vector width, which
// can be one, if vectorization is not profitable.
//
// There is a development effort going on to migrate loop vectorizer to the
// VPlan infrastructure and to introduce outer loop vectorization support (see
// docs/Proposal/VectorizationPlan.rst and
// http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
// purpose, we temporarily introduced the VPlan-native vectorization path: an
// alternative vectorization path that is natively implemented on top of the
// VPlan infrastructure. See EnableVPlanNativePath for enabling.
//
//===----------------------------------------------------------------------===//
//
// The reduction-variable vectorization is based on the paper:
// D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
//
// Variable uniformity checks are inspired by:
// Karrenberg, R. and Hack, S. Whole Function Vectorization.
//
// The interleaved access vectorization is based on the paper:
// Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved
// Data for SIMD
//
// Other ideas/concepts are from:
// A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
//
// S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of
// Vectorizing Compilers.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Vectorize/LoopVectorize.h"
#include "LoopVectorizationPlanner.h"
#include "VPRecipeBuilder.h"
#include "VPlan.h"
#include "VPlanHCFGBuilder.h"
#include "VPlanPredicator.h"
#include "VPlanTransforms.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/Analysis/DemandedBits.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/LoopAccessAnalysis.h"
#include "llvm/Analysis/LoopAnalysisManager.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopIterator.h"
#include "llvm/Analysis/MemorySSA.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/IR/Verifier.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/InstructionCost.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/InjectTLIMappings.h"
#include "llvm/Transforms/Utils/LoopSimplify.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Utils/LoopVersioning.h"
#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
#include "llvm/Transforms/Utils/SizeOpts.h"
#include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <cstdlib>
#include <functional>
#include <iterator>
#include <limits>
#include <memory>
#include <string>
#include <tuple>
#include <utility>
using namespace llvm;
#define LV_NAME "loop-vectorize"
#define DEBUG_TYPE LV_NAME
#ifndef NDEBUG
const char VerboseDebug[] = DEBUG_TYPE "-verbose";
#endif
/// @{
/// Metadata attribute names
const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all";
const char LLVMLoopVectorizeFollowupVectorized[] =
"llvm.loop.vectorize.followup_vectorized";
const char LLVMLoopVectorizeFollowupEpilogue[] =
"llvm.loop.vectorize.followup_epilogue";
/// @}
STATISTIC(LoopsVectorized, "Number of loops vectorized");
STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
static cl::opt<bool> EnableEpilogueVectorization(
"enable-epilogue-vectorization", cl::init(true), cl::Hidden,
cl::desc("Enable vectorization of epilogue loops."));
static cl::opt<unsigned> EpilogueVectorizationForceVF(
"epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
cl::desc("When epilogue vectorization is enabled, and a value greater than "
"1 is specified, forces the given VF for all applicable epilogue "
"loops."));
static cl::opt<unsigned> EpilogueVectorizationMinVF(
"epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden,
cl::desc("Only loops with vectorization factor equal to or larger than "
"the specified value are considered for epilogue vectorization."));
/// Loops with a known constant trip count below this number are vectorized only
/// if no scalar iteration overheads are incurred.
static cl::opt<unsigned> TinyTripCountVectorThreshold(
"vectorizer-min-trip-count", cl::init(16), cl::Hidden,
cl::desc("Loops with a constant trip count that is smaller than this "
"value are vectorized only if no scalar iteration overheads "
"are incurred."));
static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
"pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
cl::desc("The maximum allowed number of runtime memory checks with a "
"vectorize(enable) pragma."));
// Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
// that predication is preferred, and this lists all options. I.e., the
// vectorizer will try to fold the tail-loop (epilogue) into the vector body
// and predicate the instructions accordingly. If tail-folding fails, there are
// different fallback strategies depending on these values:
namespace PreferPredicateTy {
enum Option {
ScalarEpilogue = 0,
PredicateElseScalarEpilogue,
PredicateOrDontVectorize
};
} // namespace PreferPredicateTy
static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue(
"prefer-predicate-over-epilogue",
cl::init(PreferPredicateTy::ScalarEpilogue),
cl::Hidden,
cl::desc("Tail-folding and predication preferences over creating a scalar "
"epilogue loop."),
cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue,
"scalar-epilogue",
"Don't tail-predicate loops, create scalar epilogue"),
clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue,
"predicate-else-scalar-epilogue",
"prefer tail-folding, create scalar epilogue if tail "
"folding fails."),
clEnumValN(PreferPredicateTy::PredicateOrDontVectorize,
"predicate-dont-vectorize",
"prefers tail-folding, don't attempt vectorization if "
"tail-folding fails.")));
static cl::opt<bool> MaximizeBandwidth(
"vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
cl::desc("Maximize bandwidth when selecting vectorization factor which "
"will be determined by the smallest type in loop."));
static cl::opt<bool> EnableInterleavedMemAccesses(
"enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
/// An interleave-group may need masking if it resides in a block that needs
/// predication, or in order to mask away gaps.
static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
"enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
"tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
cl::desc("We don't interleave loops with a estimated constant trip count "
"below this number"));
static cl::opt<unsigned> ForceTargetNumScalarRegs(
"force-target-num-scalar-regs", cl::init(0), cl::Hidden,
cl::desc("A flag that overrides the target's number of scalar registers."));
static cl::opt<unsigned> ForceTargetNumVectorRegs(
"force-target-num-vector-regs", cl::init(0), cl::Hidden,
cl::desc("A flag that overrides the target's number of vector registers."));
static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
"force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
cl::desc("A flag that overrides the target's max interleave factor for "
"scalar loops."));
static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
"force-target-max-vector-interleave", cl::init(0), cl::Hidden,
cl::desc("A flag that overrides the target's max interleave factor for "
"vectorized loops."));
static cl::opt<unsigned> ForceTargetInstructionCost(
"force-target-instruction-cost", cl::init(0), cl::Hidden,
cl::desc("A flag that overrides the target's expected cost for "
"an instruction to a single constant value. Mostly "
"useful for getting consistent testing."));
static cl::opt<bool> ForceTargetSupportsScalableVectors(
"force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
cl::desc(
"Pretend that scalable vectors are supported, even if the target does "
"not support them. This flag should only be used for testing."));
static cl::opt<unsigned> SmallLoopCost(
"small-loop-cost", cl::init(20), cl::Hidden,
cl::desc(
"The cost of a loop that is considered 'small' by the interleaver."));
static cl::opt<bool> LoopVectorizeWithBlockFrequency(
"loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
cl::desc("Enable the use of the block frequency analysis to access PGO "
"heuristics minimizing code growth in cold regions and being more "
"aggressive in hot regions."));
// Runtime interleave loops for load/store throughput.
static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
"enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
cl::desc(
"Enable runtime interleaving until load/store ports are saturated"));
/// Interleave small loops with scalar reductions.
static cl::opt<bool> InterleaveSmallLoopScalarReduction(
"interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden,
cl::desc("Enable interleaving for loops with small iteration counts that "
"contain scalar reductions to expose ILP."));
/// The number of stores in a loop that are allowed to need predication.
static cl::opt<unsigned> NumberOfStoresToPredicate(
"vectorize-num-stores-pred", cl::init(1), cl::Hidden,
cl::desc("Max number of stores to be predicated behind an if."));
static cl::opt<bool> EnableIndVarRegisterHeur(
"enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
cl::desc("Count the induction variable only once when interleaving"));
static cl::opt<bool> EnableCondStoresVectorization(
"enable-cond-stores-vec", cl::init(true), cl::Hidden,
cl::desc("Enable if predication of stores during vectorization."));
static cl::opt<unsigned> MaxNestedScalarReductionIC(
"max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
cl::desc("The maximum interleave count to use when interleaving a scalar "
"reduction in a nested loop."));
static cl::opt<bool>
PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
cl::Hidden,
cl::desc("Prefer in-loop vector reductions, "
"overriding the targets preference."));
cl::opt<bool> EnableStrictReductions(
"enable-strict-reductions", cl::init(false), cl::Hidden,
cl::desc("Enable the vectorisation of loops with in-order (strict) "
"FP reductions"));
static cl::opt<bool> PreferPredicatedReductionSelect(
"prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
cl::desc(
"Prefer predicating a reduction operation over an after loop select."));
cl::opt<bool> EnableVPlanNativePath(
"enable-vplan-native-path", cl::init(false), cl::Hidden,
cl::desc("Enable VPlan-native vectorization path with "
"support for outer loop vectorization."));
// FIXME: Remove this switch once we have divergence analysis. Currently we
// assume divergent non-backedge branches when this switch is true.
cl::opt<bool> EnableVPlanPredication(
"enable-vplan-predication", cl::init(false), cl::Hidden,
cl::desc("Enable VPlan-native vectorization path predicator with "
"support for outer loop vectorization."));
// This flag enables the stress testing of the VPlan H-CFG construction in the
// VPlan-native vectorization path. It must be used in conjuction with
// -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
// verification of the H-CFGs built.
static cl::opt<bool> VPlanBuildStressTest(
"vplan-build-stress-test", cl::init(false), cl::Hidden,
cl::desc(
"Build VPlan for every supported loop nest in the function and bail "
"out right after the build (stress test the VPlan H-CFG construction "
"in the VPlan-native vectorization path)."));
cl::opt<bool> llvm::EnableLoopInterleaving(
"interleave-loops", cl::init(true), cl::Hidden,
cl::desc("Enable loop interleaving in Loop vectorization passes"));
cl::opt<bool> llvm::EnableLoopVectorization(
"vectorize-loops", cl::init(true), cl::Hidden,
cl::desc("Run the Loop vectorization passes"));
cl::opt<bool> PrintVPlansInDotFormat(
"vplan-print-in-dot-format", cl::init(false), cl::Hidden,
cl::desc("Use dot format instead of plain text when dumping VPlans"));
/// A helper function that returns true if the given type is irregular. The
/// type is irregular if its allocated size doesn't equal the store size of an
/// element of the corresponding vector type.
static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
// Determine if an array of N elements of type Ty is "bitcast compatible"
// with a <N x Ty> vector.
// This is only true if there is no padding between the array elements.
return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
}
/// A helper function that returns the reciprocal of the block probability of
/// predicated blocks. If we return X, we are assuming the predicated block
/// will execute once for every X iterations of the loop header.
///
/// TODO: We should use actual block probability here, if available. Currently,
/// we always assume predicated blocks have a 50% chance of executing.
static unsigned getReciprocalPredBlockProb() { return 2; }
/// A helper function that returns an integer or floating-point constant with
/// value C.
static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
: ConstantFP::get(Ty, C);
}
/// Returns "best known" trip count for the specified loop \p L as defined by
/// the following procedure:
/// 1) Returns exact trip count if it is known.
/// 2) Returns expected trip count according to profile data if any.
/// 3) Returns upper bound estimate if it is known.
/// 4) Returns None if all of the above failed.
static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
// Check if exact trip count is known.
if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
return ExpectedTC;
// Check if there is an expected trip count available from profile data.
if (LoopVectorizeWithBlockFrequency)
if (auto EstimatedTC = getLoopEstimatedTripCount(L))
return EstimatedTC;
// Check if upper bound estimate is known.
if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
return ExpectedTC;
return None;
}
// Forward declare GeneratedRTChecks.
class GeneratedRTChecks;
namespace llvm {
/// InnerLoopVectorizer vectorizes loops which contain only one basic
/// block to a specified vectorization factor (VF).
/// This class performs the widening of scalars into vectors, or multiple
/// scalars. This class also implements the following features:
/// * It inserts an epilogue loop for handling loops that don't have iteration
/// counts that are known to be a multiple of the vectorization factor.
/// * It handles the code generation for reduction variables.
/// * Scalarization (implementation using scalars) of un-vectorizable
/// instructions.
/// InnerLoopVectorizer does not perform any vectorization-legality
/// checks, and relies on the caller to check for the different legality
/// aspects. The InnerLoopVectorizer relies on the
/// LoopVectorizationLegality class to provide information about the induction
/// and reduction variables that were found to a given vectorization factor.
class InnerLoopVectorizer {
public:
InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
LoopInfo *LI, DominatorTree *DT,
const TargetLibraryInfo *TLI,
const TargetTransformInfo *TTI, AssumptionCache *AC,
OptimizationRemarkEmitter *ORE, ElementCount VecWidth,
unsigned UnrollFactor, LoopVectorizationLegality *LVL,
LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks)
: OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI),
PSI(PSI), RTChecks(RTChecks) {
// Query this against the original loop and save it here because the profile
// of the original loop header may change as the transformation happens.
OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize(
OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
}
virtual ~InnerLoopVectorizer() = default;
/// Create a new empty loop that will contain vectorized instructions later
/// on, while the old loop will be used as the scalar remainder. Control flow
/// is generated around the vectorized (and scalar epilogue) loops consisting
/// of various checks and bypasses. Return the pre-header block of the new
/// loop.
/// In the case of epilogue vectorization, this function is overriden to
/// handle the more complex control flow around the loops.
virtual BasicBlock *createVectorizedLoopSkeleton();
/// Widen a single instruction within the innermost loop.
void widenInstruction(Instruction &I, VPValue *Def, VPUser &Operands,
VPTransformState &State);
/// Widen a single call instruction within the innermost loop.
void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands,
VPTransformState &State);
/// Widen a single select instruction within the innermost loop.
void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands,
bool InvariantCond, VPTransformState &State);
/// Fix the vectorized code, taking care of header phi's, live-outs, and more.
void fixVectorizedLoop(VPTransformState &State);
// Return true if any runtime check is added.
bool areSafetyChecksAdded() { return AddedSafetyChecks; }
/// A type for vectorized values in the new loop. Each value from the
/// original loop, when vectorized, is represented by UF vector values in the
/// new unrolled loop, where UF is the unroll factor.
using VectorParts = SmallVector<Value *, 2>;
/// Vectorize a single GetElementPtrInst based on information gathered and
/// decisions taken during planning.
void widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, VPUser &Indices,
unsigned UF, ElementCount VF, bool IsPtrLoopInvariant,
SmallBitVector &IsIndexLoopInvariant, VPTransformState &State);
/// Vectorize a single first-order recurrence or pointer induction PHINode in
/// a block. This method handles the induction variable canonicalization. It
/// supports both VF = 1 for unrolled loops and arbitrary length vectors.
void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR,
VPTransformState &State);
/// A helper function to scalarize a single Instruction in the innermost loop.
/// Generates a sequence of scalar instances for each lane between \p MinLane
/// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
/// inclusive. Uses the VPValue operands from \p Operands instead of \p
/// Instr's operands.
void scalarizeInstruction(Instruction *Instr, VPValue *Def, VPUser &Operands,
const VPIteration &Instance, bool IfPredicateInstr,
VPTransformState &State);
/// Widen an integer or floating-point induction variable \p IV. If \p Trunc
/// is provided, the integer induction variable will first be truncated to
/// the corresponding type.
void widenIntOrFpInduction(PHINode *IV, Value *Start, TruncInst *Trunc,
VPValue *Def, VPValue *CastDef,
VPTransformState &State);
/// Construct the vector value of a scalarized value \p V one lane at a time.
void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance,
VPTransformState &State);
/// Try to vectorize interleaved access group \p Group with the base address
/// given in \p Addr, optionally masking the vector operations if \p
/// BlockInMask is non-null. Use \p State to translate given VPValues to IR
/// values in the vectorized loop.
void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
ArrayRef<VPValue *> VPDefs,
VPTransformState &State, VPValue *Addr,
ArrayRef<VPValue *> StoredValues,
VPValue *BlockInMask = nullptr);
/// Vectorize Load and Store instructions with the base address given in \p
/// Addr, optionally masking the vector operations if \p BlockInMask is
/// non-null. Use \p State to translate given VPValues to IR values in the
/// vectorized loop.
void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State,
VPValue *Def, VPValue *Addr,
VPValue *StoredValue, VPValue *BlockInMask);
/// Set the debug location in the builder \p Ptr using the debug location in
/// \p V. If \p Ptr is None then it uses the class member's Builder.
void setDebugLocFromInst(const Value *V,
Optional<IRBuilder<> *> CustomBuilder = None);
/// Fix the non-induction PHIs in the OrigPHIsToFix vector.
void fixNonInductionPHIs(VPTransformState &State);
/// Returns true if the reordering of FP operations is not allowed, but we are
/// able to vectorize with strict in-order reductions for the given RdxDesc.
bool useOrderedReductions(RecurrenceDescriptor &RdxDesc);
/// Create a broadcast instruction. This method generates a broadcast
/// instruction (shuffle) for loop invariant values and for the induction
/// value. If this is the induction variable then we extend it to N, N+1, ...
/// this is needed because each iteration in the loop corresponds to a SIMD
/// element.
virtual Value *getBroadcastInstrs(Value *V);
protected:
friend class LoopVectorizationPlanner;
/// A small list of PHINodes.
using PhiVector = SmallVector<PHINode *, 4>;
/// A type for scalarized values in the new loop. Each value from the
/// original loop, when scalarized, is represented by UF x VF scalar values
/// in the new unrolled loop, where UF is the unroll factor and VF is the
/// vectorization factor.
using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
/// Set up the values of the IVs correctly when exiting the vector loop.
void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
Value *CountRoundDown, Value *EndValue,
BasicBlock *MiddleBlock);
/// Create a new induction variable inside L.
PHINode *createInductionVariable(Loop *L, Value *Start, Value *End,
Value *Step, Instruction *DL);
/// Handle all cross-iteration phis in the header.
void fixCrossIterationPHIs(VPTransformState &State);
/// Fix a first-order recurrence. This is the second phase of vectorizing
/// this phi node.
void fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR, VPTransformState &State);
/// Fix a reduction cross-iteration phi. This is the second phase of
/// vectorizing this phi node.
void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State);
/// Clear NSW/NUW flags from reduction instructions if necessary.
void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
VPTransformState &State);
/// Fixup the LCSSA phi nodes in the unique exit block. This simply
/// means we need to add the appropriate incoming value from the middle
/// block as exiting edges from the scalar epilogue loop (if present) are
/// already in place, and we exit the vector loop exclusively to the middle
/// block.
void fixLCSSAPHIs(VPTransformState &State);
/// Iteratively sink the scalarized operands of a predicated instruction into
/// the block that was created for it.
void sinkScalarOperands(Instruction *PredInst);
/// Shrinks vector element sizes to the smallest bitwidth they can be legally
/// represented as.
void truncateToMinimalBitwidths(VPTransformState &State);
/// This function adds
/// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...)
/// to each vector element of Val. The sequence starts at StartIndex.
/// \p Opcode is relevant for FP induction variable.
virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step,
Instruction::BinaryOps Opcode =
Instruction::BinaryOpsEnd);
/// Compute scalar induction steps. \p ScalarIV is the scalar induction
/// variable on which to base the steps, \p Step is the size of the step, and
/// \p EntryVal is the value from the original loop that maps to the steps.
/// Note that \p EntryVal doesn't have to be an induction variable - it
/// can also be a truncate instruction.
void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal,
const InductionDescriptor &ID, VPValue *Def,
VPValue *CastDef, VPTransformState &State);
/// Create a vector induction phi node based on an existing scalar one. \p
/// EntryVal is the value from the original loop that maps to the vector phi
/// node, and \p Step is the loop-invariant step. If \p EntryVal is a
/// truncate instruction, instead of widening the original IV, we widen a
/// version of the IV truncated to \p EntryVal's type.
void createVectorIntOrFpInductionPHI(const InductionDescriptor &II,
Value *Step, Value *Start,
Instruction *EntryVal, VPValue *Def,
VPValue *CastDef,
VPTransformState &State);
/// Returns true if an instruction \p I should be scalarized instead of
/// vectorized for the chosen vectorization factor.
bool shouldScalarizeInstruction(Instruction *I) const;
/// Returns true if we should generate a scalar version of \p IV.
bool needsScalarInduction(Instruction *IV) const;
/// If there is a cast involved in the induction variable \p ID, which should
/// be ignored in the vectorized loop body, this function records the
/// VectorLoopValue of the respective Phi also as the VectorLoopValue of the
/// cast. We had already proved that the casted Phi is equal to the uncasted
/// Phi in the vectorized loop (under a runtime guard), and therefore
/// there is no need to vectorize the cast - the same value can be used in the
/// vector loop for both the Phi and the cast.
/// If \p VectorLoopValue is a scalarized value, \p Lane is also specified,
/// Otherwise, \p VectorLoopValue is a widened/vectorized value.
///
/// \p EntryVal is the value from the original loop that maps to the vector
/// phi node and is used to distinguish what is the IV currently being
/// processed - original one (if \p EntryVal is a phi corresponding to the
/// original IV) or the "newly-created" one based on the proof mentioned above
/// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the
/// latter case \p EntryVal is a TruncInst and we must not record anything for
/// that IV, but it's error-prone to expect callers of this routine to care
/// about that, hence this explicit parameter.
void recordVectorLoopValueForInductionCast(
const InductionDescriptor &ID, const Instruction *EntryVal,
Value *VectorLoopValue, VPValue *CastDef, VPTransformState &State,
unsigned Part, unsigned Lane = UINT_MAX);
/// Generate a shuffle sequence that will reverse the vector Vec.
virtual Value *reverseVector(Value *Vec);
/// Returns (and creates if needed) the original loop trip count.
Value *getOrCreateTripCount(Loop *NewLoop);
/// Returns (and creates if needed) the trip count of the widened loop.
Value *getOrCreateVectorTripCount(Loop *NewLoop);
/// Returns a bitcasted value to the requested vector type.
/// Also handles bitcasts of vector<float> <-> vector<pointer> types.
Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
const DataLayout &DL);
/// Emit a bypass check to see if the vector trip count is zero, including if
/// it overflows.
void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
/// Emit a bypass check to see if all of the SCEV assumptions we've
/// had to make are correct. Returns the block containing the checks or
/// nullptr if no checks have been added.
BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass);
/// Emit bypass checks to check any memory assumptions we may have made.
/// Returns the block containing the checks or nullptr if no checks have been
/// added.
BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
/// Compute the transformed value of Index at offset StartValue using step
/// StepValue.
/// For integer induction, returns StartValue + Index * StepValue.
/// For pointer induction, returns StartValue[Index * StepValue].
/// FIXME: The newly created binary instructions should contain nsw/nuw
/// flags, which can be found from the original scalar operations.
Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE,
const DataLayout &DL,
const InductionDescriptor &ID) const;
/// Emit basic blocks (prefixed with \p Prefix) for the iteration check,
/// vector loop preheader, middle block and scalar preheader. Also
/// allocate a loop object for the new vector loop and return it.
Loop *createVectorLoopSkeleton(StringRef Prefix);
/// Create new phi nodes for the induction variables to resume iteration count
/// in the scalar epilogue, from where the vectorized loop left off (given by
/// \p VectorTripCount).
/// In cases where the loop skeleton is more complicated (eg. epilogue
/// vectorization) and the resume values can come from an additional bypass
/// block, the \p AdditionalBypass pair provides information about the bypass
/// block and the end value on the edge from bypass to this loop.
void createInductionResumeValues(
Loop *L, Value *VectorTripCount,
std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr});
/// Complete the loop skeleton by adding debug MDs, creating appropriate
/// conditional branches in the middle block, preparing the builder and
/// running the verifier. Take in the vector loop \p L as argument, and return
/// the preheader of the completed vector loop.
BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID);
/// Add additional metadata to \p To that was not present on \p Orig.
///
/// Currently this is used to add the noalias annotations based on the
/// inserted memchecks. Use this for instructions that are *cloned* into the
/// vector loop.
void addNewMetadata(Instruction *To, const Instruction *Orig);
/// Add metadata from one instruction to another.
///
/// This includes both the original MDs from \p From and additional ones (\see
/// addNewMetadata). Use this for *newly created* instructions in the vector
/// loop.
void addMetadata(Instruction *To, Instruction *From);
/// Similar to the previous function but it adds the metadata to a
/// vector of instructions.
void addMetadata(ArrayRef<Value *> To, Instruction *From);
/// Allow subclasses to override and print debug traces before/after vplan
/// execution, when trace information is requested.
virtual void printDebugTracesAtStart(){};
virtual void printDebugTracesAtEnd(){};
/// The original loop.
Loop *OrigLoop;
/// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
/// dynamic knowledge to simplify SCEV expressions and converts them to a
/// more usable form.
PredicatedScalarEvolution &PSE;
/// Loop Info.
LoopInfo *LI;
/// Dominator Tree.
DominatorTree *DT;
/// Alias Analysis.
AAResults *AA;
/// Target Library Info.
const TargetLibraryInfo *TLI;
/// Target Transform Info.
const TargetTransformInfo *TTI;
/// Assumption Cache.
AssumptionCache *AC;
/// Interface to emit optimization remarks.
OptimizationRemarkEmitter *ORE;
/// LoopVersioning. It's only set up (non-null) if memchecks were
/// used.
///
/// This is currently only used to add no-alias metadata based on the
/// memchecks. The actually versioning is performed manually.
std::unique_ptr<LoopVersioning> LVer;
/// The vectorization SIMD factor to use. Each vector will have this many
/// vector elements.
ElementCount VF;
/// The vectorization unroll factor to use. Each scalar is vectorized to this
/// many different vector instructions.
unsigned UF;
/// The builder that we use
IRBuilder<> Builder;
// --- Vectorization state ---
/// The vector-loop preheader.
BasicBlock *LoopVectorPreHeader;
/// The scalar-loop preheader.
BasicBlock *LoopScalarPreHeader;
/// Middle Block between the vector and the scalar.
BasicBlock *LoopMiddleBlock;
/// The unique ExitBlock of the scalar loop if one exists. Note that
/// there can be multiple exiting edges reaching this block.
BasicBlock *LoopExitBlock;
/// The vector loop body.
BasicBlock *LoopVectorBody;
/// The scalar loop body.
BasicBlock *LoopScalarBody;
/// A list of all bypass blocks. The first block is the entry of the loop.
SmallVector<BasicBlock *, 4> LoopBypassBlocks;
/// The new Induction variable which was added to the new block.
PHINode *Induction = nullptr;
/// The induction variable of the old basic block.
PHINode *OldInduction = nullptr;
/// Store instructions that were predicated.
SmallVector<Instruction *, 4> PredicatedInstructions;
/// Trip count of the original loop.
Value *TripCount = nullptr;
/// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
Value *VectorTripCount = nullptr;
/// The legality analysis.
LoopVectorizationLegality *Legal;
/// The profitablity analysis.
LoopVectorizationCostModel *Cost;
// Record whether runtime checks are added.
bool AddedSafetyChecks = false;
// Holds the end values for each induction variable. We save the end values
// so we can later fix-up the external users of the induction variables.
DenseMap<PHINode *, Value *> IVEndValues;
// Vector of original scalar PHIs whose corresponding widened PHIs need to be
// fixed up at the end of vector code generation.
SmallVector<PHINode *, 8> OrigPHIsToFix;
/// BFI and PSI are used to check for profile guided size optimizations.
BlockFrequencyInfo *BFI;
ProfileSummaryInfo *PSI;
// Whether this loop should be optimized for size based on profile guided size
// optimizatios.
bool OptForSizeBasedOnProfile;
/// Structure to hold information about generated runtime checks, responsible
/// for cleaning the checks, if vectorization turns out unprofitable.
GeneratedRTChecks &RTChecks;
};
class InnerLoopUnroller : public InnerLoopVectorizer {
public:
InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
LoopInfo *LI, DominatorTree *DT,
const TargetLibraryInfo *TLI,
const TargetTransformInfo *TTI, AssumptionCache *AC,
OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
LoopVectorizationLegality *LVL,
LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
ProfileSummaryInfo *PSI, GeneratedRTChecks &Check)
: InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
ElementCount::getFixed(1), UnrollFactor, LVL, CM,
BFI, PSI, Check) {}
private:
Value *getBroadcastInstrs(Value *V) override;
Value *getStepVector(Value *Val, int StartIdx, Value *Step,
Instruction::BinaryOps Opcode =
Instruction::BinaryOpsEnd) override;
Value *reverseVector(Value *Vec) override;
};
/// Encapsulate information regarding vectorization of a loop and its epilogue.
/// This information is meant to be updated and used across two stages of
/// epilogue vectorization.
struct EpilogueLoopVectorizationInfo {
ElementCount MainLoopVF = ElementCount::getFixed(0);
unsigned MainLoopUF = 0;
ElementCount EpilogueVF = ElementCount::getFixed(0);
unsigned EpilogueUF = 0;
BasicBlock *MainLoopIterationCountCheck = nullptr;
BasicBlock *EpilogueIterationCountCheck = nullptr;
BasicBlock *SCEVSafetyCheck = nullptr;
BasicBlock *MemSafetyCheck = nullptr;
Value *TripCount = nullptr;
Value *VectorTripCount = nullptr;
EpilogueLoopVectorizationInfo(unsigned MVF, unsigned MUF, unsigned EVF,
unsigned EUF)
: MainLoopVF(ElementCount::getFixed(MVF)), MainLoopUF(MUF),
EpilogueVF(ElementCount::getFixed(EVF)), EpilogueUF(EUF) {
assert(EUF == 1 &&
"A high UF for the epilogue loop is likely not beneficial.");
}
};
/// An extension of the inner loop vectorizer that creates a skeleton for a
/// vectorized loop that has its epilogue (residual) also vectorized.
/// The idea is to run the vplan on a given loop twice, firstly to setup the
/// skeleton and vectorize the main loop, and secondly to complete the skeleton
/// from the first step and vectorize the epilogue. This is achieved by
/// deriving two concrete strategy classes from this base class and invoking
/// them in succession from the loop vectorizer planner.
class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer {
public:
InnerLoopAndEpilogueVectorizer(
Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
DominatorTree *DT, const TargetLibraryInfo *TLI,
const TargetTransformInfo *TTI, AssumptionCache *AC,
OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
GeneratedRTChecks &Checks)
: InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI,
Checks),
EPI(EPI) {}
// Override this function to handle the more complex control flow around the
// three loops.
BasicBlock *createVectorizedLoopSkeleton() final override {
return createEpilogueVectorizedLoopSkeleton();
}
/// The interface for creating a vectorized skeleton using one of two
/// different strategies, each corresponding to one execution of the vplan
/// as described above.
virtual BasicBlock *createEpilogueVectorizedLoopSkeleton() = 0;
/// Holds and updates state information required to vectorize the main loop
/// and its epilogue in two separate passes. This setup helps us avoid
/// regenerating and recomputing runtime safety checks. It also helps us to
/// shorten the iteration-count-check path length for the cases where the
/// iteration count of the loop is so small that the main vector loop is
/// completely skipped.
EpilogueLoopVectorizationInfo &EPI;
};
/// A specialized derived class of inner loop vectorizer that performs
/// vectorization of *main* loops in the process of vectorizing loops and their
/// epilogues.
class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer {
public:
EpilogueVectorizerMainLoop(
Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
DominatorTree *DT, const TargetLibraryInfo *TLI,
const TargetTransformInfo *TTI, AssumptionCache *AC,
OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
GeneratedRTChecks &Check)
: InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
EPI, LVL, CM, BFI, PSI, Check) {}
/// Implements the interface for creating a vectorized skeleton using the
/// *main loop* strategy (ie the first pass of vplan execution).
BasicBlock *createEpilogueVectorizedLoopSkeleton() final override;
protected:
/// Emits an iteration count bypass check once for the main loop (when \p
/// ForEpilogue is false) and once for the epilogue loop (when \p
/// ForEpilogue is true).
BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass,
bool ForEpilogue);
void printDebugTracesAtStart() override;
void printDebugTracesAtEnd() override;
};
// A specialized derived class of inner loop vectorizer that performs
// vectorization of *epilogue* loops in the process of vectorizing loops and
// their epilogues.
class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer {
public:
EpilogueVectorizerEpilogueLoop(
Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
DominatorTree *DT, const TargetLibraryInfo *TLI,
const TargetTransformInfo *TTI, AssumptionCache *AC,
OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
GeneratedRTChecks &Checks)
: InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
EPI, LVL, CM, BFI, PSI, Checks) {}
/// Implements the interface for creating a vectorized skeleton using the
/// *epilogue loop* strategy (ie the second pass of vplan execution).
BasicBlock *createEpilogueVectorizedLoopSkeleton() final override;
protected:
/// Emits an iteration count bypass check after the main vector loop has
/// finished to see if there are any iterations left to execute by either
/// the vector epilogue or the scalar epilogue.
BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L,
BasicBlock *Bypass,
BasicBlock *Insert);
void printDebugTracesAtStart() override;
void printDebugTracesAtEnd() override;
};
} // end namespace llvm
/// Look for a meaningful debug location on the instruction or it's
/// operands.
static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
if (!I)
return I;
DebugLoc Empty;
if (I->getDebugLoc() != Empty)
return I;
for (Use &Op : I->operands()) {
if (Instruction *OpInst = dyn_cast<Instruction>(Op))
if (OpInst->getDebugLoc() != Empty)
return OpInst;
}
return I;
}
void InnerLoopVectorizer::setDebugLocFromInst(
const Value *V, Optional<IRBuilder<> *> CustomBuilder) {
IRBuilder<> *B = (CustomBuilder == None) ? &Builder : *CustomBuilder;
if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) {
const DILocation *DIL = Inst->getDebugLoc();
// When a FSDiscriminator is enabled, we don't need to add the multiply
// factors to the discriminators.
if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
!isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) {
// FIXME: For scalable vectors, assume vscale=1.
auto NewDIL =
DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
if (NewDIL)
B->SetCurrentDebugLocation(NewDIL.getValue());
else
LLVM_DEBUG(dbgs()
<< "Failed to create new discriminator: "
<< DIL->getFilename() << " Line: " << DIL->getLine());
} else
B->SetCurrentDebugLocation(DIL);
} else
B->SetCurrentDebugLocation(DebugLoc());
}
/// Write a \p DebugMsg about vectorization to the debug output stream. If \p I
/// is passed, the message relates to that particular instruction.
#ifndef NDEBUG
static void debugVectorizationMessage(const StringRef Prefix,
const StringRef DebugMsg,
Instruction *I) {
dbgs() << "LV: " << Prefix << DebugMsg;
if (I != nullptr)
dbgs() << " " << *I;
else
dbgs() << '.';
dbgs() << '\n';
}
#endif
/// Create an analysis remark that explains why vectorization failed
///
/// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p
/// RemarkName is the identifier for the remark. If \p I is passed it is an
/// instruction that prevents vectorization. Otherwise \p TheLoop is used for
/// the location of the remark. \return the remark object that can be
/// streamed to.
static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
StringRef RemarkName, Loop *TheLoop, Instruction *I) {
Value *CodeRegion = TheLoop->getHeader();
DebugLoc DL = TheLoop->getStartLoc();
if (I) {
CodeRegion = I->getParent();
// If there is no debug location attached to the instruction, revert back to
// using the loop's.
if (I->getDebugLoc())
DL = I->getDebugLoc();
}
return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion);
}
/// Return a value for Step multiplied by VF.
static Value *createStepForVF(IRBuilder<> &B, Constant *Step, ElementCount VF) {
assert(isa<ConstantInt>(Step) && "Expected an integer step");
Constant *StepVal = ConstantInt::get(
Step->getType(),
cast<ConstantInt>(Step)->getSExtValue() * VF.getKnownMinValue());
return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal;
}
namespace llvm {
/// Return the runtime value for VF.
Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) {
Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue());
return VF.isScalable() ? B.CreateVScale(EC) : EC;
}
void reportVectorizationFailure(const StringRef DebugMsg,
const StringRef OREMsg, const StringRef ORETag,
OptimizationRemarkEmitter *ORE, Loop *TheLoop,
Instruction *I) {
LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I));
LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
ORE->emit(
createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
<< "loop not vectorized: " << OREMsg);
}
void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag,
OptimizationRemarkEmitter *ORE, Loop *TheLoop,
Instruction *I) {
LLVM_DEBUG(debugVectorizationMessage("", Msg, I));
LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
ORE->emit(
createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
<< Msg);
}
} // end namespace llvm
#ifndef NDEBUG
/// \return string containing a file name and a line # for the given loop.
static std::string getDebugLocString(const Loop *L) {
std::string Result;
if (L) {
raw_string_ostream OS(Result);
if (const DebugLoc LoopDbgLoc = L->getStartLoc())
LoopDbgLoc.print(OS);
else
// Just print the module name.
OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
OS.flush();
}
return Result;
}
#endif
void InnerLoopVectorizer::addNewMetadata(Instruction *To,
const Instruction *Orig) {
// If the loop was versioned with memchecks, add the corresponding no-alias
// metadata.
if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
LVer->annotateInstWithNoAlias(To, Orig);
}
void InnerLoopVectorizer::addMetadata(Instruction *To,
Instruction *From) {
propagateMetadata(To, From);
addNewMetadata(To, From);
}
void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
Instruction *From) {
for (Value *V : To) {
if (Instruction *I = dyn_cast<Instruction>(V))
addMetadata(I, From);
}
}
namespace llvm {
// Loop vectorization cost-model hints how the scalar epilogue loop should be
// lowered.
enum ScalarEpilogueLowering {
// The default: allowing scalar epilogues.
CM_ScalarEpilogueAllowed,
// Vectorization with OptForSize: don't allow epilogues.
CM_ScalarEpilogueNotAllowedOptSize,
// A special case of vectorisation with OptForSize: loops with a very small
// trip count are considered for vectorization under OptForSize, thereby
// making sure the cost of their loop body is dominant, free of runtime
// guards and scalar iteration overheads.
CM_ScalarEpilogueNotAllowedLowTripLoop,
// Loop hint predicate indicating an epilogue is undesired.
CM_ScalarEpilogueNotNeededUsePredicate,
// Directive indicating we must either tail fold or not vectorize
CM_ScalarEpilogueNotAllowedUsePredicate
};
/// ElementCountComparator creates a total ordering for ElementCount
/// for the purposes of using it in a set structure.
struct ElementCountComparator {
bool operator()(const ElementCount &LHS, const ElementCount &RHS) const {
return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue());
}
};
using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>;
/// LoopVectorizationCostModel - estimates the expected speedups due to
/// vectorization.
/// In many cases vectorization is not profitable. This can happen because of
/// a number of reasons. In this class we mainly attempt to predict the
/// expected speedup/slowdowns due to the supported instruction set. We use the
/// TargetTransformInfo to query the different backends for the cost of
/// different operations.
class LoopVectorizationCostModel {
public:
LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
PredicatedScalarEvolution &PSE, LoopInfo *LI,
LoopVectorizationLegality *Legal,
const TargetTransformInfo &TTI,
const TargetLibraryInfo *TLI, DemandedBits *DB,
AssumptionCache *AC,
OptimizationRemarkEmitter *ORE, const Function *F,
const LoopVectorizeHints *Hints,
InterleavedAccessInfo &IAI)
: ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
Hints(Hints), InterleaveInfo(IAI) {}
/// \return An upper bound for the vectorization factors (both fixed and
/// scalable). If the factors are 0, vectorization and interleaving should be
/// avoided up front.
FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC);
/// \return True if runtime checks are required for vectorization, and false
/// otherwise.
bool runtimeChecksRequired();
/// \return The most profitable vectorization factor and the cost of that VF.
/// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO
/// then this vectorization factor will be selected if vectorization is
/// possible.
VectorizationFactor
selectVectorizationFactor(const ElementCountSet &CandidateVFs);
VectorizationFactor
selectEpilogueVectorizationFactor(const ElementCount MaxVF,
const LoopVectorizationPlanner &LVP);
/// Setup cost-based decisions for user vectorization factor.
/// \return true if the UserVF is a feasible VF to be chosen.
bool selectUserVectorizationFactor(ElementCount UserVF) {
collectUniformsAndScalars(UserVF);
collectInstsToScalarize(UserVF);
return expectedCost(UserVF).first.isValid();
}
/// \return The size (in bits) of the smallest and widest types in the code
/// that needs to be vectorized. We ignore values that remain scalar such as
/// 64 bit loop indices.
std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
/// \return The desired interleave count.
/// If interleave count has been specified by metadata it will be returned.
/// Otherwise, the interleave count is computed and returned. VF and LoopCost
/// are the selected vectorization factor and the cost of the selected VF.
unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost);
/// Memory access instruction may be vectorized in more than one way.
/// Form of instruction after vectorization depends on cost.
/// This function takes cost-based decisions for Load/Store instructions
/// and collects them in a map. This decisions map is used for building
/// the lists of loop-uniform and loop-scalar instructions.
/// The calculated cost is saved with widening decision in order to
/// avoid redundant calculations.
void setCostBasedWideningDecision(ElementCount VF);
/// A struct that represents some properties of the register usage
/// of a loop.
struct RegisterUsage {
/// Holds the number of loop invariant values that are used in the loop.
/// The key is ClassID of target-provided register class.
SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
/// Holds the maximum number of concurrent live intervals in the loop.
/// The key is ClassID of target-provided register class.
SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
};
/// \return Returns information about the register usages of the loop for the
/// given vectorization factors.
SmallVector<RegisterUsage, 8>
calculateRegisterUsage(ArrayRef<ElementCount> VFs);
/// Collect values we want to ignore in the cost model.
void collectValuesToIgnore();
/// Collect all element types in the loop for which widening is needed.
void collectElementTypesForWidening();
/// Split reductions into those that happen in the loop, and those that happen
/// outside. In loop reductions are collected into InLoopReductionChains.
void collectInLoopReductions();
/// Returns true if we should use strict in-order reductions for the given
/// RdxDesc. This is true if the -enable-strict-reductions flag is passed,
/// the IsOrdered flag of RdxDesc is set and we do not allow reordering
/// of FP operations.
bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) {
return EnableStrictReductions && !Hints->allowReordering() &&
RdxDesc.isOrdered();
}
/// \returns The smallest bitwidth each instruction can be represented with.
/// The vector equivalents of these instructions should be truncated to this
/// type.
const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
return MinBWs;
}
/// \returns True if it is more profitable to scalarize instruction \p I for
/// vectorization factor \p VF.
bool isProfitableToScalarize(Instruction *I, ElementCount VF) const {
assert(VF.isVector() &&
"Profitable to scalarize relevant only for VF > 1.");
// Cost model is not run in the VPlan-native path - return conservative
// result until this changes.
if (EnableVPlanNativePath)
return false;
auto Scalars = InstsToScalarize.find(VF);
assert(Scalars != InstsToScalarize.end() &&
"VF not yet analyzed for scalarization profitability");
return Scalars->second.find(I) != Scalars->second.end();
}
/// Returns true if \p I is known to be uniform after vectorization.
bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const {
if (VF.isScalar())
return true;
// Cost model is not run in the VPlan-native path - return conservative
// result until this changes.
if (EnableVPlanNativePath)
return false;
auto UniformsPerVF = Uniforms.find(VF);
assert(UniformsPerVF != Uniforms.end() &&
"VF not yet analyzed for uniformity");
return UniformsPerVF->second.count(I);
}
/// Returns true if \p I is known to be scalar after vectorization.
bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const {
if (VF.isScalar())
return true;
// Cost model is not run in the VPlan-native path - return conservative
// result until this changes.
if (EnableVPlanNativePath)
return false;
auto ScalarsPerVF = Scalars.find(VF);
assert(ScalarsPerVF != Scalars.end() &&
"Scalar values are not calculated for VF");
return ScalarsPerVF->second.count(I);
}
/// \returns True if instruction \p I can be truncated to a smaller bitwidth
/// for vectorization factor \p VF.
bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const {
return VF.isVector() && MinBWs.find(I) != MinBWs.end() &&
!isProfitableToScalarize(I, VF) &&
!isScalarAfterVectorization(I, VF);
}
/// Decision that was taken during cost calculation for memory instruction.
enum InstWidening {
CM_Unknown,
CM_Widen, // For consecutive accesses with stride +1.
CM_Widen_Reverse, // For consecutive accesses with stride -1.
CM_Interleave,
CM_GatherScatter,
CM_Scalarize
};
/// Save vectorization decision \p W and \p Cost taken by the cost model for
/// instruction \p I and vector width \p VF.
void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W,
InstructionCost Cost) {
assert(VF.isVector() && "Expected VF >=2");
WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
}
/// Save vectorization decision \p W and \p Cost taken by the cost model for
/// interleaving group \p Grp and vector width \p VF.
void setWideningDecision(const InterleaveGroup<Instruction> *Grp,
ElementCount VF, InstWidening W,
InstructionCost Cost) {
assert(VF.isVector() && "Expected VF >=2");
/// Broadcast this decicion to all instructions inside the group.
/// But the cost will be assigned to one instruction only.
for (unsigned i = 0; i < Grp->getFactor(); ++i) {
if (auto *I = Grp->getMember(i)) {
if (Grp->getInsertPos() == I)
WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
else
WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
}
}
}
/// Return the cost model decision for the given instruction \p I and vector
/// width \p VF. Return CM_Unknown if this instruction did not pass
/// through the cost modeling.
InstWidening getWideningDecision(Instruction *I, ElementCount VF) const {
assert(VF.isVector() && "Expected VF to be a vector VF");
// Cost model is not run in the VPlan-native path - return conservative
// result until this changes.
if (EnableVPlanNativePath)
return CM_GatherScatter;
std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
auto Itr = WideningDecisions.find(InstOnVF);
if (Itr == WideningDecisions.end())
return CM_Unknown;
return Itr->second.first;
}
/// Return the vectorization cost for the given instruction \p I and vector
/// width \p VF.
InstructionCost getWideningCost(Instruction *I, ElementCount VF) {
assert(VF.isVector() && "Expected VF >=2");
std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
"The cost is not calculated");
return WideningDecisions[InstOnVF].second;
}
/// Return True if instruction \p I is an optimizable truncate whose operand
/// is an induction variable. Such a truncate will be removed by adding a new
/// induction variable with the destination type.
bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) {
// If the instruction is not a truncate, return false.
auto *Trunc = dyn_cast<TruncInst>(I);
if (!Trunc)
return false;
// Get the source and destination types of the truncate.
Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
// If the truncate is free for the given types, return false. Replacing a
// free truncate with an induction variable would add an induction variable
// update instruction to each iteration of the loop. We exclude from this
// check the primary induction variable since it will need an update
// instruction regardless.
Value *Op = Trunc->getOperand(0);
if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
return false;
// If the truncated value is not an induction variable, return false.
return Legal->isInductionPhi(Op);
}
/// Collects the instructions to scalarize for each predicated instruction in
/// the loop.
void collectInstsToScalarize(ElementCount VF);
/// Collect Uniform and Scalar values for the given \p VF.
/// The sets depend on CM decision for Load/Store instructions
/// that may be vectorized as interleave, gather-scatter or scalarized.
void collectUniformsAndScalars(ElementCount VF) {
// Do the analysis once.
if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end())
return;
setCostBasedWideningDecision(VF);
collectLoopUniforms(VF);
collectLoopScalars(VF);
}
/// Returns true if the target machine supports masked store operation
/// for the given \p DataType and kind of access to \p Ptr.
bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const {
return Legal->isConsecutivePtr(Ptr) &&
TTI.isLegalMaskedStore(DataType, Alignment);
}
/// Returns true if the target machine supports masked load operation
/// for the given \p DataType and kind of access to \p Ptr.
bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const {
return Legal->isConsecutivePtr(Ptr) &&
TTI.isLegalMaskedLoad(DataType, Alignment);
}
/// Returns true if the target machine can represent \p V as a masked gather
/// or scatter operation.
bool isLegalGatherOrScatter(Value *V) {
bool LI = isa<LoadInst>(V);
bool SI = isa<StoreInst>(V);
if (!LI && !SI)
return false;
auto *Ty = getLoadStoreType(V);
Align Align = getLoadStoreAlignment(V);
return (LI && TTI.isLegalMaskedGather(Ty, Align)) ||
(SI && TTI.isLegalMaskedScatter(Ty, Align));
}
/// Returns true if the target machine supports all of the reduction
/// variables found for the given VF.
bool canVectorizeReductions(ElementCount VF) const {
return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
const RecurrenceDescriptor &RdxDesc = Reduction.second;
return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
}));
}
/// Returns true if \p I is an instruction that will be scalarized with
/// predication. Such instructions include conditional stores and
/// instructions that may divide by zero.
/// If a non-zero VF has been calculated, we check if I will be scalarized
/// predication for that VF.
bool isScalarWithPredication(Instruction *I) const;
// Returns true if \p I is an instruction that will be predicated either
// through scalar predication or masked load/store or masked gather/scatter.
// Superset of instructions that return true for isScalarWithPredication.
bool isPredicatedInst(Instruction *I) {
if (!blockNeedsPredication(I->getParent()))
return false;
// Loads and stores that need some form of masked operation are predicated
// instructions.
if (isa<LoadInst>(I) || isa<StoreInst>(I))
return Legal->isMaskRequired(I);
return isScalarWithPredication(I);
}
/// Returns true if \p I is a memory instruction with consecutive memory
/// access that can be widened.
bool
memoryInstructionCanBeWidened(Instruction *I,
ElementCount VF = ElementCount::getFixed(1));
/// Returns true if \p I is a memory instruction in an interleaved-group
/// of memory accesses that can be vectorized with wide vector loads/stores
/// and shuffles.
bool
interleavedAccessCanBeWidened(Instruction *I,
ElementCount VF = ElementCount::getFixed(1));
/// Check if \p Instr belongs to any interleaved access group.
bool isAccessInterleaved(Instruction *Instr) {
return InterleaveInfo.isInterleaved(Instr);
}
/// Get the interleaved access group that \p Instr belongs to.
const InterleaveGroup<Instruction> *
getInterleavedAccessGroup(Instruction *Instr) {
return InterleaveInfo.getInterleaveGroup(Instr);
}
/// Returns true if we're required to use a scalar epilogue for at least
/// the final iteration of the original loop.
bool requiresScalarEpilogue(ElementCount VF) const {
if (!isScalarEpilogueAllowed())
return false;
// If we might exit from anywhere but the latch, must run the exiting
// iteration in scalar form.
if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch())
return true;
return VF.isVector() && InterleaveInfo.requiresScalarEpilogue();
}
/// Returns true if a scalar epilogue is not allowed due to optsize or a
/// loop hint annotation.
bool isScalarEpilogueAllowed() const {
return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
}
/// Returns true if all loop blocks should be masked to fold tail loop.
bool foldTailByMasking() const { return FoldTailByMasking; }
bool blockNeedsPredication(BasicBlock *BB) const {
return foldTailByMasking() || Legal->blockNeedsPredication(BB);
}
/// A SmallMapVector to store the InLoop reduction op chains, mapping phi
/// nodes to the chain of instructions representing the reductions. Uses a
/// MapVector to ensure deterministic iteration order.
using ReductionChainMap =
SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>;
/// Return the chain of instructions representing an inloop reduction.
const ReductionChainMap &getInLoopReductionChains() const {
return InLoopReductionChains;
}
/// Returns true if the Phi is part of an inloop reduction.
bool isInLoopReduction(PHINode *Phi) const {
return InLoopReductionChains.count(Phi);
}
/// Estimate cost of an intrinsic call instruction CI if it were vectorized
/// with factor VF. Return the cost of the instruction, including
/// scalarization overhead if it's needed.
InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;
/// Estimate cost of a call instruction CI if it were vectorized with factor
/// VF. Return the cost of the instruction, including scalarization overhead
/// if it's needed. The flag NeedToScalarize shows if the call needs to be
/// scalarized -
/// i.e. either vector version isn't available, or is too expensive.
InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF,
bool &NeedToScalarize) const;
/// Returns true if the per-lane cost of VectorizationFactor A is lower than
/// that of B.
bool isMoreProfitable(const VectorizationFactor &A,
const VectorizationFactor &B) const;
/// Invalidates decisions already taken by the cost model.
void invalidateCostModelingDecisions() {
WideningDecisions.clear();
Uniforms.clear();
Scalars.clear();
}
private:
unsigned NumPredStores = 0;
/// \return An upper bound for the vectorization factors for both
/// fixed and scalable vectorization, where the minimum-known number of
/// elements is a power-of-2 larger than zero. If scalable vectorization is
/// disabled or unsupported, then the scalable part will be equal to
/// ElementCount::getScalable(0).
FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount,
ElementCount UserVF);
/// \return the maximized element count based on the targets vector
/// registers and the loop trip-count, but limited to a maximum safe VF.
/// This is a helper function of computeFeasibleMaxVF.
/// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure
/// issue that occurred on one of the buildbots which cannot be reproduced
/// without having access to the properietary compiler (see comments on
/// D98509). The issue is currently under investigation and this workaround
/// will be removed as soon as possible.
ElementCount getMaximizedVFForTarget(unsigned ConstTripCount,
unsigned SmallestType,
unsigned WidestType,
const ElementCount &MaxSafeVF);
/// \return the maximum legal scalable VF, based on the safe max number
/// of elements.
ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements);
/// The vectorization cost is a combination of the cost itself and a boolean
/// indicating whether any of the contributing operations will actually
/// operate on vector values after type legalization in the backend. If this
/// latter value is false, then all operations will be scalarized (i.e. no
/// vectorization has actually taken place).
using VectorizationCostTy = std::pair<InstructionCost, bool>;
/// Returns the expected execution cost. The unit of the cost does
/// not matter because we use the 'cost' units to compare different
/// vector widths. The cost that is returned is *not* normalized by
/// the factor width. If \p Invalid is not nullptr, this function
/// will add a pair(Instruction*, ElementCount) to \p Invalid for
/// each instruction that has an Invalid cost for the given VF.
using InstructionVFPair = std::pair<Instruction *, ElementCount>;
VectorizationCostTy
expectedCost(ElementCount VF,
SmallVectorImpl<InstructionVFPair> *Invalid = nullptr);
/// Returns the execution time cost of an instruction for a given vector
/// width. Vector width of one means scalar.
VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF);
/// The cost-computation logic from getInstructionCost which provides
/// the vector type as an output parameter.
InstructionCost getInstructionCost(Instruction *I, ElementCount VF,
Type *&VectorTy);
/// Return the cost of instructions in an inloop reduction pattern, if I is
/// part of that pattern.
Optional<InstructionCost>
getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy,
TTI::TargetCostKind CostKind);
/// Calculate vectorization cost of memory instruction \p I.
InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
/// The cost computation for scalarized memory instruction.
InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
/// The cost computation for interleaving group of memory instructions.
InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
/// The cost computation for Gather/Scatter instruction.
InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
/// The cost computation for widening instruction \p I with consecutive
/// memory access.
InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
/// The cost calculation for Load/Store instruction \p I with uniform pointer -
/// Load: scalar load + broadcast.
/// Store: scalar store + (loop invariant value stored? 0 : extract of last
/// element)
InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
/// Estimate the overhead of scalarizing an instruction. This is a
/// convenience wrapper for the type-based getScalarizationOverhead API.
InstructionCost getScalarizationOverhead(Instruction *I,
ElementCount VF) const;
/// Returns whether the instruction is a load or store and will be a emitted
/// as a vector operation.
bool isConsecutiveLoadOrStore(Instruction *I);
/// Returns true if an artificially high cost for emulated masked memrefs
/// should be used.
bool useEmulatedMaskMemRefHack(Instruction *I);
/// Map of scalar integer values to the smallest bitwidth they can be legally
/// represented as. The vector equivalents of these values should be truncated
/// to this type.
MapVector<Instruction *, uint64_t> MinBWs;
/// A type representing the costs for instructions if they were to be
/// scalarized rather than vectorized. The entries are Instruction-Cost
/// pairs.
using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>;
/// A set containing all BasicBlocks that are known to present after
/// vectorization as a predicated block.
SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
/// Records whether it is allowed to have the original scalar loop execute at
/// least once. This may be needed as a fallback loop in case runtime
/// aliasing/dependence checks fail, or to handle the tail/remainder
/// iterations when the trip count is unknown or doesn't divide by the VF,
/// or as a peel-loop to handle gaps in interleave-groups.
/// Under optsize and when the trip count is very small we don't allow any
/// iterations to execute in the scalar loop.
ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
/// All blocks of loop are to be masked to fold tail of scalar iterations.
bool FoldTailByMasking = false;
/// A map holding scalar costs for different vectorization factors. The
/// presence of a cost for an instruction in the mapping indicates that the
/// instruction will be scalarized when vectorizing with the associated
/// vectorization factor. The entries are VF-ScalarCostTy pairs.
DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize;
/// Holds the instructions known to be uniform after vectorization.
/// The data is collected per VF.
DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
/// Holds the instructions known to be scalar after vectorization.
/// The data is collected per VF.
DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
/// Holds the instructions (address computations) that are forced to be
/// scalarized.
DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
/// PHINodes of the reductions that should be expanded in-loop along with
/// their associated chains of reduction operations, in program order from top
/// (PHI) to bottom
ReductionChainMap InLoopReductionChains;
/// A Map of inloop reduction operations and their immediate chain operand.
/// FIXME: This can be removed once reductions can be costed correctly in
/// vplan. This was added to allow quick lookup to the inloop operations,
/// without having to loop through InLoopReductionChains.
DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
/// Returns the expected difference in cost from scalarizing the expression
/// feeding a predicated instruction \p PredInst. The instructions to
/// scalarize and their scalar costs are collected in \p ScalarCosts. A
/// non-negative return value implies the expression will be scalarized.
/// Currently, only single-use chains are considered for scalarization.
int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
ElementCount VF);
/// Collect the instructions that are uniform after vectorization. An
/// instruction is uniform if we represent it with a single scalar value in
/// the vectorized loop corresponding to each vector iteration. Examples of
/// uniform instructions include pointer operands of consecutive or
/// interleaved memory accesses. Note that although uniformity implies an
/// instruction will be scalar, the reverse is not true. In general, a
/// scalarized instruction will be represented by VF scalar values in the
/// vectorized loop, each corresponding to an iteration of the original
/// scalar loop.
void collectLoopUniforms(ElementCount VF);
/// Collect the instructions that are scalar after vectorization. An
/// instruction is scalar if it is known to be uniform or will be scalarized
/// during vectorization. Non-uniform scalarized instructions will be
/// represented by VF values in the vectorized loop, each corresponding to an
/// iteration of the original scalar loop.
void collectLoopScalars(ElementCount VF);
/// Keeps cost model vectorization decision and cost for instructions.
/// Right now it is used for memory instructions only.
using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
std::pair<InstWidening, InstructionCost>>;
DecisionList WideningDecisions;
/// Returns true if \p V is expected to be vectorized and it needs to be
/// extracted.
bool needsExtract(Value *V, ElementCount VF) const {
Instruction *I = dyn_cast<Instruction>(V);
if (VF.isScalar() || !I || !TheLoop->contains(I) ||
TheLoop->isLoopInvariant(I))
return false;
// Assume we can vectorize V (and hence we need extraction) if the
// scalars are not computed yet. This can happen, because it is called
// via getScalarizationOverhead from setCostBasedWideningDecision, before
// the scalars are collected. That should be a safe assumption in most
// cases, because we check if the operands have vectorizable types
// beforehand in LoopVectorizationLegality.
return Scalars.find(VF) == Scalars.end() ||
!isScalarAfterVectorization(I, VF);
};
/// Returns a range containing only operands needing to be extracted.
SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
ElementCount VF) const {
return SmallVector<Value *, 4>(make_filter_range(
Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
}
/// Determines if we have the infrastructure to vectorize loop \p L and its
/// epilogue, assuming the main loop is vectorized by \p VF.
bool isCandidateForEpilogueVectorization(const Loop &L,
const ElementCount VF) const;
/// Returns true if epilogue vectorization is considered profitable, and
/// false otherwise.
/// \p VF is the vectorization factor chosen for the original loop.
bool isEpilogueVectorizationProfitable(const ElementCount VF) const;
public:
/// The loop that we evaluate.
Loop *TheLoop;
/// Predicated scalar evolution analysis.
PredicatedScalarEvolution &PSE;
/// Loop Info analysis.
LoopInfo *LI;
/// Vectorization legality.
LoopVectorizationLegality *Legal;
/// Vector target information.
const TargetTransformInfo &TTI;
/// Target Library Info.
const TargetLibraryInfo *TLI;
/// Demanded bits analysis.
DemandedBits *DB;
/// Assumption cache.
AssumptionCache *AC;
/// Interface to emit optimization remarks.
OptimizationRemarkEmitter *ORE;
const Function *TheFunction;
/// Loop Vectorize Hint.
const LoopVectorizeHints *Hints;
/// The interleave access information contains groups of interleaved accesses
/// with the same stride and close to each other.
InterleavedAccessInfo &InterleaveInfo;
/// Values to ignore in the cost model.
SmallPtrSet<const Value *, 16> ValuesToIgnore;
/// Values to ignore in the cost model when VF > 1.
SmallPtrSet<const Value *, 16> VecValuesToIgnore;
/// All element types found in the loop.
SmallPtrSet<Type *, 16> ElementTypesInLoop;
/// Profitable vector factors.
SmallVector<VectorizationFactor, 8> ProfitableVFs;
};
} // end namespace llvm
/// Helper struct to manage generating runtime checks for vectorization.
///
/// The runtime checks are created up-front in temporary blocks to allow better
/// estimating the cost and un-linked from the existing IR. After deciding to
/// vectorize, the checks are moved back. If deciding not to vectorize, the
/// temporary blocks are completely removed.
class GeneratedRTChecks {
/// Basic block which contains the generated SCEV checks, if any.
BasicBlock *SCEVCheckBlock = nullptr;
/// The value representing the result of the generated SCEV checks. If it is
/// nullptr, either no SCEV checks have been generated or they have been used.
Value *SCEVCheckCond = nullptr;
/// Basic block which contains the generated memory runtime checks, if any.
BasicBlock *MemCheckBlock = nullptr;
/// The value representing the result of the generated memory runtime checks.
/// If it is nullptr, either no memory runtime checks have been generated or
/// they have been used.
Instruction *MemRuntimeCheckCond = nullptr;
DominatorTree *DT;
LoopInfo *LI;
SCEVExpander SCEVExp;
SCEVExpander MemCheckExp;
public:
GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI,
const DataLayout &DL)
: DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"),
MemCheckExp(SE, DL, "scev.check") {}
/// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
/// accurately estimate the cost of the runtime checks. The blocks are
/// un-linked from the IR and is added back during vector code generation. If
/// there is no vector code generation, the check blocks are removed
/// completely.
void Create(Loop *L, const LoopAccessInfo &LAI,
const SCEVUnionPredicate &UnionPred) {
BasicBlock *LoopHeader = L->getHeader();
BasicBlock *Preheader = L->getLoopPreheader();
// Use SplitBlock to create blocks for SCEV & memory runtime checks to
// ensure the blocks are properly added to LoopInfo & DominatorTree. Those
// may be used by SCEVExpander. The blocks will be un-linked from their
// predecessors and removed from LI & DT at the end of the function.
if (!UnionPred.isAlwaysTrue()) {
SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
nullptr, "vector.scevcheck");
SCEVCheckCond = SCEVExp.expandCodeForPredicate(
&UnionPred, SCEVCheckBlock->getTerminator());
}
const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
if (RtPtrChecking.Need) {
auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
"vector.memcheck");
std::tie(std::ignore, MemRuntimeCheckCond) =
addRuntimeChecks(MemCheckBlock->getTerminator(), L,
RtPtrChecking.getChecks(), MemCheckExp);
assert(MemRuntimeCheckCond &&
"no RT checks generated although RtPtrChecking "
"claimed checks are required");
}
if (!MemCheckBlock && !SCEVCheckBlock)
return;
// Unhook the temporary block with the checks, update various places
// accordingly.
if (SCEVCheckBlock)
SCEVCheckBlock->replaceAllUsesWith(Preheader);
if (MemCheckBlock)
MemCheckBlock->replaceAllUsesWith(Preheader);
if (SCEVCheckBlock) {
SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
Preheader->getTerminator()->eraseFromParent();
}
if (MemCheckBlock) {
MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
new UnreachableInst(Preheader->getContext(), MemCheckBlock);
Preheader->getTerminator()->eraseFromParent();
}
DT->changeImmediateDominator(LoopHeader, Preheader);
if (MemCheckBlock) {
DT->eraseNode(MemCheckBlock);
LI->removeBlock(MemCheckBlock);
}
if (SCEVCheckBlock) {
DT->eraseNode(SCEVCheckBlock);
LI->removeBlock(SCEVCheckBlock);
}
}
/// Remove the created SCEV & memory runtime check blocks & instructions, if
/// unused.
~GeneratedRTChecks() {
SCEVExpanderCleaner SCEVCleaner(SCEVExp, *DT);
SCEVExpanderCleaner MemCheckCleaner(MemCheckExp, *DT);
if (!SCEVCheckCond)
SCEVCleaner.markResultUsed();
if (!MemRuntimeCheckCond)
MemCheckCleaner.markResultUsed();
if (MemRuntimeCheckCond) {
auto &SE = *MemCheckExp.getSE();
// Memory runtime check generation creates compares that use expanded
// values. Remove them before running the SCEVExpanderCleaners.
for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
if (MemCheckExp.isInsertedInstruction(&I))
continue;
SE.forgetValue(&I);
SE.eraseValueFromMap(&I);
I.eraseFromParent();
}
}
MemCheckCleaner.cleanup();
SCEVCleaner.cleanup();
if (SCEVCheckCond)
SCEVCheckBlock->eraseFromParent();
if (MemRuntimeCheckCond)
MemCheckBlock->eraseFromParent();
}
/// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and
/// adjusts the branches to branch to the vector preheader or \p Bypass,
/// depending on the generated condition.
BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass,
BasicBlock *LoopVectorPreHeader,
BasicBlock *LoopExitBlock) {
if (!SCEVCheckCond)
return nullptr;
if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond))
if (C->isZero())
return nullptr;
auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock);
// Create new preheader for vector loop.
if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
PL->addBasicBlockToLoop(SCEVCheckBlock, *LI);
SCEVCheckBlock->getTerminator()->eraseFromParent();
SCEVCheckBlock->moveBefore(LoopVectorPreHeader);
Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
SCEVCheckBlock);
DT->addNewBlock(SCEVCheckBlock, Pred);
DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock);
ReplaceInstWithInst(
SCEVCheckBlock->getTerminator(),
BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond));
// Mark the check as used, to prevent it from being removed during cleanup.
SCEVCheckCond = nullptr;
return SCEVCheckBlock;
}
/// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts
/// the branches to branch to the vector preheader or \p Bypass, depending on
/// the generated condition.
BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass,
BasicBlock *LoopVectorPreHeader) {
// Check if we generated code that checks in runtime if arrays overlap.
if (!MemRuntimeCheckCond)
return nullptr;
auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
MemCheckBlock);
DT->addNewBlock(MemCheckBlock, Pred);
DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock);
MemCheckBlock->moveBefore(LoopVectorPreHeader);
if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
PL->addBasicBlockToLoop(MemCheckBlock, *LI);
ReplaceInstWithInst(
MemCheckBlock->getTerminator(),
BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond));
MemCheckBlock->getTerminator()->setDebugLoc(
Pred->getTerminator()->getDebugLoc());
// Mark the check as used, to prevent it from being removed during cleanup.
MemRuntimeCheckCond = nullptr;
return MemCheckBlock;
}
};
// Return true if \p OuterLp is an outer loop annotated with hints for explicit
// vectorization. The loop needs to be annotated with #pragma omp simd
// simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
// vector length information is not provided, vectorization is not considered
// explicit. Interleave hints are not allowed either. These limitations will be
// relaxed in the future.
// Please, note that we are currently forced to abuse the pragma 'clang
// vectorize' semantics. This pragma provides *auto-vectorization hints*
// (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
// provides *explicit vectorization hints* (LV can bypass legal checks and
// assume that vectorization is legal). However, both hints are implemented
// using the same metadata (llvm.loop.vectorize, processed by
// LoopVectorizeHints). This will be fixed in the future when the native IR
// representation for pragma 'omp simd' is introduced.
static bool isExplicitVecOuterLoop(Loop *OuterLp,
OptimizationRemarkEmitter *ORE) {
assert(!OuterLp->isInnermost() && "This is not an outer loop");
LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
// Only outer loops with an explicit vectorization hint are supported.
// Unannotated outer loops are ignored.
if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
return false;
Function *Fn = OuterLp->getHeader()->getParent();
if (!Hints.allowVectorization(Fn, OuterLp,
true /*VectorizeOnlyWhenForced*/)) {
LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
return false;
}
if (Hints.getInterleave() > 1) {
// TODO: Interleave support is future work.
LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
"outer loops.\n");
Hints.emitRemarkWithHints();
return false;
}
return true;
}
static void collectSupportedLoops(Loop &L, LoopInfo *LI,
OptimizationRemarkEmitter *ORE,
SmallVectorImpl<Loop *> &V) {
// Collect inner loops and outer loops without irreducible control flow. For
// now, only collect outer loops that have explicit vectorization hints. If we
// are stress testing the VPlan H-CFG construction, we collect the outermost
// loop of every loop nest.
if (L.isInnermost() || VPlanBuildStressTest ||
(EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
LoopBlocksRPO RPOT(&L);
RPOT.perform(LI);
if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
V.push_back(&L);
// TODO: Collect inner loops inside marked outer loops in case
// vectorization fails for the outer loop. Do not invoke
// 'containsIrreducibleCFG' again for inner loops when the outer loop is
// already known to be reducible. We can use an inherited attribute for
// that.
return;
}
}
for (Loop *InnerL : L)
collectSupportedLoops(*InnerL, LI, ORE, V);
}
namespace {
/// The LoopVectorize Pass.
struct LoopVectorize : public FunctionPass {
/// Pass identification, replacement for typeid
static char ID;
LoopVectorizePass Impl;
explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
bool VectorizeOnlyWhenForced = false)
: FunctionPass(ID),
Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override {
if (skipFunction(F))
return false;
auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
std::function<const LoopAccessInfo &(Loop &)> GetLAA =
[&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
GetLAA, *ORE, PSI).MadeAnyChange;
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<BlockFrequencyInfoWrapperPass>();
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<LoopInfoWrapperPass>();
AU.addRequired<ScalarEvolutionWrapperPass>();
AU.addRequired<TargetTransformInfoWrapperPass>();
AU.addRequired<AAResultsWrapperPass>();
AU.addRequired<LoopAccessLegacyAnalysis>();
AU.addRequired<DemandedBitsWrapperPass>();
AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
AU.addRequired<InjectTLIMappingsLegacy>();
// We currently do not preserve loopinfo/dominator analyses with outer loop
// vectorization. Until this is addressed, mark these analyses as preserved
// only for non-VPlan-native path.
// TODO: Preserve Loop and Dominator analyses for VPlan-native path.
if (!EnableVPlanNativePath) {
AU.addPreserved<LoopInfoWrapperPass>();
AU.addPreserved<DominatorTreeWrapperPass>();
}
AU.addPreserved<BasicAAWrapperPass>();
AU.addPreserved<GlobalsAAWrapperPass>();
AU.addRequired<ProfileSummaryInfoWrapperPass>();
}
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
// LoopVectorizationCostModel and LoopVectorizationPlanner.
//===----------------------------------------------------------------------===//
Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
// We need to place the broadcast of invariant variables outside the loop,
// but only if it's proven safe to do so. Else, broadcast will be inside
// vector loop body.
Instruction *Instr = dyn_cast<Instruction>(V);
bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
(!Instr ||
DT->dominates(Instr->getParent(), LoopVectorPreHeader));
// Place the code for broadcasting invariant variables in the new preheader.
IRBuilder<>::InsertPointGuard Guard(Builder);
if (SafeToHoist)
Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
// Broadcast the scalar into all locations in the vector.
Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
return Shuf;
}
void InnerLoopVectorizer::createVectorIntOrFpInductionPHI(
const InductionDescriptor &II, Value *Step, Value *Start,
Instruction *EntryVal, VPValue *Def, VPValue *CastDef,
VPTransformState &State) {
assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
"Expected either an induction phi-node or a truncate of it!");
// Construct the initial value of the vector IV in the vector loop preheader
auto CurrIP = Builder.saveIP();
Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
if (isa<TruncInst>(EntryVal)) {
assert(Start->getType()->isIntegerTy() &&
"Truncation requires an integer type");
auto *TruncType = cast<IntegerType>(EntryVal->getType());
Step = Builder.CreateTrunc(Step, TruncType);
Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
}
Value *SplatStart = Builder.CreateVectorSplat(VF, Start);
Value *SteppedStart =
getStepVector(SplatStart, 0, Step, II.getInductionOpcode());
// We create vector phi nodes for both integer and floating-point induction
// variables. Here, we determine the kind of arithmetic we will perform.
Instruction::BinaryOps AddOp;
Instruction::BinaryOps MulOp;
if (Step->getType()->isIntegerTy()) {
AddOp = Instruction::Add;
MulOp = Instruction::Mul;
} else {
AddOp = II.getInductionOpcode();
MulOp = Instruction::FMul;
}
// Multiply the vectorization factor by the step using integer or
// floating-point arithmetic as appropriate.
Type *StepType = Step->getType();
if (Step->getType()->isFloatingPointTy())
StepType = IntegerType::get(StepType->getContext(),
StepType->getScalarSizeInBits());
Value *RuntimeVF = getRuntimeVF(Builder, StepType, VF);
if (Step->getType()->isFloatingPointTy())
RuntimeVF = Builder.CreateSIToFP(RuntimeVF, Step->getType());
Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF);
// Create a vector splat to use in the induction update.
//
// FIXME: If the step is non-constant, we create the vector splat with
// IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
// handle a constant vector splat.
Value *SplatVF = isa<Constant>(Mul)
? ConstantVector::getSplat(VF, cast<Constant>(Mul))
: Builder.CreateVectorSplat(VF, Mul);
Builder.restoreIP(CurrIP);
// We may need to add the step a number of times, depending on the unroll
// factor. The last of those goes into the PHI.
PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
&*LoopVectorBody->getFirstInsertionPt());
VecInd->setDebugLoc(EntryVal->getDebugLoc());
Instruction *LastInduction = VecInd;
for (unsigned Part = 0; Part < UF; ++Part) {
State.set(Def, LastInduction, Part);
if (isa<TruncInst>(EntryVal))
addMetadata(LastInduction, EntryVal);
recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, CastDef,
State, Part);
LastInduction = cast<Instruction>(
Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"));
LastInduction->setDebugLoc(EntryVal->getDebugLoc());
}
// Move the last step to the end of the latch block. This ensures consistent
// placement of all induction updates.
auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
auto *ICmp = cast<Instruction>(Br->getCondition());
LastInduction->moveBefore(ICmp);
LastInduction->setName("vec.ind.next");
VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
VecInd->addIncoming(LastInduction, LoopVectorLatch);
}
bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const {
return Cost->isScalarAfterVectorization(I, VF) ||
Cost->isProfitableToScalarize(I, VF);
}
bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const {
if (shouldScalarizeInstruction(IV))
return true;
auto isScalarInst = [&](User *U) -> bool {
auto *I = cast<Instruction>(U);
return (OrigLoop->contains(I) && shouldScalarizeInstruction(I));
};
return llvm::any_of(IV->users(), isScalarInst);
}
void InnerLoopVectorizer::recordVectorLoopValueForInductionCast(
const InductionDescriptor &ID, const Instruction *EntryVal,
Value *VectorLoopVal, VPValue *CastDef, VPTransformState &State,
unsigned Part, unsigned Lane) {
assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
"Expected either an induction phi-node or a truncate of it!");
// This induction variable is not the phi from the original loop but the
// newly-created IV based on the proof that casted Phi is equal to the
// uncasted Phi in the vectorized loop (under a runtime guard possibly). It
// re-uses the same InductionDescriptor that original IV uses but we don't
// have to do any recording in this case - that is done when original IV is
// processed.
if (isa<TruncInst>(EntryVal))
return;
const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
if (Casts.empty())
return;
// Only the first Cast instruction in the Casts vector is of interest.
// The rest of the Casts (if exist) have no uses outside the
// induction update chain itself.
if (Lane < UINT_MAX)
State.set(CastDef, VectorLoopVal, VPIteration(Part, Lane));
else
State.set(CastDef, VectorLoopVal, Part);
}
void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, Value *Start,
TruncInst *Trunc, VPValue *Def,
VPValue *CastDef,
VPTransformState &State) {
assert((IV->getType()->isIntegerTy() || IV != OldInduction) &&
"Primary induction variable must have an integer type");
auto II = Legal->getInductionVars().find(IV);
assert(II != Legal->getInductionVars().end() && "IV is not an induction");
auto ID = II->second;
assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
// The value from the original loop to which we are mapping the new induction
// variable.
Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
// Generate code for the induction step. Note that induction steps are
// required to be loop-invariant
auto CreateStepValue = [&](const SCEV *Step) -> Value * {
assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) &&
"Induction step should be loop invariant");
if (PSE.getSE()->isSCEVable(IV->getType())) {
SCEVExpander Exp(*PSE.getSE(), DL, "induction");
return Exp.expandCodeFor(Step, Step->getType(),
LoopVectorPreHeader->getTerminator());
}
return cast<SCEVUnknown>(Step)->getValue();
};
// The scalar value to broadcast. This is derived from the canonical
// induction variable. If a truncation type is given, truncate the canonical
// induction variable and step. Otherwise, derive these values from the
// induction descriptor.
auto CreateScalarIV = [&](Value *&Step) -> Value * {
Value *ScalarIV = Induction;
if (IV != OldInduction) {
ScalarIV = IV->getType()->isIntegerTy()
? Builder.CreateSExtOrTrunc(Induction, IV->getType())
: Builder.CreateCast(Instruction::SIToFP, Induction,
IV->getType());
ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID);
ScalarIV->setName("offset.idx");
}
if (Trunc) {
auto *TruncType = cast<IntegerType>(Trunc->getType());
assert(Step->getType()->isIntegerTy() &&
"Truncation requires an integer step");
ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType);
Step = Builder.CreateTrunc(Step, TruncType);
}
return ScalarIV;
};
// Create the vector values from the scalar IV, in the absence of creating a
// vector IV.
auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) {
Value *Broadcasted = getBroadcastInstrs(ScalarIV);
for (unsigned Part = 0; Part < UF; ++Part) {
assert(!VF.isScalable() && "scalable vectors not yet supported.");
Value *EntryPart =
getStepVector(Broadcasted, VF.getKnownMinValue() * Part, Step,
ID.getInductionOpcode());
State.set(Def, EntryPart, Part);
if (Trunc)
addMetadata(EntryPart, Trunc);
recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, CastDef,
State, Part);
}
};
// Fast-math-flags propagate from the original induction instruction.
IRBuilder<>::FastMathFlagGuard FMFG(Builder);
if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp()))
Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags());
// Now do the actual transformations, and start with creating the step value.
Value *Step = CreateStepValue(ID.getStep());
if (VF.isZero() || VF.isScalar()) {
Value *ScalarIV = CreateScalarIV(Step);
CreateSplatIV(ScalarIV, Step);
return;
}
// Determine if we want a scalar version of the induction variable. This is
// true if the induction variable itself is not widened, or if it has at
// least one user in the loop that is not widened.
auto NeedsScalarIV = needsScalarInduction(EntryVal);
if (!NeedsScalarIV) {
createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef,
State);
return;
}
// Try to create a new independent vector induction variable. If we can't
// create the phi node, we will splat the scalar induction variable in each
// loop iteration.
if (!shouldScalarizeInstruction(EntryVal)) {
createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef,
State);
Value *ScalarIV = CreateScalarIV(Step);
// Create scalar steps that can be used by instructions we will later
// scalarize. Note that the addition of the scalar steps will not increase
// the number of instructions in the loop in the common case prior to
// InstCombine. We will be trading one vector extract for each scalar step.
buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State);
return;
}
// All IV users are scalar instructions, so only emit a scalar IV, not a
// vectorised IV. Except when we tail-fold, then the splat IV feeds the
// predicate used by the masked loads/stores.
Value *ScalarIV = CreateScalarIV(Step);
if (!Cost->isScalarEpilogueAllowed())
CreateSplatIV(ScalarIV, Step);
buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State);
}
Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step,
Instruction::BinaryOps BinOp) {
// Create and check the types.
auto *ValVTy = cast<VectorType>(Val->getType());
ElementCount VLen = ValVTy->getElementCount();
Type *STy = Val->getType()->getScalarType();
assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
"Induction Step must be an integer or FP");
assert(Step->getType() == STy && "Step has wrong type");
SmallVector<Constant *, 8> Indices;
// Create a vector of consecutive numbers from zero to VF.
VectorType *InitVecValVTy = ValVTy;
Type *InitVecValSTy = STy;
if (STy->isFloatingPointTy()) {
InitVecValSTy =
IntegerType::get(STy->getContext(), STy->getScalarSizeInBits());
InitVecValVTy = VectorType::get(InitVecValSTy, VLen);
}
Value *InitVec = Builder.CreateStepVector(InitVecValVTy);
// Add on StartIdx
Value *StartIdxSplat = Builder.CreateVectorSplat(
VLen, ConstantInt::get(InitVecValSTy, StartIdx));
InitVec = Builder.CreateAdd(InitVec, StartIdxSplat);
if (STy->isIntegerTy()) {
Step = Builder.CreateVectorSplat(VLen, Step);
assert(Step->getType() == Val->getType() && "Invalid step vec");
// FIXME: The newly created binary instructions should contain nsw/nuw flags,
// which can be found from the original scalar operations.
Step = Builder.CreateMul(InitVec, Step);
return Builder.CreateAdd(Val, Step, "induction");
}
// Floating point induction.
assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
"Binary Opcode should be specified for FP induction");
InitVec = Builder.CreateUIToFP(InitVec, ValVTy);
Step = Builder.CreateVectorSplat(VLen, Step);
Value *MulOp = Builder.CreateFMul(InitVec, Step);
return Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
}
void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step,
Instruction *EntryVal,
const InductionDescriptor &ID,
VPValue *Def, VPValue *CastDef,
VPTransformState &State) {
// We shouldn't have to build scalar steps if we aren't vectorizing.
assert(VF.isVector() && "VF should be greater than one");
// Get the value type and ensure it and the step have the same integer type.
Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
assert(ScalarIVTy == Step->getType() &&
"Val and Step should have the same type");
// We build scalar steps for both integer and floating-point induction
// variables. Here, we determine the kind of arithmetic we will perform.
Instruction::BinaryOps AddOp;
Instruction::BinaryOps MulOp;
if (ScalarIVTy->isIntegerTy()) {
AddOp = Instruction::Add;
MulOp = Instruction::Mul;
} else {
AddOp = ID.getInductionOpcode();
MulOp = Instruction::FMul;
}
// Determine the number of scalars we need to generate for each unroll
// iteration. If EntryVal is uniform, we only need to generate the first
// lane. Otherwise, we generate all VF values.
bool IsUniform =
Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF);
unsigned Lanes = IsUniform ? 1 : VF.getKnownMinValue();
// Compute the scalar steps and save the results in State.
Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(),
ScalarIVTy->getScalarSizeInBits());
Type *VecIVTy = nullptr;
Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr;
if (!IsUniform && VF.isScalable()) {
VecIVTy = VectorType::get(ScalarIVTy, VF);
UnitStepVec = Builder.CreateStepVector(VectorType::get(IntStepTy, VF));
SplatStep = Builder.CreateVectorSplat(VF, Step);
SplatIV = Builder.CreateVectorSplat(VF, ScalarIV);
}
for (unsigned Part = 0; Part < UF; ++Part) {
Value *StartIdx0 =
createStepForVF(Builder, ConstantInt::get(IntStepTy, Part), VF);
if (!IsUniform && VF.isScalable()) {
auto *SplatStartIdx = Builder.CreateVectorSplat(VF, StartIdx0);
auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
if (ScalarIVTy->isFloatingPointTy())
InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul);
State.set(Def, Add, Part);
recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State,
Part);
// It's useful to record the lane values too for the known minimum number
// of elements so we do those below. This improves the code quality when
// trying to extract the first element, for example.
}
if (ScalarIVTy->isFloatingPointTy())
StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy);
for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
Value *StartIdx = Builder.CreateBinOp(
AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane));
// The step returned by `createStepForVF` is a runtime-evaluated value
// when VF is scalable. Otherwise, it should be folded into a Constant.
assert((VF.isScalable() || isa<Constant>(StartIdx)) &&
"Expected StartIdx to be folded to a constant when VF is not "
"scalable");
auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul);
State.set(Def, Add, VPIteration(Part, Lane));
recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State,
Part, Lane);
}
}
}
void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def,
const VPIteration &Instance,
VPTransformState &State) {
Value *ScalarInst = State.get(Def, Instance);
Value *VectorValue = State.get(Def, Instance.Part);
VectorValue = Builder.CreateInsertElement(
VectorValue, ScalarInst,
Instance.Lane.getAsRuntimeExpr(State.Builder, VF));
State.set(Def, VectorValue, Instance.Part);
}
Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
assert(Vec->getType()->isVectorTy() && "Invalid type");
return Builder.CreateVectorReverse(Vec, "reverse");
}
// Return whether we allow using masked interleave-groups (for dealing with
// strided loads/stores that reside in predicated blocks, or for dealing
// with gaps).
static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
// If an override option has been passed in for interleaved accesses, use it.
if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
return EnableMaskedInterleavedMemAccesses;
return TTI.enableMaskedInterleavedAccessVectorization();
}
// Try to vectorize the interleave group that \p Instr belongs to.
//
// E.g. Translate following interleaved load group (factor = 3):
// for (i = 0; i < N; i+=3) {
// R = Pic[i]; // Member of index 0
// G = Pic[i+1]; // Member of index 1
// B = Pic[i+2]; // Member of index 2
// ... // do something to R, G, B
// }
// To:
// %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B
// %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements
// %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements
// %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements
//
// Or translate following interleaved store group (factor = 3):
// for (i = 0; i < N; i+=3) {
// ... do something to R, G, B
// Pic[i] = R; // Member of index 0
// Pic[i+1] = G; // Member of index 1
// Pic[i+2] = B; // Member of index 2
// }
// To:
// %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
// %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
// %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements
// store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B
void InnerLoopVectorizer::vectorizeInterleaveGroup(
const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs,
VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues,
VPValue *BlockInMask) {
Instruction *Instr = Group->getInsertPos();
const DataLayout &DL = Instr->getModule()->getDataLayout();
// Prepare for the vector type of the interleaved load/store.
Type *ScalarTy = getLoadStoreType(Instr);
unsigned InterleaveFactor = Group->getFactor();
assert(!VF.isScalable() && "scalable vectors not yet supported.");
auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor);
// Prepare for the new pointers.
SmallVector<Value *, 2> AddrParts;
unsigned Index = Group->getIndex(Instr);
// TODO: extend the masked interleaved-group support to reversed access.
assert((!BlockInMask || !Group->isReverse()) &&
"Reversed masked interleave-group not supported.");
// If the group is reverse, adjust the index to refer to the last vector lane
// instead of the first. We adjust the index from the first vector lane,
// rather than directly getting the pointer for lane VF - 1, because the
// pointer operand of the interleaved access is supposed to be uniform. For
// uniform instructions, we're only required to generate a value for the
// first vector lane in each unroll iteration.
if (Group->isReverse())
Index += (VF.getKnownMinValue() - 1) * Group->getFactor();
for (unsigned Part = 0; Part < UF; Part++) {
Value *AddrPart = State.get(Addr, VPIteration(Part, 0));
setDebugLocFromInst(AddrPart);
// Notice current instruction could be any index. Need to adjust the address
// to the member of index 0.
//
// E.g. a = A[i+1]; // Member of index 1 (Current instruction)
// b = A[i]; // Member of index 0
// Current pointer is pointed to A[i+1], adjust it to A[i].
//
// E.g. A[i+1] = a; // Member of index 1
// A[i] = b; // Member of index 0
// A[i+2] = c; // Member of index 2 (Current instruction)
// Current pointer is pointed to A[i+2], adjust it to A[i].
bool InBounds = false;
if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
InBounds = gep->isInBounds();
AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
// Cast to the vector pointer type.
unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
Type *PtrTy = VecTy->getPointerTo(AddressSpace);
AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
}
setDebugLocFromInst(Instr);
Value *PoisonVec = PoisonValue::get(VecTy);
Value *MaskForGaps = nullptr;
if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
assert(MaskForGaps && "Mask for Gaps is required but it is null");
}
// Vectorize the interleaved load group.
if (isa<LoadInst>(Instr)) {
// For each unroll part, create a wide load for the group.
SmallVector<Value *, 2> NewLoads;
for (unsigned Part = 0; Part < UF; Part++) {
Instruction *NewLoad;
if (BlockInMask || MaskForGaps) {
assert(useMaskedInterleavedAccesses(*TTI) &&
"masked interleaved groups are not allowed.");
Value *GroupMask = MaskForGaps;
if (BlockInMask) {
Value *BlockInMaskPart = State.get(BlockInMask, Part);
Value *ShuffledMask = Builder.CreateShuffleVector(
BlockInMaskPart,
createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
"interleaved.mask");
GroupMask = MaskForGaps
? Builder.CreateBinOp(Instruction::And, ShuffledMask,
MaskForGaps)
: ShuffledMask;
}
NewLoad =
Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(),
GroupMask, PoisonVec, "wide.masked.vec");
}
else
NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
Group->getAlign(), "wide.vec");
Group->addMetadata(NewLoad);
NewLoads.push_back(NewLoad);
}
// For each member in the group, shuffle out the appropriate data from the
// wide loads.
unsigned J = 0;
for (unsigned I = 0; I < InterleaveFactor; ++I) {
Instruction *Member = Group->getMember(I);
// Skip the gaps in the group.
if (!Member)
continue;
auto StrideMask =
createStrideMask(I, InterleaveFactor, VF.getKnownMinValue());
for (unsigned Part = 0; Part < UF; Part++) {
Value *StridedVec = Builder.CreateShuffleVector(
NewLoads[Part], StrideMask, "strided.vec");
// If this member has different type, cast the result type.
if (Member->getType() != ScalarTy) {
assert(!VF.isScalable() && "VF is assumed to be non scalable.");
VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
}
if (Group->isReverse())
StridedVec = reverseVector(StridedVec);
State.set(VPDefs[J], StridedVec, Part);
}
++J;
}
return;
}
// The sub vector type for current instruction.
auto *SubVT = VectorType::get(ScalarTy, VF);
// Vectorize the interleaved store group.
for (unsigned Part = 0; Part < UF; Part++) {
// Collect the stored vector from each member.
SmallVector<Value *, 4> StoredVecs;
for (unsigned i = 0; i < InterleaveFactor; i++) {
// Interleaved store group doesn't allow a gap, so each index has a member
assert(Group->getMember(i) && "Fail to get a member from an interleaved store group");
Value *StoredVec = State.get(StoredValues[i], Part);
if (Group->isReverse())
StoredVec = reverseVector(StoredVec);
// If this member has different type, cast it to a unified type.
if (StoredVec->getType() != SubVT)
StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
StoredVecs.push_back(StoredVec);
}
// Concatenate all vectors into a wide vector.
Value *WideVec = concatenateVectors(Builder, StoredVecs);
// Interleave the elements in the wide vector.
Value *IVec = Builder.CreateShuffleVector(
WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor),
"interleaved.vec");
Instruction *NewStoreInstr;
if (BlockInMask) {
Value *BlockInMaskPart = State.get(BlockInMask, Part);
Value *ShuffledMask = Builder.CreateShuffleVector(
BlockInMaskPart,
createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
"interleaved.mask");
NewStoreInstr = Builder.CreateMaskedStore(
IVec, AddrParts[Part], Group->getAlign(), ShuffledMask);
}
else
NewStoreInstr =
Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
Group->addMetadata(NewStoreInstr);
}
}
void InnerLoopVectorizer::vectorizeMemoryInstruction(
Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr,
VPValue *StoredValue, VPValue *BlockInMask) {
// Attempt to issue a wide load.
LoadInst *LI = dyn_cast<LoadInst>(Instr);
StoreInst *SI = dyn_cast<StoreInst>(Instr);
assert((LI || SI) && "Invalid Load/Store instruction");
assert((!SI || StoredValue) && "No stored value provided for widened store");
assert((!LI || !StoredValue) && "Stored value provided for widened load");
LoopVectorizationCostModel::InstWidening Decision =
Cost->getWideningDecision(Instr, VF);
assert((Decision == LoopVectorizationCostModel::CM_Widen ||
Decision == LoopVectorizationCostModel::CM_Widen_Reverse ||
Decision == LoopVectorizationCostModel::CM_GatherScatter) &&
"CM decision is not to widen the memory instruction");
Type *ScalarDataTy = getLoadStoreType(Instr);
auto *DataTy = VectorType::get(ScalarDataTy, VF);
const Align Alignment = getLoadStoreAlignment(Instr);
// Determine if the pointer operand of the access is either consecutive or
// reverse consecutive.
bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse);
bool ConsecutiveStride =
Reverse || (Decision == LoopVectorizationCostModel::CM_Widen);
bool CreateGatherScatter =
(Decision == LoopVectorizationCostModel::CM_GatherScatter);
// Either Ptr feeds a vector load/store, or a vector GEP should feed a vector
// gather/scatter. Otherwise Decision should have been to Scalarize.
assert((ConsecutiveStride || CreateGatherScatter) &&
"The instruction should be scalarized");
(void)ConsecutiveStride;
VectorParts BlockInMaskParts(UF);
bool isMaskRequired = BlockInMask;
if (isMaskRequired)
for (unsigned Part = 0; Part < UF; ++Part)
BlockInMaskParts[Part] = State.get(BlockInMask, Part);
const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
// Calculate the pointer for the specific unroll-part.
GetElementPtrInst *PartPtr = nullptr;
bool InBounds = false;
if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
InBounds = gep->isInBounds();
if (Reverse) {
// If the address is consecutive but reversed, then the
// wide store needs to start at the last vector element.
// RunTimeVF = VScale * VF.getKnownMinValue()
// For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue()
Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), VF);
// NumElt = -Part * RunTimeVF
Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF);
// LastLane = 1 - RunTimeVF
Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF);
PartPtr =
cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt));
PartPtr->setIsInBounds(InBounds);
PartPtr = cast<GetElementPtrInst>(
Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane));
PartPtr->setIsInBounds(InBounds);
if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]);
} else {
Value *Increment = createStepForVF(Builder, Builder.getInt32(Part), VF);
PartPtr = cast<GetElementPtrInst>(
Builder.CreateGEP(ScalarDataTy, Ptr, Increment));
PartPtr->setIsInBounds(InBounds);
}
unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
};
// Handle Stores:
if (SI) {
setDebugLocFromInst(SI);
for (unsigned Part = 0; Part < UF; ++Part) {
Instruction *NewSI = nullptr;
Value *StoredVal = State.get(StoredValue, Part);
if (CreateGatherScatter) {
Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
Value *VectorGep = State.get(Addr, Part);
NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
MaskPart);
} else {
if (Reverse) {
// If we store to reverse consecutive memory locations, then we need
// to reverse the order of elements in the stored value.
StoredVal = reverseVector(StoredVal);
// We don't want to update the value in the map as it might be used in
// another expression. So don't call resetVectorValue(StoredVal).
}
auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0)));
if (isMaskRequired)
NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
BlockInMaskParts[Part]);
else
NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
}
addMetadata(NewSI, SI);
}
return;
}
// Handle loads.
assert(LI && "Must have a load instruction");
setDebugLocFromInst(LI);
for (unsigned Part = 0; Part < UF; ++Part) {
Value *NewLI;
if (CreateGatherScatter) {
Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
Value *VectorGep = State.get(Addr, Part);
NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart,
nullptr, "wide.masked.gather");
addMetadata(NewLI, LI);
} else {
auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0)));
if (isMaskRequired)
NewLI = Builder.CreateMaskedLoad(
DataTy, VecPtr, Alignment, BlockInMaskParts[Part],
PoisonValue::get(DataTy), "wide.masked.load");
else
NewLI =
Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
// Add metadata to the load, but setVectorValue to the reverse shuffle.
addMetadata(NewLI, LI);
if (Reverse)
NewLI = reverseVector(NewLI);
}
State.set(Def, NewLI, Part);
}
}
void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPValue *Def,
VPUser &User,
const VPIteration &Instance,
bool IfPredicateInstr,
VPTransformState &State) {
assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
// llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for
// the first lane and part.
if (isa<NoAliasScopeDeclInst>(Instr))
if (!Instance.isFirstIteration())
return;
setDebugLocFromInst(Instr);
// Does this instruction return a value ?
bool IsVoidRetTy = Instr->getType()->isVoidTy();
Instruction *Cloned = Instr->clone();
if (!IsVoidRetTy)
Cloned->setName(Instr->getName() + ".cloned");
State.Builder.SetInsertPoint(Builder.GetInsertBlock(),
Builder.GetInsertPoint());
// Replace the operands of the cloned instructions with their scalar
// equivalents in the new loop.
for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) {
auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op));
auto InputInstance = Instance;
if (!Operand || !OrigLoop->contains(Operand) ||
(Cost->isUniformAfterVectorization(Operand, State.VF)))
InputInstance.Lane = VPLane::getFirstLane();
auto *NewOp = State.get(User.getOperand(op), InputInstance);
Cloned->setOperand(op, NewOp);
}
addNewMetadata(Cloned, Instr);
// Place the cloned scalar in the new loop.
Builder.Insert(Cloned);
State.set(Def, Cloned, Instance);
// If we just cloned a new assumption, add it the assumption cache.
if (auto *II = dyn_cast<AssumeInst>(Cloned))
AC->registerAssumption(II);
// End if-block.
if (IfPredicateInstr)
PredicatedInstructions.push_back(Cloned);
}
PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start,
Value *End, Value *Step,
Instruction *DL) {
BasicBlock *Header = L->getHeader();
BasicBlock *Latch = L->getLoopLatch();
// As we're just creating this loop, it's possible no latch exists
// yet. If so, use the header as this will be a single block loop.
if (!Latch)
Latch = Header;
IRBuilder<> B(&*Header->getFirstInsertionPt());
Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction);
setDebugLocFromInst(OldInst, &B);
auto *Induction = B.CreatePHI(Start->getType(), 2, "index");
B.SetInsertPoint(Latch->getTerminator());
setDebugLocFromInst(OldInst, &B);
// Create i+1 and fill the PHINode.
//
// If the tail is not folded, we know that End - Start >= Step (either
// statically or through the minimum iteration checks). We also know that both
// Start % Step == 0 and End % Step == 0. We exit the vector loop if %IV +
// %Step == %End. Hence we must exit the loop before %IV + %Step unsigned
// overflows and we can mark the induction increment as NUW.
Value *Next = B.CreateAdd(Induction, Step, "index.next",
/*NUW=*/!Cost->foldTailByMasking(), /*NSW=*/false);
Induction->addIncoming(Start, L->getLoopPreheader());
Induction->addIncoming(Next, Latch);
// Create the compare.
Value *ICmp = B.CreateICmpEQ(Next, End);
B.CreateCondBr(ICmp, L->getUniqueExitBlock(), Header);
// Now we have two terminators. Remove the old one from the block.
Latch->getTerminator()->eraseFromParent();
return Induction;
}
Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
if (TripCount)
return TripCount;
assert(L && "Create Trip Count for null loop.");
IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
// Find the loop boundaries.
ScalarEvolution *SE = PSE.getSE();
const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
"Invalid loop count");
Type *IdxTy = Legal->getWidestInductionType();
assert(IdxTy && "No type for induction");
// The exit count might have the type of i64 while the phi is i32. This can
// happen if we have an induction variable that is sign extended before the
// compare. The only way that we get a backedge taken count is that the
// induction variable was signed and as such will not overflow. In such a case
// truncation is legal.
if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) >
IdxTy->getPrimitiveSizeInBits())
BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
// Get the total trip count from the count by adding 1.
const SCEV *ExitCount = SE->getAddExpr(
BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
// Expand the trip count and place the new instructions in the preheader.
// Notice that the pre-header does not change, only the loop body.
SCEVExpander Exp(*SE, DL, "induction");
// Count holds the overall loop count (N).
TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
L->getLoopPreheader()->getTerminator());
if (TripCount->getType()->isPointerTy())
TripCount =
CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
L->getLoopPreheader()->getTerminator());
return TripCount;
}
Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
if (VectorTripCount)
return VectorTripCount;
Value *TC = getOrCreateTripCount(L);
IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
Type *Ty = TC->getType();
// This is where we can make the step a runtime constant.
Value *Step = createStepForVF(Builder, ConstantInt::get(Ty, UF), VF);
// If the tail is to be folded by masking, round the number of iterations N
// up to a multiple of Step instead of rounding down. This is done by first
// adding Step-1 and then rounding down. Note that it's ok if this addition
// overflows: the vector induction variable will eventually wrap to zero given
// that it starts at zero and its Step is a power of two; the loop will then
// exit, with the last early-exit vector comparison also producing all-true.
if (Cost->foldTailByMasking()) {
assert(isPowerOf2_32(VF.getKnownMinValue() * UF) &&
"VF*UF must be a power of 2 when folding tail by masking");
assert(!VF.isScalable() &&
"Tail folding not yet supported for scalable vectors");
TC = Builder.CreateAdd(
TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up");
}
// Now we need to generate the expression for the part of the loop that the
// vectorized body will execute. This is equal to N - (N % Step) if scalar
// iterations are not required for correctness, or N - Step, otherwise. Step
// is equal to the vectorization factor (number of SIMD elements) times the
// unroll factor (number of SIMD instructions).
Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
// There are cases where we *must* run at least one iteration in the remainder
// loop. See the cost model for when this can happen. If the step evenly
// divides the trip count, we set the remainder to be equal to the step. If
// the step does not evenly divide the trip count, no adjustment is necessary
// since there will already be scalar iterations. Note that the minimum
// iterations check ensures that N >= Step.
if (Cost->requiresScalarEpilogue(VF)) {
auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
R = Builder.CreateSelect(IsZero, Step, R);
}
VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
return VectorTripCount;
}
Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
const DataLayout &DL) {
// Verify that V is a vector type with same number of elements as DstVTy.
auto *DstFVTy = cast<FixedVectorType>(DstVTy);
unsigned VF = DstFVTy->getNumElements();
auto *SrcVecTy = cast<FixedVectorType>(V->getType());
assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
Type *SrcElemTy = SrcVecTy->getElementType();
Type *DstElemTy = DstFVTy->getElementType();
assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
"Vector elements must have same size");
// Do a direct cast if element types are castable.
if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
return Builder.CreateBitOrPointerCast(V, DstFVTy);
}
// V cannot be directly casted to desired vector type.
// May happen when V is a floating point vector but DstVTy is a vector of
// pointers or vice-versa. Handle this using a two-step bitcast using an
// intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
"Only one type should be a pointer type");
assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
"Only one type should be a floating point type");
Type *IntTy =
IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
auto *VecIntTy = FixedVectorType::get(IntTy, VF);
Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
return Builder.CreateBitOrPointerCast(CastVal, DstFVTy);
}
void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
BasicBlock *Bypass) {
Value *Count = getOrCreateTripCount(L);
// Reuse existing vector loop preheader for TC checks.
// Note that new preheader block is generated for vector loop.
BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
IRBuilder<> Builder(TCCheckBlock->getTerminator());
// Generate code to check if the loop's trip count is less than VF * UF, or
// equal to it in case a scalar epilogue is required; this implies that the
// vector trip count is zero. This check also covers the case where adding one
// to the backedge-taken count overflowed leading to an incorrect trip count
// of zero. In this case we will also jump to the scalar loop.
auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE
: ICmpInst::ICMP_ULT;
// If tail is to be folded, vector loop takes care of all iterations.
Value *CheckMinIters = Builder.getFalse();
if (!Cost->foldTailByMasking()) {
Value *Step =
createStepForVF(Builder, ConstantInt::get(Count->getType(), UF), VF);
CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check");
}
// Create new preheader for vector loop.
LoopVectorPreHeader =
SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
"vector.ph");
assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
DT->getNode(Bypass)->getIDom()) &&
"TC check is expected to dominate Bypass");
// Update dominator for Bypass & LoopExit (if needed).
DT->changeImmediateDominator(Bypass, TCCheckBlock);
if (!Cost->requiresScalarEpilogue(VF))
// If there is an epilogue which must run, there's no edge from the
// middle block to exit blocks and thus no need to update the immediate
// dominator of the exit blocks.
DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
ReplaceInstWithInst(
TCCheckBlock->getTerminator(),
BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
LoopBypassBlocks.push_back(TCCheckBlock);
}
BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
BasicBlock *const SCEVCheckBlock =
RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock);
if (!SCEVCheckBlock)
return nullptr;
assert(!(SCEVCheckBlock->getParent()->hasOptSize() ||
(OptForSizeBasedOnProfile &&
Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) &&
"Cannot SCEV check stride or overflow when optimizing for size");
// Update dominator only if this is first RT check.
if (LoopBypassBlocks.empty()) {
DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
if (!Cost->requiresScalarEpilogue(VF))
// If there is an epilogue which must run, there's no edge from the
// middle block to exit blocks and thus no need to update the immediate
// dominator of the exit blocks.
DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
}
LoopBypassBlocks.push_back(SCEVCheckBlock);
AddedSafetyChecks = true;
return SCEVCheckBlock;
}
BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L,
BasicBlock *Bypass) {
// VPlan-native path does not do any analysis for runtime checks currently.
if (EnableVPlanNativePath)
return nullptr;
BasicBlock *const MemCheckBlock =
RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader);
// Check if we generated code that checks in runtime if arrays overlap. We put
// the checks into a separate block to make the more common case of few
// elements faster.
if (!MemCheckBlock)
return nullptr;
if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) {
assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
"Cannot emit memory checks when optimizing for size, unless forced "
"to vectorize.");
ORE->emit([&]() {
return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
L->getStartLoc(), L->getHeader())
<< "Code-size may be reduced by not forcing "
"vectorization, or by source-code modifications "
"eliminating the need for runtime checks "
"(e.g., adding 'restrict').";
});
}
LoopBypassBlocks.push_back(MemCheckBlock);
AddedSafetyChecks = true;
// We currently don't use LoopVersioning for the actual loop cloning but we
// still use it to add the noalias metadata.
LVer = std::make_unique<LoopVersioning>(
*Legal->getLAI(),
Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI,
DT, PSE.getSE());
LVer->prepareNoAliasMetadata();
return MemCheckBlock;
}
Value *InnerLoopVectorizer::emitTransformedIndex(
IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL,
const InductionDescriptor &ID) const {
SCEVExpander Exp(*SE, DL, "induction");
auto Step = ID.getStep();
auto StartValue = ID.getStartValue();
assert(Index->getType()->getScalarType() == Step->getType() &&
"Index scalar type does not match StepValue type");
// Note: the IR at this point is broken. We cannot use SE to create any new
// SCEV and then expand it, hoping that SCEV's simplification will give us
// a more optimal code. Unfortunately, attempt of doing so on invalid IR may
// lead to various SCEV crashes. So all we can do is to use builder and rely
// on InstCombine for future simplifications. Here we handle some trivial
// cases only.
auto CreateAdd = [&B](Value *X, Value *Y) {
assert(X->getType() == Y->getType() && "Types don't match!");
if (auto *CX = dyn_cast<ConstantInt>(X))
if (CX->isZero())
return Y;
if (auto *CY = dyn_cast<ConstantInt>(Y))
if (CY->isZero())
return X;
return B.CreateAdd(X, Y);
};
// We allow X to be a vector type, in which case Y will potentially be
// splatted into a vector with the same element count.
auto CreateMul = [&B](Value *X, Value *Y) {
assert(X->getType()->getScalarType() == Y->getType() &&
"Types don't match!");
if (auto *CX = dyn_cast<ConstantInt>(X))
if (CX->isOne())
return Y;
if (auto *CY = dyn_cast<ConstantInt>(Y))
if (CY->isOne())
return X;
VectorType *XVTy = dyn_cast<VectorType>(X->getType());
if (XVTy && !isa<VectorType>(Y->getType()))
Y = B.CreateVectorSplat(XVTy->getElementCount(), Y);
return B.CreateMul(X, Y);
};
// Get a suitable insert point for SCEV expansion. For blocks in the vector
// loop, choose the end of the vector loop header (=LoopVectorBody), because
// the DomTree is not kept up-to-date for additional blocks generated in the
// vector loop. By using the header as insertion point, we guarantee that the
// expanded instructions dominate all their uses.
auto GetInsertPoint = [this, &B]() {
BasicBlock *InsertBB = B.GetInsertPoint()->getParent();
if (InsertBB != LoopVectorBody &&
LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB))
return LoopVectorBody->getTerminator();
return &*B.GetInsertPoint();
};
switch (ID.getKind()) {
case InductionDescriptor::IK_IntInduction: {
assert(!isa<VectorType>(Index->getType()) &&
"Vector indices not supported for integer inductions yet");
assert(Index->getType() == StartValue->getType() &&
"Index type does not match StartValue type");
if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne())
return B.CreateSub(StartValue, Index);
auto *Offset = CreateMul(
Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()));
return CreateAdd(StartValue, Offset);
}
case InductionDescriptor::IK_PtrInduction: {
assert(isa<SCEVConstant>(Step) &&
"Expected constant step for pointer induction");
return B.CreateGEP(
StartValue->getType()->getPointerElementType(), StartValue,
CreateMul(Index,
Exp.expandCodeFor(Step, Index->getType()->getScalarType(),
GetInsertPoint())));
}
case InductionDescriptor::IK_FpInduction: {
assert(!isa<VectorType>(Index->getType()) &&
"Vector indices not supported for FP inductions yet");
assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
auto InductionBinOp = ID.getInductionBinOp();
assert(InductionBinOp &&
(InductionBinOp->getOpcode() == Instruction::FAdd ||
InductionBinOp->getOpcode() == Instruction::FSub) &&
"Original bin op should be defined for FP induction");
Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
Value *MulExp = B.CreateFMul(StepValue, Index);
return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
"induction");
}
case InductionDescriptor::IK_NoInduction:
return nullptr;
}
llvm_unreachable("invalid enum");
}
Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) {
LoopScalarBody = OrigLoop->getHeader();
LoopVectorPreHeader = OrigLoop->getLoopPreheader();
assert(LoopVectorPreHeader && "Invalid loop structure");
LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr
assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) &&
"multiple exit loop without required epilogue?");
LoopMiddleBlock =
SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
LI, nullptr, Twine(Prefix) + "middle.block");
LoopScalarPreHeader =
SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
nullptr, Twine(Prefix) + "scalar.ph");
auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
// Set up the middle block terminator. Two cases:
// 1) If we know that we must execute the scalar epilogue, emit an
// unconditional branch.
// 2) Otherwise, we must have a single unique exit block (due to how we
// implement the multiple exit case). In this case, set up a conditonal
// branch from the middle block to the loop scalar preheader, and the
// exit block. completeLoopSkeleton will update the condition to use an
// iteration check, if required to decide whether to execute the remainder.
BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ?
BranchInst::Create(LoopScalarPreHeader) :
BranchInst::Create(LoopExitBlock, LoopScalarPreHeader,
Builder.getTrue());
BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc());
ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
// We intentionally don't let SplitBlock to update LoopInfo since
// LoopVectorBody should belong to another loop than LoopVectorPreHeader.
// LoopVectorBody is explicitly added to the correct place few lines later.
LoopVectorBody =
SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
nullptr, nullptr, Twine(Prefix) + "vector.body");
// Update dominator for loop exit.
if (!Cost->requiresScalarEpilogue(VF))
// If there is an epilogue which must run, there's no edge from the
// middle block to exit blocks and thus no need to update the immediate
// dominator of the exit blocks.
DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
// Create and register the new vector loop.
Loop *Lp = LI->AllocateLoop();
Loop *ParentLoop = OrigLoop->getParentLoop();
// Insert the new loop into the loop nest and register the new basic blocks
// before calling any utilities such as SCEV that require valid LoopInfo.
if (ParentLoop) {
ParentLoop->addChildLoop(Lp);
} else {
LI->addTopLevelLoop(Lp);
}
Lp->addBasicBlockToLoop(LoopVectorBody, *LI);
return Lp;
}
void InnerLoopVectorizer::createInductionResumeValues(
Loop *L, Value *VectorTripCount,
std::pair<BasicBlock *, Value *> AdditionalBypass) {
assert(VectorTripCount && L && "Expected valid arguments");
assert(((AdditionalBypass.first && AdditionalBypass.second) ||
(!AdditionalBypass.first && !AdditionalBypass.second)) &&
"Inconsistent information about additional bypass.");
// We are going to resume the execution of the scalar loop.
// Go over all of the induction variables that we found and fix the
// PHIs that are left in the scalar version of the loop.
// The starting values of PHI nodes depend on the counter of the last
// iteration in the vectorized loop.
// If we come from a bypass edge then we need to start from the original
// start value.
for (auto &InductionEntry : Legal->getInductionVars()) {
PHINode *OrigPhi = InductionEntry.first;
InductionDescriptor II = InductionEntry.second;
// Create phi nodes to merge from the backedge-taken check block.
PHINode *BCResumeVal =
PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
LoopScalarPreHeader->getTerminator());
// Copy original phi DL over to the new one.
BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
Value *&EndValue = IVEndValues[OrigPhi];
Value *EndValueFromAdditionalBypass = AdditionalBypass.second;
if (OrigPhi == OldInduction) {
// We know what the end value is.
EndValue = VectorTripCount;
} else {
IRBuilder<> B(L->getLoopPreheader()->getTerminator());
// Fast-math-flags propagate from the original induction instruction.
if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
Type *StepType = II.getStep()->getType();
Instruction::CastOps CastOp =
CastInst::getCastOpcode(VectorTripCount, true, StepType, true);
Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd");
const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout();
EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
EndValue->setName("ind.end");
// Compute the end value for the additional bypass (if applicable).
if (AdditionalBypass.first) {
B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt()));
CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true,
StepType, true);
CRD =
B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd");
EndValueFromAdditionalBypass =
emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
EndValueFromAdditionalBypass->setName("ind.end");
}
}
// The new PHI merges the original incoming value, in case of a bypass,
// or the value at the end of the vectorized loop.
BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
// Fix the scalar body counter (PHI node).
// The old induction's phi node in the scalar body needs the truncated
// value.
for (BasicBlock *BB : LoopBypassBlocks)
BCResumeVal->addIncoming(II.getStartValue(), BB);
if (AdditionalBypass.first)
BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first,
EndValueFromAdditionalBypass);
OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
}
}
BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L,
MDNode *OrigLoopID) {
assert(L && "Expected valid loop.");
// The trip counts should be cached by now.
Value *Count = getOrCreateTripCount(L);
Value *VectorTripCount = getOrCreateVectorTripCount(L);
auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
// Add a check in the middle block to see if we have completed
// all of the iterations in the first vector loop. Three cases:
// 1) If we require a scalar epilogue, there is no conditional branch as
// we unconditionally branch to the scalar preheader. Do nothing.
// 2) If (N - N%VF) == N, then we *don't* need to run the remainder.
// Thus if tail is to be folded, we know we don't need to run the
// remainder and we can use the previous value for the condition (true).
// 3) Otherwise, construct a runtime check.
if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) {
Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
Count, VectorTripCount, "cmp.n",
LoopMiddleBlock->getTerminator());
// Here we use the same DebugLoc as the scalar loop latch terminator instead
// of the corresponding compare because they may have ended up with
// different line numbers and we want to avoid awkward line stepping while
// debugging. Eg. if the compare has got a line number inside the loop.
CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc());
cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN);
}
// Get ready to start creating new instructions into the vectorized body.
assert(LoopVectorPreHeader == L->getLoopPreheader() &&
"Inconsistent vector loop preheader");
Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt());
Optional<MDNode *> VectorizedLoopID =
makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
LLVMLoopVectorizeFollowupVectorized});
if (VectorizedLoopID.hasValue()) {
L->setLoopID(VectorizedLoopID.getValue());
// Do not setAlreadyVectorized if loop attributes have been defined
// explicitly.
return LoopVectorPreHeader;
}
// Keep all loop hints from the original loop on the vector loop (we'll
// replace the vectorizer-specific hints below).
if (MDNode *LID = OrigLoop->getLoopID())
L->setLoopID(LID);
LoopVectorizeHints Hints(L, true, *ORE);
Hints.setAlreadyVectorized();
#ifdef EXPENSIVE_CHECKS
assert(DT->verify(DominatorTree::VerificationLevel::Fast));
LI->verify(*DT);
#endif
return LoopVectorPreHeader;
}
BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() {
/*
In this function we generate a new loop. The new loop will contain
the vectorized instructions while the old loop will continue to run the
scalar remainder.
[ ] <-- loop iteration number check.
/ |
/ v
| [ ] <-- vector loop bypass (may consist of multiple blocks).
| / |
| / v
|| [ ] <-- vector pre header.
|/ |
| v
| [ ] \
| [ ]_| <-- vector loop.
| |
| v
\ -[ ] <--- middle-block.
\/ |
/\ v
| ->[ ] <--- new preheader.
| |
(opt) v <-- edge from middle to exit iff epilogue is not required.
| [ ] \
| [ ]_| <-- old scalar loop to handle remainder (scalar epilogue).
\ |
\ v
>[ ] <-- exit block(s).
...
*/
// Get the metadata of the original loop before it gets modified.
MDNode *OrigLoopID = OrigLoop->getLoopID();
// Workaround! Compute the trip count of the original loop and cache it
// before we start modifying the CFG. This code has a systemic problem
// wherein it tries to run analysis over partially constructed IR; this is
// wrong, and not simply for SCEV. The trip count of the original loop
// simply happens to be prone to hitting this in practice. In theory, we
// can hit the same issue for any SCEV, or ValueTracking query done during
// mutation. See PR49900.
getOrCreateTripCount(OrigLoop);
// Create an empty vector loop, and prepare basic blocks for the runtime
// checks.
Loop *Lp = createVectorLoopSkeleton("");
// Now, compare the new count to zero. If it is zero skip the vector loop and
// jump to the scalar loop. This check also covers the case where the
// backedge-taken count is uint##_max: adding one to it will overflow leading
// to an incorrect trip count of zero. In this (rare) case we will also jump
// to the scalar loop.
emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader);
// Generate the code to check any assumptions that we've made for SCEV
// expressions.
emitSCEVChecks(Lp, LoopScalarPreHeader);
// Generate the code that checks in runtime if arrays overlap. We put the
// checks into a separate block to make the more common case of few elements
// faster.
emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
// Some loops have a single integer induction variable, while other loops
// don't. One example is c++ iterators that often have multiple pointer
// induction variables. In the code below we also support a case where we
// don't have a single induction variable.
//
// We try to obtain an induction variable from the original loop as hard
// as possible. However if we don't find one that:
// - is an integer
// - counts from zero, stepping by one
// - is the size of the widest induction variable type
// then we create a new one.
OldInduction = Legal->getPrimaryInduction();
Type *IdxTy = Legal->getWidestInductionType();
Value *StartIdx = ConstantInt::get(IdxTy, 0);
// The loop step is equal to the vectorization factor (num of SIMD elements)
// times the unroll factor (num of SIMD instructions).
Builder.SetInsertPoint(&*Lp->getHeader()->getFirstInsertionPt());
Value *Step = createStepForVF(Builder, ConstantInt::get(IdxTy, UF), VF);
Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
Induction =
createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
getDebugLocFromInstOrOperands(OldInduction));
// Emit phis for the new starting index of the scalar loop.
createInductionResumeValues(Lp, CountRoundDown);
return completeLoopSkeleton(Lp, OrigLoopID);
}
// Fix up external users of the induction variable. At this point, we are
// in LCSSA form, with all external PHIs that use the IV having one input value,
// coming from the remainder loop. We need those PHIs to also have a correct
// value for the IV when arriving directly from the middle block.
void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
const InductionDescriptor &II,
Value *CountRoundDown, Value *EndValue,
BasicBlock *MiddleBlock) {
// There are two kinds of external IV usages - those that use the value
// computed in the last iteration (the PHI) and those that use the penultimate
// value (the value that feeds into the phi from the loop latch).
// We allow both, but they, obviously, have different values.
assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block");
DenseMap<Value *, Value *> MissingVals;
// An external user of the last iteration's value should see the value that
// the remainder loop uses to initialize its own IV.
Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
for (User *U : PostInc->users()) {
Instruction *UI = cast<Instruction>(U);
if (!OrigLoop->contains(UI)) {
assert(isa<PHINode>(UI) && "Expected LCSSA form");
MissingVals[UI] = EndValue;
}
}
// An external user of the penultimate value need to see EndValue - Step.
// The simplest way to get this is to recompute it from the constituent SCEVs,
// that is Start + (Step * (CRD - 1)).
for (User *U : OrigPhi->users()) {
auto *UI = cast<Instruction>(U);
if (!OrigLoop->contains(UI)) {
const DataLayout &DL =
OrigLoop->getHeader()->getModule()->getDataLayout();
assert(isa<PHINode>(UI) && "Expected LCSSA form");
IRBuilder<> B(MiddleBlock->getTerminator());
// Fast-math-flags propagate from the original induction instruction.
if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
Value *CountMinusOne = B.CreateSub(
CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
Value *CMO =
!II.getStep()->getType()->isIntegerTy()
? B.CreateCast(Instruction::SIToFP, CountMinusOne,
II.getStep()->getType())
: B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
CMO->setName("cast.cmo");
Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II);
Escape->setName("ind.escape");
MissingVals[UI] = Escape;
}
}
for (auto &I : MissingVals) {
PHINode *PHI = cast<PHINode>(I.first);
// One corner case we have to handle is two IVs "chasing" each-other,
// that is %IV2 = phi [...], [ %IV1, %latch ]
// In this case, if IV1 has an external use, we need to avoid adding both
// "last value of IV1" and "penultimate value of IV2". So, verify that we
// don't already have an incoming value for the middle block.
if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
PHI->addIncoming(I.second, MiddleBlock);
}
}
namespace {
struct CSEDenseMapInfo {
static bool canHandle(const Instruction *I) {
return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
}
static inline Instruction *getEmptyKey() {
return DenseMapInfo<Instruction *>::getEmptyKey();
}
static inline Instruction *getTombstoneKey() {
return DenseMapInfo<Instruction *>::getTombstoneKey();
}
static unsigned getHashValue(const Instruction *I) {
assert(canHandle(I) && "Unknown instruction!");
return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
I->value_op_end()));
}
static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
LHS == getTombstoneKey() || RHS == getTombstoneKey())
return LHS == RHS;
return LHS->isIdenticalTo(RHS);
}
};
} // end anonymous namespace
///Perform cse of induction variable instructions.
static void cse(BasicBlock *BB) {
// Perform simple cse.
SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
Instruction *In = &*I++;
if (!CSEDenseMapInfo::canHandle(In))
continue;
// Check if we can replace this instruction with any of the
// visited instructions.
if (Instruction *V = CSEMap.lookup(In)) {
In->replaceAllUsesWith(V);
In->eraseFromParent();
continue;
}
CSEMap[In] = In;
}
}
InstructionCost
LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF,
bool &NeedToScalarize) const {
Function *F = CI->getCalledFunction();
Type *ScalarRetTy = CI->getType();
SmallVector<Type *, 4> Tys, ScalarTys;
for (auto &ArgOp : CI->arg_operands())
ScalarTys.push_back(ArgOp->getType());
// Estimate cost of scalarized vector call. The source operands are assumed
// to be vectors, so we need to extract individual elements from there,
// execute VF scalar calls, and then gather the result into the vector return
// value.
InstructionCost ScalarCallCost =
TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput);
if (VF.isScalar())
return ScalarCallCost;
// Compute corresponding vector type for return value and arguments.
Type *RetTy = ToVectorTy(ScalarRetTy, VF);
for (Type *ScalarTy : ScalarTys)
Tys.push_back(ToVectorTy(ScalarTy, VF));
// Compute costs of unpacking argument values for the scalar calls and
// packing the return values to a vector.
InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF);
InstructionCost Cost =
ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
// If we can't emit a vector call for this function, then the currently found
// cost is the cost we need to return.
NeedToScalarize = true;
VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
if (!TLI || CI->isNoBuiltin() || !VecFunc)
return Cost;
// If the corresponding vector cost is cheaper, return its cost.
InstructionCost VectorCallCost =
TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput);
if (VectorCallCost < Cost) {
NeedToScalarize = false;
Cost = VectorCallCost;
}
return Cost;
}
static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) {
if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy()))
return Elt;
return VectorType::get(Elt, VF);
}
InstructionCost
LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
ElementCount VF) const {
Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
assert(ID && "Expected intrinsic call!");
Type *RetTy = MaybeVectorizeType(CI->getType(), VF);
FastMathFlags FMF;
if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
FMF = FPMO->getFastMathFlags();
SmallVector<const Value *> Arguments(CI->arg_begin(), CI->arg_end());
FunctionType *FTy = CI->getCalledFunction()->getFunctionType();
SmallVector<Type *> ParamTys;
std::transform(FTy->param_begin(), FTy->param_end(),
std::back_inserter(ParamTys),
[&](Type *Ty) { return MaybeVectorizeType(Ty, VF); });
IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
dyn_cast<IntrinsicInst>(CI));
return TTI.getIntrinsicInstrCost(CostAttrs,
TargetTransformInfo::TCK_RecipThroughput);
}
static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
}
static Type *largestIntegerVectorType(Type *T1, Type *T2) {
auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
}
void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) {
// For every instruction `I` in MinBWs, truncate the operands, create a
// truncated version of `I` and reextend its result. InstCombine runs
// later and will remove any ext/trunc pairs.
SmallPtrSet<Value *, 4> Erased;
for (const auto &KV : Cost->getMinimalBitwidths()) {
// If the value wasn't vectorized, we must maintain the original scalar
// type. The absence of the value from State indicates that it
// wasn't vectorized.
VPValue *Def = State.Plan->getVPValue(KV.first);
if (!State.hasAnyVectorValue(Def))
continue;
for (unsigned Part = 0; Part < UF; ++Part) {
Value *I = State.get(Def, Part);
if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
continue;
Type *OriginalTy = I->getType();
Type *ScalarTruncatedTy =
IntegerType::get(OriginalTy->getContext(), KV.second);
auto *TruncatedTy = VectorType::get(
ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount());
if (TruncatedTy == OriginalTy)
continue;
IRBuilder<> B(cast<Instruction>(I));
auto ShrinkOperand = [&](Value *V) -> Value * {
if (auto *ZI = dyn_cast<ZExtInst>(V))
if (ZI->getSrcTy() == TruncatedTy)
return ZI->getOperand(0);
return B.CreateZExtOrTrunc(V, TruncatedTy);
};
// The actual instruction modification depends on the instruction type,
// unfortunately.
Value *NewI = nullptr;
if (auto *BO = dyn_cast<BinaryOperator>(I)) {
NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
ShrinkOperand(BO->getOperand(1)));
// Any wrapping introduced by shrinking this operation shouldn't be
// considered undefined behavior. So, we can't unconditionally copy
// arithmetic wrapping flags to NewI.
cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
} else if (auto *CI = dyn_cast<ICmpInst>(I)) {
NewI =
B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
ShrinkOperand(CI->getOperand(1)));
} else if (auto *SI = dyn_cast<SelectInst>(I)) {
NewI = B.CreateSelect(SI->getCondition(),
ShrinkOperand(SI->getTrueValue()),
ShrinkOperand(SI->getFalseValue()));
} else if (auto *CI = dyn_cast<CastInst>(I)) {
switch (CI->getOpcode()) {
default:
llvm_unreachable("Unhandled cast!");
case Instruction::Trunc:
NewI = ShrinkOperand(CI->getOperand(0));
break;
case Instruction::SExt:
NewI = B.CreateSExtOrTrunc(
CI->getOperand(0),
smallestIntegerVectorType(OriginalTy, TruncatedTy));
break;
case Instruction::ZExt:
NewI = B.CreateZExtOrTrunc(
CI->getOperand(0),
smallestIntegerVectorType(OriginalTy, TruncatedTy));
break;
}
} else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
auto Elements0 =
cast<VectorType>(SI->getOperand(0)->getType())->getElementCount();
auto *O0 = B.CreateZExtOrTrunc(
SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
auto Elements1 =
cast<VectorType>(SI->getOperand(1)->getType())->getElementCount();
auto *O1 = B.CreateZExtOrTrunc(
SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
} else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
// Don't do anything with the operands, just extend the result.
continue;
} else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
auto Elements =
cast<VectorType>(IE->getOperand(0)->getType())->getElementCount();
auto *O0 = B.CreateZExtOrTrunc(
IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
} else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
auto Elements =
cast<VectorType>(EE->getOperand(0)->getType())->getElementCount();
auto *O0 = B.CreateZExtOrTrunc(
EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
NewI = B.CreateExtractElement(O0, EE->getOperand(2));
} else {
// If we don't know what to do, be conservative and don't do anything.
continue;
}
// Lastly, extend the result.
NewI->takeName(cast<Instruction>(I));
Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
I->replaceAllUsesWith(Res);
cast<Instruction>(I)->eraseFromParent();
Erased.insert(I);
State.reset(Def, Res, Part);
}
}
// We'll have created a bunch of ZExts that are now parentless. Clean up.
for (const auto &KV : Cost->getMinimalBitwidths()) {
// If the value wasn't vectorized, we must maintain the original scalar
// type. The absence of the value from State indicates that it
// wasn't vectorized.
VPValue *Def = State.Plan->getVPValue(KV.first);
if (!State.hasAnyVectorValue(Def))
continue;
for (unsigned Part = 0; Part < UF; ++Part) {
Value *I = State.get(Def, Part);
ZExtInst *Inst = dyn_cast<ZExtInst>(I);
if (Inst && Inst->use_empty()) {
Value *NewI = Inst->getOperand(0);
Inst->eraseFromParent();
State.reset(Def, NewI, Part);
}
}
}
}
void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) {
// Insert truncates and extends for any truncated instructions as hints to
// InstCombine.
if (VF.isVector())
truncateToMinimalBitwidths(State);
// Fix widened non-induction PHIs by setting up the PHI operands.
if (OrigPHIsToFix.size()) {
assert(EnableVPlanNativePath &&
"Unexpected non-induction PHIs for fixup in non VPlan-native path");
fixNonInductionPHIs(State);
}
// At this point every instruction in the original loop is widened to a
// vector form. Now we need to fix the recurrences in the loop. These PHI
// nodes are currently empty because we did not want to introduce cycles.
// This is the second stage of vectorizing recurrences.
fixCrossIterationPHIs(State);
// Forget the original basic block.
PSE.getSE()->forgetLoop(OrigLoop);
// If we inserted an edge from the middle block to the unique exit block,
// update uses outside the loop (phis) to account for the newly inserted
// edge.
if (!Cost->requiresScalarEpilogue(VF)) {
// Fix-up external users of the induction variables.
for (auto &Entry : Legal->getInductionVars())
fixupIVUsers(Entry.first, Entry.second,
getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)),
IVEndValues[Entry.first], LoopMiddleBlock);
fixLCSSAPHIs(State);
}
for (Instruction *PI : PredicatedInstructions)
sinkScalarOperands(&*PI);
// Remove redundant induction instructions.
cse(LoopVectorBody);
// Set/update profile weights for the vector and remainder loops as original
// loop iterations are now distributed among them. Note that original loop
// represented by LoopScalarBody becomes remainder loop after vectorization.
//
// For cases like foldTailByMasking() and requiresScalarEpiloque() we may
// end up getting slightly roughened result but that should be OK since
// profile is not inherently precise anyway. Note also possible bypass of
// vector code caused by legality checks is ignored, assigning all the weight
// to the vector loop, optimistically.
//
// For scalable vectorization we can't know at compile time how many iterations
// of the loop are handled in one vector iteration, so instead assume a pessimistic
// vscale of '1'.
setProfileInfoAfterUnrolling(
LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody),
LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF);
}
void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) {
// In order to support recurrences we need to be able to vectorize Phi nodes.
// Phi nodes have cycles, so we need to vectorize them in two stages. This is
// stage #2: We now need to fix the recurrences by adding incoming edges to
// the currently empty PHI nodes. At this point every instruction in the
// original loop is widened to a vector form so we can use them to construct
// the incoming edges.
VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock();
for (VPRecipeBase &R : Header->phis()) {
if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R))
fixReduction(ReductionPhi, State);
else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R))
fixFirstOrderRecurrence(FOR, State);
}
}
void InnerLoopVectorizer::fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR,
VPTransformState &State) {
// This is the second phase of vectorizing first-order recurrences. An
// overview of the transformation is described below. Suppose we have the
// following loop.
//
// for (int i = 0; i < n; ++i)
// b[i] = a[i] - a[i - 1];
//
// There is a first-order recurrence on "a". For this loop, the shorthand
// scalar IR looks like:
//
// scalar.ph:
// s_init = a[-1]
// br scalar.body
//
// scalar.body:
// i = phi [0, scalar.ph], [i+1, scalar.body]
// s1 = phi [s_init, scalar.ph], [s2, scalar.body]
// s2 = a[i]
// b[i] = s2 - s1
// br cond, scalar.body, ...
//
// In this example, s1 is a recurrence because it's value depends on the
// previous iteration. In the first phase of vectorization, we created a
// vector phi v1 for s1. We now complete the vectorization and produce the
// shorthand vector IR shown below (for VF = 4, UF = 1).
//
// vector.ph:
// v_init = vector(..., ..., ..., a[-1])
// br vector.body
//
// vector.body
// i = phi [0, vector.ph], [i+4, vector.body]
// v1 = phi [v_init, vector.ph], [v2, vector.body]
// v2 = a[i, i+1, i+2, i+3];
// v3 = vector(v1(3), v2(0, 1, 2))
// b[i, i+1, i+2, i+3] = v2 - v3
// br cond, vector.body, middle.block
//
// middle.block:
// x = v2(3)
// br scalar.ph
//
// scalar.ph:
// s_init = phi [x, middle.block], [a[-1], otherwise]
// br scalar.body
//
// After execution completes the vector loop, we extract the next value of
// the recurrence (x) to use as the initial value in the scalar loop.
auto *IdxTy = Builder.getInt32Ty();
auto *VecPhi = cast<PHINode>(State.get(PhiR, 0));
// Fix the latch value of the new recurrence in the vector loop.
VPValue *PreviousDef = PhiR->getBackedgeValue();
Value *Incoming = State.get(PreviousDef, UF - 1);
VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch());
// Extract the last vector element in the middle block. This will be the
// initial value for the recurrence when jumping to the scalar loop.
auto *ExtractForScalar = Incoming;
if (VF.isVector()) {
auto *One = ConstantInt::get(IdxTy, 1);
Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx,
"vector.recur.extract");
}
// Extract the second last element in the middle block if the
// Phi is used outside the loop. We need to extract the phi itself
// and not the last element (the phi update in the current iteration). This
// will be the value when jumping to the exit block from the LoopMiddleBlock,
// when the scalar loop is not run at all.
Value *ExtractForPhiUsedOutsideLoop = nullptr;
if (VF.isVector()) {
auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2));
ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
Incoming, Idx, "vector.recur.extract.for.phi");
} else if (UF > 1)
// When loop is unrolled without vectorizing, initialize
// ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value
// of `Incoming`. This is analogous to the vectorized case above: extracting
// the second last element when VF > 1.
ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2);
// Fix the initial value of the original recurrence in the scalar loop.
Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue());
auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue();
for (auto *BB : predecessors(LoopScalarPreHeader)) {
auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
Start->addIncoming(Incoming, BB);
}
Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
Phi->setName("scalar.recur");
// Finally, fix users of the recurrence outside the loop. The users will need
// either the last value of the scalar recurrence or the last value of the
// vector recurrence we extracted in the middle block. Since the loop is in
// LCSSA form, we just need to find all the phi nodes for the original scalar
// recurrence in the exit block, and then add an edge for the middle block.
// Note that LCSSA does not imply single entry when the original scalar loop
// had multiple exiting edges (as we always run the last iteration in the
// scalar epilogue); in that case, there is no edge from middle to exit and
// and thus no phis which needed updated.
if (!Cost->requiresScalarEpilogue(VF))
for (PHINode &LCSSAPhi : LoopExitBlock->phis())
if (any_of(LCSSAPhi.incoming_values(),
[Phi](Value *V) { return V == Phi; }))
LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
}
void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR,
VPTransformState &State) {
PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
// Get it's reduction variable descriptor.
assert(Legal->isReductionVariable(OrigPhi) &&
"Unable to find the reduction variable");
const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
RecurKind RK = RdxDesc.getRecurrenceKind();
TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
setDebugLocFromInst(ReductionStartValue);
VPValue *LoopExitInstDef = State.Plan->getVPValue(LoopExitInst);
// This is the vector-clone of the value that leaves the loop.
Type *VecTy = State.get(LoopExitInstDef, 0)->getType();
// Wrap flags are in general invalid after vectorization, clear them.
clearReductionWrapFlags(RdxDesc, State);
// Fix the vector-loop phi.
// Reductions do not have to start at zero. They can start with
// any loop invariant values.
BasicBlock *VectorLoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
unsigned LastPartForNewPhi = PhiR->isOrdered() ? 1 : UF;
for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) {
Value *VecRdxPhi = State.get(PhiR->getVPSingleValue(), Part);
Value *Val = State.get(PhiR->getBackedgeValue(), Part);
if (PhiR->isOrdered())
Val = State.get(PhiR->getBackedgeValue(), UF - 1);
cast<PHINode>(VecRdxPhi)->addIncoming(Val, VectorLoopLatch);
}
// Before each round, move the insertion point right between
// the PHIs and the values we are going to write.
// This allows us to write both PHINodes and the extractelement
// instructions.
Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
setDebugLocFromInst(LoopExitInst);
Type *PhiTy = OrigPhi->getType();
// If tail is folded by masking, the vector value to leave the loop should be
// a Select choosing between the vectorized LoopExitInst and vectorized Phi,
// instead of the former. For an inloop reduction the reduction will already
// be predicated, and does not need to be handled here.
if (Cost->foldTailByMasking() && !PhiR->isInLoop()) {
for (unsigned Part = 0; Part < UF; ++Part) {
Value *VecLoopExitInst = State.get(LoopExitInstDef, Part);
Value *Sel = nullptr;
for (User *U : VecLoopExitInst->users()) {
if (isa<SelectInst>(U)) {
assert(!Sel && "Reduction exit feeding two selects");
Sel = U;
} else
assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
}
assert(Sel && "Reduction exit feeds no select");
State.reset(LoopExitInstDef, Sel, Part);
// If the target can create a predicated operator for the reduction at no
// extra cost in the loop (for example a predicated vadd), it can be
// cheaper for the select to remain in the loop than be sunk out of it,
// and so use the select value for the phi instead of the old
// LoopExitValue.
if (PreferPredicatedReductionSelect ||
TTI->preferPredicatedReductionSelect(
RdxDesc.getOpcode(), PhiTy,
TargetTransformInfo::ReductionFlags())) {
auto *VecRdxPhi =
cast<PHINode>(State.get(PhiR->getVPSingleValue(), Part));
VecRdxPhi->setIncomingValueForBlock(
LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel);
}
}
}
// If the vector reduction can be performed in a smaller type, we truncate
// then extend the loop exit value to enable InstCombine to evaluate the
// entire expression in the smaller type.
if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) {
assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!");
Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
Builder.SetInsertPoint(
LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator());
VectorParts RdxParts(UF);
for (unsigned Part = 0; Part < UF; ++Part) {
RdxParts[Part] = State.get(LoopExitInstDef, Part);
Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
: Builder.CreateZExt(Trunc, VecTy);
for (Value::user_iterator UI = RdxParts[Part]->user_begin();
UI != RdxParts[Part]->user_end();)
if (*UI != Trunc) {
(*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd);
RdxParts[Part] = Extnd;
} else {
++UI;
}
}
Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
for (unsigned Part = 0; Part < UF; ++Part) {
RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
State.reset(LoopExitInstDef, RdxParts[Part], Part);
}
}
// Reduce all of the unrolled parts into a single vector.
Value *ReducedPartRdx = State.get(LoopExitInstDef, 0);
unsigned Op = RecurrenceDescriptor::getOpcode(RK);
// The middle block terminator has already been assigned a DebugLoc here (the
// OrigLoop's single latch terminator). We want the whole middle block to
// appear to execute on this line because: (a) it is all compiler generated,
// (b) these instructions are always executed after evaluating the latch
// conditional branch, and (c) other passes may add new predecessors which
// terminate on this line. This is the easiest way to ensure we don't
// accidentally cause an extra step back into the loop while debugging.
setDebugLocFromInst(LoopMiddleBlock->getTerminator());
if (PhiR->isOrdered())
ReducedPartRdx = State.get(LoopExitInstDef, UF - 1);
else {
// Floating-point operations should have some FMF to enable the reduction.
IRBuilderBase::FastMathFlagGuard FMFG(Builder);
Builder.setFastMathFlags(RdxDesc.getFastMathFlags());
for (unsigned Part = 1; Part < UF; ++Part) {
Value *RdxPart = State.get(LoopExitInstDef, Part);
if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
ReducedPartRdx = Builder.CreateBinOp(
(Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx");
} else {
ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
}
}
}
// Create the reduction after the loop. Note that inloop reductions create the
// target reduction in the loop using a Reduction recipe.
if (VF.isVector() && !PhiR->isInLoop()) {
ReducedPartRdx =
createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx);
// If the reduction can be performed in a smaller type, we need to extend
// the reduction to the wider type before we branch to the original loop.
if (PhiTy != RdxDesc.getRecurrenceType())
ReducedPartRdx = RdxDesc.isSigned()
? Builder.CreateSExt(ReducedPartRdx, PhiTy)
: Builder.CreateZExt(ReducedPartRdx, PhiTy);
}
// Create a phi node that merges control-flow from the backedge-taken check
// block and the middle block.
PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx",
LoopScalarPreHeader->getTerminator());
for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]);
BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
// Now, we need to fix the users of the reduction variable
// inside and outside of the scalar remainder loop.
// We know that the loop is in LCSSA form. We need to update the PHI nodes
// in the exit blocks. See comment on analogous loop in
// fixFirstOrderRecurrence for a more complete explaination of the logic.
if (!Cost->requiresScalarEpilogue(VF))
for (PHINode &LCSSAPhi : LoopExitBlock->phis())
if (any_of(LCSSAPhi.incoming_values(),
[LoopExitInst](Value *V) { return V == LoopExitInst; }))
LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
// Fix the scalar loop reduction variable with the incoming reduction sum
// from the vector body and from the backedge value.
int IncomingEdgeBlockIdx =
OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch());
assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
// Pick the other block.
int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
}
void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
VPTransformState &State) {
RecurKind RK = RdxDesc.getRecurrenceKind();
if (RK != RecurKind::Add && RK != RecurKind::Mul)
return;
Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr();
assert(LoopExitInstr && "null loop exit instruction");
SmallVector<Instruction *, 8> Worklist;
SmallPtrSet<Instruction *, 8> Visited;
Worklist.push_back(LoopExitInstr);
Visited.insert(LoopExitInstr);
while (!Worklist.empty()) {
Instruction *Cur = Worklist.pop_back_val();
if (isa<OverflowingBinaryOperator>(Cur))
for (unsigned Part = 0; Part < UF; ++Part) {
Value *V = State.get(State.Plan->getVPValue(Cur), Part);
cast<Instruction>(V)->dropPoisonGeneratingFlags();
}
for (User *U : Cur->users()) {
Instruction *UI = cast<Instruction>(U);
if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) &&
Visited.insert(UI).second)
Worklist.push_back(UI);
}
}
}
void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) {
for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1)
// Some phis were already hand updated by the reduction and recurrence
// code above, leave them alone.
continue;
auto *IncomingValue = LCSSAPhi.getIncomingValue(0);
// Non-instruction incoming values will have only one value.
VPLane Lane = VPLane::getFirstLane();
if (isa<Instruction>(IncomingValue) &&
!Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue),
VF))
Lane = VPLane::getLastLaneForVF(VF);
// Can be a loop invariant incoming value or the last scalar value to be
// extracted from the vectorized loop.
Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
Value *lastIncomingValue =
OrigLoop->isLoopInvariant(IncomingValue)
? IncomingValue
: State.get(State.Plan->getVPValue(IncomingValue),
VPIteration(UF - 1, Lane));
LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock);
}
}
void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
// The basic block and loop containing the predicated instruction.
auto *PredBB = PredInst->getParent();
auto *VectorLoop = LI->getLoopFor(PredBB);
// Initialize a worklist with the operands of the predicated instruction.
SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
// Holds instructions that we need to analyze again. An instruction may be
// reanalyzed if we don't yet know if we can sink it or not.
SmallVector<Instruction *, 8> InstsToReanalyze;
// Returns true if a given use occurs in the predicated block. Phi nodes use
// their operands in their corresponding predecessor blocks.
auto isBlockOfUsePredicated = [&](Use &U) -> bool {
auto *I = cast<Instruction>(U.getUser());
BasicBlock *BB = I->getParent();
if (auto *Phi = dyn_cast<PHINode>(I))
BB = Phi->getIncomingBlock(
PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
return BB == PredBB;
};
// Iteratively sink the scalarized operands of the predicated instruction
// into the block we created for it. When an instruction is sunk, it's
// operands are then added to the worklist. The algorithm ends after one pass
// through the worklist doesn't sink a single instruction.
bool Changed;
do {
// Add the instructions that need to be reanalyzed to the worklist, and
// reset the changed indicator.
Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
InstsToReanalyze.clear();
Changed = false;
while (!Worklist.empty()) {
auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
// We can't sink an instruction if it is a phi node, is not in the loop,
// or may have side effects.
if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) ||
I->mayHaveSideEffects())
continue;
// If the instruction is already in PredBB, check if we can sink its
// operands. In that case, VPlan's sinkScalarOperands() succeeded in
// sinking the scalar instruction I, hence it appears in PredBB; but it
// may have failed to sink I's operands (recursively), which we try
// (again) here.
if (I->getParent() == PredBB) {
Worklist.insert(I->op_begin(), I->op_end());
continue;
}
// It's legal to sink the instruction if all its uses occur in the
// predicated block. Otherwise, there's nothing to do yet, and we may
// need to reanalyze the instruction.
if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
InstsToReanalyze.push_back(I);
continue;
}
// Move the instruction to the beginning of the predicated block, and add
// it's operands to the worklist.
I->moveBefore(&*PredBB->getFirstInsertionPt());
Worklist.insert(I->op_begin(), I->op_end());
// The sinking may have enabled other instructions to be sunk, so we will
// need to iterate.
Changed = true;
}
} while (Changed);
}
void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) {
for (PHINode *OrigPhi : OrigPHIsToFix) {
VPWidenPHIRecipe *VPPhi =
cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi));
PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0));
// Make sure the builder has a valid insert point.
Builder.SetInsertPoint(NewPhi);
for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) {
VPValue *Inc = VPPhi->getIncomingValue(i);
VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i);
NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]);
}
}
}
bool InnerLoopVectorizer::useOrderedReductions(RecurrenceDescriptor &RdxDesc) {
return Cost->useOrderedReductions(RdxDesc);
}
void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPValue *VPDef,
VPUser &Operands, unsigned UF,
ElementCount VF, bool IsPtrLoopInvariant,
SmallBitVector &IsIndexLoopInvariant,
VPTransformState &State) {
// Construct a vector GEP by widening the operands of the scalar GEP as
// necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
// results in a vector of pointers when at least one operand of the GEP
// is vector-typed. Thus, to keep the representation compact, we only use
// vector-typed operands for loop-varying values.
if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) {
// If we are vectorizing, but the GEP has only loop-invariant operands,
// the GEP we build (by only using vector-typed operands for
// loop-varying values) would be a scalar pointer. Thus, to ensure we
// produce a vector of pointers, we need to either arbitrarily pick an
// operand to broadcast, or broadcast a clone of the original GEP.
// Here, we broadcast a clone of the original.
//
// TODO: If at some point we decide to scalarize instructions having
// loop-invariant operands, this special case will no longer be
// required. We would add the scalarization decision to
// collectLoopScalars() and teach getVectorValue() to broadcast
// the lane-zero scalar value.
auto *Clone = Builder.Insert(GEP->clone());
for (unsigned Part = 0; Part < UF; ++Part) {
Value *EntryPart = Builder.CreateVectorSplat(VF, Clone);
State.set(VPDef, EntryPart, Part);
addMetadata(EntryPart, GEP);
}
} else {
// If the GEP has at least one loop-varying operand, we are sure to
// produce a vector of pointers. But if we are only unrolling, we want
// to produce a scalar GEP for each unroll part. Thus, the GEP we
// produce with the code below will be scalar (if VF == 1) or vector
// (otherwise). Note that for the unroll-only case, we still maintain
// values in the vector mapping with initVector, as we do for other
// instructions.
for (unsigned Part = 0; Part < UF; ++Part) {
// The pointer operand of the new GEP. If it's loop-invariant, we
// won't broadcast it.
auto *Ptr = IsPtrLoopInvariant
? State.get(Operands.getOperand(0), VPIteration(0, 0))
: State.get(Operands.getOperand(0), Part);
// Collect all the indices for the new GEP. If any index is
// loop-invariant, we won't broadcast it.
SmallVector<Value *, 4> Indices;
for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) {
VPValue *Operand = Operands.getOperand(I);
if (IsIndexLoopInvariant[I - 1])
Indices.push_back(State.get(Operand, VPIteration(0, 0)));
else
Indices.push_back(State.get(Operand, Part));
}
// Create the new GEP. Note that this GEP may be a scalar if VF == 1,
// but it should be a vector, otherwise.
auto *NewGEP =
GEP->isInBounds()
? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr,
Indices)
: Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices);
assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
"NewGEP is not a pointer vector");
State.set(VPDef, NewGEP, Part);
addMetadata(NewGEP, GEP);
}
}
}
void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
VPWidenPHIRecipe *PhiR,
VPTransformState &State) {
PHINode *P = cast<PHINode>(PN);
if (EnableVPlanNativePath) {
// Currently we enter here in the VPlan-native path for non-induction
// PHIs where all control flow is uniform. We simply widen these PHIs.
// Create a vector phi with no operands - the vector phi operands will be
// set at the end of vector code generation.
Type *VecTy = (State.VF.isScalar())
? PN->getType()
: VectorType::get(PN->getType(), State.VF);
Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi");
State.set(PhiR, VecPhi, 0);
OrigPHIsToFix.push_back(P);
return;
}
assert(PN->getParent() == OrigLoop->getHeader() &&
"Non-header phis should have been handled elsewhere");
// In order to support recurrences we need to be able to vectorize Phi nodes.
// Phi nodes have cycles, so we need to vectorize them in two stages. This is
// stage #1: We create a new vector PHI node with no incoming edges. We'll use
// this value when we vectorize all of the instructions that use the PHI.
assert(!Legal->isReductionVariable(P) &&
"reductions should be handled elsewhere");
setDebugLocFromInst(P);
// This PHINode must be an induction variable.
// Make sure that we know about it.
assert(Legal->getInductionVars().count(P) && "Not an induction variable");
InductionDescriptor II = Legal->getInductionVars().lookup(P);
const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
// FIXME: The newly created binary instructions should contain nsw/nuw flags,
// which can be found from the original scalar operations.
switch (II.getKind()) {
case InductionDescriptor::IK_NoInduction:
llvm_unreachable("Unknown induction");
case InductionDescriptor::IK_IntInduction:
case InductionDescriptor::IK_FpInduction:
llvm_unreachable("Integer/fp induction is handled elsewhere.");
case InductionDescriptor::IK_PtrInduction: {
// Handle the pointer induction variable case.
assert(P->getType()->isPointerTy() && "Unexpected type.");
if (Cost->isScalarAfterVectorization(P, State.VF)) {
// This is the normalized GEP that starts counting at zero.
Value *PtrInd =
Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType());
// Determine the number of scalars we need to generate for each unroll
// iteration. If the instruction is uniform, we only need to generate the
// first lane. Otherwise, we generate all VF values.
bool IsUniform = Cost->isUniformAfterVectorization(P, State.VF);
unsigned Lanes = IsUniform ? 1 : State.VF.getKnownMinValue();
bool NeedsVectorIndex = !IsUniform && VF.isScalable();
Value *UnitStepVec = nullptr, *PtrIndSplat = nullptr;
if (NeedsVectorIndex) {
Type *VecIVTy = VectorType::get(PtrInd->getType(), VF);
UnitStepVec = Builder.CreateStepVector(VecIVTy);
PtrIndSplat = Builder.CreateVectorSplat(VF, PtrInd);
}
for (unsigned Part = 0; Part < UF; ++Part) {
Value *PartStart = createStepForVF(
Builder, ConstantInt::get(PtrInd->getType(), Part), VF);
if (NeedsVectorIndex) {
Value *PartStartSplat = Builder.CreateVectorSplat(VF, PartStart);
Value *Indices = Builder.CreateAdd(PartStartSplat, UnitStepVec);
Value *GlobalIndices = Builder.CreateAdd(PtrIndSplat, Indices);
Value *SclrGep =
emitTransformedIndex(Builder, GlobalIndices, PSE.getSE(), DL, II);
SclrGep->setName("next.gep");
State.set(PhiR, SclrGep, Part);
// We've cached the whole vector, which means we can support the
// extraction of any lane.
continue;
}
for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
Value *Idx = Builder.CreateAdd(
PartStart, ConstantInt::get(PtrInd->getType(), Lane));
Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
Value *SclrGep =
emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II);
SclrGep->setName("next.gep");
State.set(PhiR, SclrGep, VPIteration(Part, Lane));
}
}
return;
}
assert(isa<SCEVConstant>(II.getStep()) &&
"Induction step not a SCEV constant!");
Type *PhiType = II.getStep()->getType();
// Build a pointer phi
Value *ScalarStartValue = II.getStartValue();
Type *ScStValueType = ScalarStartValue->getType();
PHINode *NewPointerPhi =
PHINode::Create(ScStValueType, 2, "pointer.phi", Induction);
NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader);
// A pointer induction, performed by using a gep
BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
Instruction *InductionLoc = LoopLatch->getTerminator();
const SCEV *ScalarStep = II.getStep();
SCEVExpander Exp(*PSE.getSE(), DL, "induction");
Value *ScalarStepValue =
Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc);
Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF);
Value *NumUnrolledElems =
Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF));
Value *InductionGEP = GetElementPtrInst::Create(
ScStValueType->getPointerElementType(), NewPointerPhi,
Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind",
InductionLoc);
NewPointerPhi->addIncoming(InductionGEP, LoopLatch);
// Create UF many actual address geps that use the pointer
// phi as base and a vectorized version of the step value
// (<step*0, ..., step*N>) as offset.
for (unsigned Part = 0; Part < State.UF; ++Part) {
Type *VecPhiType = VectorType::get(PhiType, State.VF);
Value *StartOffsetScalar =
Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part));
Value *StartOffset =
Builder.CreateVectorSplat(State.VF, StartOffsetScalar);
// Create a vector of consecutive numbers from zero to VF.
StartOffset =
Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType));
Value *GEP = Builder.CreateGEP(
ScStValueType->getPointerElementType(), NewPointerPhi,
Builder.CreateMul(
StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue),
"vector.gep"));
State.set(PhiR, GEP, Part);
}
}
}
}
/// A helper function for checking whether an integer division-related
/// instruction may divide by zero (in which case it must be predicated if
/// executed conditionally in the scalar code).
/// TODO: It may be worthwhile to generalize and check isKnownNonZero().
/// Non-zero divisors that are non compile-time constants will not be
/// converted into multiplication, so we will still end up scalarizing
/// the division, but can do so w/o predication.
static bool mayDivideByZero(Instruction &I) {
assert((I.getOpcode() == Instruction::UDiv ||
I.getOpcode() == Instruction::SDiv ||
I.getOpcode() == Instruction::URem ||
I.getOpcode() == Instruction::SRem) &&
"Unexpected instruction");
Value *Divisor = I.getOperand(1);
auto *CInt = dyn_cast<ConstantInt>(Divisor);
return !CInt || CInt->isZero();
}
void InnerLoopVectorizer::widenInstruction(Instruction &I, VPValue *Def,
VPUser &User,
VPTransformState &State) {
switch (I.getOpcode()) {
case Instruction::Call:
case Instruction::Br:
case Instruction::PHI:
case Instruction::GetElementPtr:
case Instruction::Select:
llvm_unreachable("This instruction is handled by a different recipe.");
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::SRem:
case Instruction::URem:
case Instruction::Add:
case Instruction::FAdd:
case Instruction::Sub:
case Instruction::FSub:
case Instruction::FNeg:
case Instruction::Mul:
case Instruction::FMul:
case Instruction::FDiv:
case Instruction::FRem:
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor: {
// Just widen unops and binops.
setDebugLocFromInst(&I);
for (unsigned Part = 0; Part < UF; ++Part) {
SmallVector<Value *, 2> Ops;
for (VPValue *VPOp : User.operands())
Ops.push_back(State.get(VPOp, Part));
Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops);
if (auto *VecOp = dyn_cast<Instruction>(V))
VecOp->copyIRFlags(&I);
// Use this vector value for all users of the original instruction.
State.set(Def, V, Part);
addMetadata(V, &I);
}
break;
}
case Instruction::ICmp:
case Instruction::FCmp: {
// Widen compares. Generate vector compares.
bool FCmp = (I.getOpcode() == Instruction::FCmp);
auto *Cmp = cast<CmpInst>(&I);
setDebugLocFromInst(Cmp);
for (unsigned Part = 0; Part < UF; ++Part) {
Value *A = State.get(User.getOperand(0), Part);
Value *B = State.get(User.getOperand(1), Part);
Value *C = nullptr;
if (FCmp) {
// Propagate fast math flags.
IRBuilder<>::FastMathFlagGuard FMFG(Builder);
Builder.setFastMathFlags(Cmp->getFastMathFlags());
C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
} else {
C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
}
State.set(Def, C, Part);
addMetadata(C, &I);
}
break;
}
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::FPExt:
case Instruction::PtrToInt:
case Instruction::IntToPtr:
case Instruction::SIToFP:
case Instruction::UIToFP:
case Instruction::Trunc:
case Instruction::FPTrunc:
case Instruction::BitCast: {
auto *CI = cast<CastInst>(&I);
setDebugLocFromInst(CI);
/// Vectorize casts.
Type *DestTy =
(VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF);
for (unsigned Part = 0; Part < UF; ++Part) {
Value *A = State.get(User.getOperand(0), Part);
Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
State.set(Def, Cast, Part);
addMetadata(Cast, &I);
}
break;
}
default:
// This instruction is not vectorized by simple widening.
LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
llvm_unreachable("Unhandled instruction!");
} // end of switch.
}
void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def,
VPUser &ArgOperands,
VPTransformState &State) {
assert(!isa<DbgInfoIntrinsic>(I) &&
"DbgInfoIntrinsic should have been dropped during VPlan construction");
setDebugLocFromInst(&I);
Module *M = I.getParent()->getParent()->getParent();
auto *CI = cast<CallInst>(&I);
SmallVector<Type *, 4> Tys;
for (Value *ArgOperand : CI->arg_operands())
Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue()));
Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
// The flag shows whether we use Intrinsic or a usual Call for vectorized
// version of the instruction.
// Is it beneficial to perform intrinsic call compared to lib call?
bool NeedToScalarize = false;
InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize);
InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0;
bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
assert((UseVectorIntrinsic || !NeedToScalarize) &&
"Instruction should be scalarized elsewhere.");
assert((IntrinsicCost.isValid() || CallCost.isValid()) &&
"Either the intrinsic cost or vector call cost must be valid");
for (unsigned Part = 0; Part < UF; ++Part) {
SmallVector<Type *, 2> TysForDecl = {CI->getType()};
SmallVector<Value *, 4> Args;
for (auto &I : enumerate(ArgOperands.operands())) {
// Some intrinsics have a scalar argument - don't replace it with a
// vector.
Value *Arg;
if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index()))
Arg = State.get(I.value(), Part);
else {
Arg = State.get(I.value(), VPIteration(0, 0));
if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index()))
TysForDecl.push_back(Arg->getType());
}
Args.push_back(Arg);
}
Function *VectorF;
if (UseVectorIntrinsic) {
// Use vector version of the intrinsic.
if (VF.isVector())
TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
assert(VectorF && "Can't retrieve vector intrinsic.");
} else {
// Use vector version of the function call.
const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
#ifndef NDEBUG
assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr &&
"Can't create vector function.");
#endif
VectorF = VFDatabase(*CI).getVectorizedFunction(Shape);
}
SmallVector<OperandBundleDef, 1> OpBundles;
CI->getOperandBundlesAsDefs(OpBundles);
CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
if (isa<FPMathOperator>(V))
V->copyFastMathFlags(CI);
State.set(Def, V, Part);
addMetadata(V, &I);
}
}
void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef,
VPUser &Operands,
bool InvariantCond,
VPTransformState &State) {
setDebugLocFromInst(&I);
// The condition can be loop invariant but still defined inside the
// loop. This means that we can't just use the original 'cond' value.
// We have to take the 'vectorized' value and pick the first lane.
// Instcombine will make this a no-op.
auto *InvarCond = InvariantCond
? State.get(Operands.getOperand(0), VPIteration(0, 0))
: nullptr;
for (unsigned Part = 0; Part < UF; ++Part) {
Value *Cond =
InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part);
Value *Op0 = State.get(Operands.getOperand(1), Part);
Value *Op1 = State.get(Operands.getOperand(2), Part);
Value *Sel = Builder.CreateSelect(Cond, Op0, Op1);
State.set(VPDef, Sel, Part);
addMetadata(Sel, &I);
}
}
void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
// We should not collect Scalars more than once per VF. Right now, this
// function is called from collectUniformsAndScalars(), which already does
// this check. Collecting Scalars for VF=1 does not make any sense.
assert(VF.isVector() && Scalars.find(VF) == Scalars.end() &&
"This function should not be visited twice for the same VF");
SmallSetVector<Instruction *, 8> Worklist;
// These sets are used to seed the analysis with pointers used by memory
// accesses that will remain scalar.
SmallSetVector<Instruction *, 8> ScalarPtrs;
SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
auto *Latch = TheLoop->getLoopLatch();
// A helper that returns true if the use of Ptr by MemAccess will be scalar.
// The pointer operands of loads and stores will be scalar as long as the
// memory access is not a gather or scatter operation. The value operand of a
// store will remain scalar if the store is scalarized.
auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
assert(WideningDecision != CM_Unknown &&
"Widening decision should be ready at this moment");
if (auto *Store = dyn_cast<StoreInst>(MemAccess))
if (Ptr == Store->getValueOperand())
return WideningDecision == CM_Scalarize;
assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
"Ptr is neither a value or pointer operand");
return WideningDecision != CM_GatherScatter;
};
// A helper that returns true if the given value is a bitcast or
// getelementptr instruction contained in the loop.
auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
isa<GetElementPtrInst>(V)) &&
!TheLoop->isLoopInvariant(V);
};
auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) {
if (!isa<PHINode>(Ptr) ||
!Legal->getInductionVars().count(cast<PHINode>(Ptr)))
return false;
auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)];
if (Induction.getKind() != InductionDescriptor::IK_PtrInduction)
return false;
return isScalarUse(MemAccess, Ptr);
};
// A helper that evaluates a memory access's use of a pointer. If the
// pointer is actually the pointer induction of a loop, it is being
// inserted into Worklist. If the use will be a scalar use, and the
// pointer is only used by memory accesses, we place the pointer in
// ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs.
auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
if (isScalarPtrInduction(MemAccess, Ptr)) {
Worklist.insert(cast<Instruction>(Ptr));
LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr
<< "\n");
Instruction *Update = cast<Instruction>(
cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch));
ScalarPtrs.insert(Update);
return;
}
// We only care about bitcast and getelementptr instructions contained in
// the loop.
if (!isLoopVaryingBitCastOrGEP(Ptr))
return;
// If the pointer has already been identified as scalar (e.g., if it was
// also identified as uniform), there's nothing to do.
auto *I = cast<Instruction>(Ptr);
if (Worklist.count(I))
return;
// If all users of the pointer will be memory accesses and scalar, place the
// pointer in ScalarPtrs. Otherwise, place the pointer in
// PossibleNonScalarPtrs.
if (llvm::all_of(I->users(), [&](User *U) {
return (isa<LoadInst>(U) || isa<StoreInst>(U)) &&
isScalarUse(cast<Instruction>(U), Ptr);
}))
ScalarPtrs.insert(I);
else
PossibleNonScalarPtrs.insert(I);
};
// We seed the scalars analysis with three classes of instructions: (1)
// instructions marked uniform-after-vectorization and (2) bitcast,
// getelementptr and (pointer) phi instructions used by memory accesses
// requiring a scalar use.
//
// (1) Add to the worklist all instructions that have been identified as
// uniform-after-vectorization.
Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
// (2) Add to the worklist all bitcast and getelementptr instructions used by
// memory accesses requiring a scalar use. The pointer operands of loads and
// stores will be scalar as long as the memory accesses is not a gather or
// scatter operation. The value operand of a store will remain scalar if the
// store is scalarized.
for (auto *BB : TheLoop->blocks())
for (auto &I : *BB) {
if (auto *Load = dyn_cast<LoadInst>(&I)) {
evaluatePtrUse(Load, Load->getPointerOperand());
} else if (auto *Store = dyn_cast<StoreInst>(&I)) {
evaluatePtrUse(Store, Store->getPointerOperand());
evaluatePtrUse(Store, Store->getValueOperand());
}
}
for (auto *I : ScalarPtrs)
if (!PossibleNonScalarPtrs.count(I)) {
LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
Worklist.insert(I);
}
// Insert the forced scalars.
// FIXME: Currently widenPHIInstruction() often creates a dead vector
// induction variable when the PHI user is scalarized.
auto ForcedScalar = ForcedScalars.find(VF);
if (ForcedScalar != ForcedScalars.end())
for (auto *I : ForcedScalar->second)
Worklist.insert(I);
// Expand the worklist by looking through any bitcasts and getelementptr
// instructions we've already identified as scalar. This is similar to the
// expansion step in collectLoopUniforms(); however, here we're only
// expanding to include additional bitcasts and getelementptr instructions.
unsigned Idx = 0;
while (Idx != Worklist.size()) {
Instruction *Dst = Worklist[Idx++];
if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
continue;
auto *Src = cast<Instruction>(Dst->getOperand(0));
if (llvm::all_of(Src->users(), [&](User *U) -> bool {
auto *J = cast<Instruction>(U);
return !TheLoop->contains(J) || Worklist.count(J) ||
((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
isScalarUse(J, Src));
})) {
Worklist.insert(Src);
LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
}
}
// An induction variable will remain scalar if all users of the induction
// variable and induction variable update remain scalar.
for (auto &Induction : Legal->getInductionVars()) {
auto *Ind = Induction.first;
auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
// If tail-folding is applied, the primary induction variable will be used
// to feed a vector compare.
if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
continue;
// Determine if all users of the induction variable are scalar after
// vectorization.
auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
auto *I = cast<Instruction>(U);
return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I);
});
if (!ScalarInd)
continue;
// Determine if all users of the induction variable update instruction are
// scalar after vectorization.
auto ScalarIndUpdate =
llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
auto *I = cast<Instruction>(U);
return I == Ind || !TheLoop->contains(I) || Worklist.count(I);
});
if (!ScalarIndUpdate)
continue;
// The induction variable and its update instruction will remain scalar.
Worklist.insert(Ind);
Worklist.insert(IndUpdate);
LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
<< "\n");
}
Scalars[VF].insert(Worklist.begin(), Worklist.end());
}
bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I) const {
if (!blockNeedsPredication(I->getParent()))
return false;
switch(I->getOpcode()) {
default:
break;
case Instruction::Load:
case Instruction::Store: {
if (!Legal->isMaskRequired(I))
return false;
auto *Ptr = getLoadStorePointerOperand(I);
auto *Ty = getLoadStoreType(I);
const Align Alignment = getLoadStoreAlignment(I);
return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
TTI.isLegalMaskedGather(Ty, Alignment))
: !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
TTI.isLegalMaskedScatter(Ty, Alignment));
}
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::SRem:
case Instruction::URem:
return mayDivideByZero(*I);
}
return false;
}
bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(
Instruction *I, ElementCount VF) {
assert(isAccessInterleaved(I) && "Expecting interleaved access.");
assert(getWideningDecision(I, VF) == CM_Unknown &&
"Decision should not be set yet.");
auto *Group = getInterleavedAccessGroup(I);
assert(Group && "Must have a group.");
// If the instruction's allocated size doesn't equal it's type size, it
// requires padding and will be scalarized.
auto &DL = I->getModule()->getDataLayout();
auto *ScalarTy = getLoadStoreType(I);
if (hasIrregularType(ScalarTy, DL))
return false;
// Check if masking is required.
// A Group may need masking for one of two reasons: it resides in a block that
// needs predication, or it was decided to use masking to deal with gaps.
bool PredicatedAccessRequiresMasking =
Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I);
bool AccessWithGapsRequiresMasking =
Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed();
if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking)
return true;
// If masked interleaving is required, we expect that the user/target had
// enabled it, because otherwise it either wouldn't have been created or
// it should have been invalidated by the CostModel.
assert(useMaskedInterleavedAccesses(TTI) &&
"Masked interleave-groups for predicated accesses are not enabled.");
auto *Ty = getLoadStoreType(I);
const Align Alignment = getLoadStoreAlignment(I);
return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
: TTI.isLegalMaskedStore(Ty, Alignment);
}
bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(
Instruction *I, ElementCount VF) {
// Get and ensure we have a valid memory instruction.
LoadInst *LI = dyn_cast<LoadInst>(I);
StoreInst *SI = dyn_cast<StoreInst>(I);
assert((LI || SI) && "Invalid memory instruction");
auto *Ptr = getLoadStorePointerOperand(I);
// In order to be widened, the pointer should be consecutive, first of all.
if (!Legal->isConsecutivePtr(Ptr))
return false;
// If the instruction is a store located in a predicated block, it will be
// scalarized.
if (isScalarWithPredication(I))
return false;
// If the instruction's allocated size doesn't equal it's type size, it
// requires padding and will be scalarized.
auto &DL = I->getModule()->getDataLayout();
auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType();
if (hasIrregularType(ScalarTy, DL))
return false;
return true;
}
void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
// We should not collect Uniforms more than once per VF. Right now,
// this function is called from collectUniformsAndScalars(), which
// already does this check. Collecting Uniforms for VF=1 does not make any
// sense.
assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() &&
"This function should not be visited twice for the same VF");
// Visit the list of Uniforms. If we'll not find any uniform value, we'll
// not analyze again. Uniforms.count(VF) will return 1.
Uniforms[VF].clear();
// We now know that the loop is vectorizable!
// Collect instructions inside the loop that will remain uniform after
// vectorization.
// Global values, params and instructions outside of current loop are out of
// scope.
auto isOutOfScope = [&](Value *V) -> bool {
Instruction *I = dyn_cast<Instruction>(V);
return (!I || !TheLoop->contains(I));
};
SetVector<Instruction *> Worklist;
BasicBlock *Latch = TheLoop->getLoopLatch();
// Instructions that are scalar with predication must not be considered
// uniform after vectorization, because that would create an erroneous
// replicating region where only a single instance out of VF should be formed.
// TODO: optimize such seldom cases if found important, see PR40816.
auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
if (isOutOfScope(I)) {
LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
<< *I << "\n");
return;
}
if (isScalarWithPredication(I)) {
LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
<< *I << "\n");
return;
}
LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
Worklist.insert(I);
};
// Start with the conditional branch. If the branch condition is an
// instruction contained in the loop that is only used by the branch, it is
// uniform.
auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
addToWorklistIfAllowed(Cmp);
auto isUniformDecision = [&](Instruction *I, ElementCount VF) {
InstWidening WideningDecision = getWideningDecision(I, VF);
assert(WideningDecision != CM_Unknown &&
"Widening decision should be ready at this moment");
// A uniform memory op is itself uniform. We exclude uniform stores
// here as they demand the last lane, not the first one.
if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) {
assert(WideningDecision == CM_Scalarize);
return true;
}
return (WideningDecision == CM_Widen ||
WideningDecision == CM_Widen_Reverse ||
WideningDecision == CM_Interleave);
};
// Returns true if Ptr is the pointer operand of a memory access instruction
// I, and I is known to not require scalarization.
auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
};
// Holds a list of values which are known to have at least one uniform use.
// Note that there may be other uses which aren't uniform. A "uniform use"
// here is something which only demands lane 0 of the unrolled iterations;
// it does not imply that all lanes produce the same value (e.g. this is not
// the usual meaning of uniform)
SetVector<Value *> HasUniformUse;
// Scan the loop for instructions which are either a) known to have only
// lane 0 demanded or b) are uses which demand only lane 0 of their operand.
for (auto *BB : TheLoop->blocks())
for (auto &I : *BB) {
// If there's no pointer operand, there's nothing to do.
auto *Ptr = getLoadStorePointerOperand(&I);
if (!Ptr)
continue;
// A uniform memory op is itself uniform. We exclude uniform stores
// here as they demand the last lane, not the first one.
if (isa<LoadInst>(I) && Legal->isUniformMemOp(I))
addToWorklistIfAllowed(&I);
if (isUniformDecision(&I, VF)) {
assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check");
HasUniformUse.insert(Ptr);
}
}
// Add to the worklist any operands which have *only* uniform (e.g. lane 0
// demanding) users. Since loops are assumed to be in LCSSA form, this
// disallows uses outside the loop as well.
for (auto *V : HasUniformUse) {
if (isOutOfScope(V))
continue;
auto *I = cast<Instruction>(V);
auto UsersAreMemAccesses =
llvm::all_of(I->users(), [&](User *U) -> bool {
return isVectorizedMemAccessUse(cast<Instruction>(U), V);
});
if (UsersAreMemAccesses)
addToWorklistIfAllowed(I);
}
// Expand Worklist in topological order: whenever a new instruction
// is added , its users should be already inside Worklist. It ensures
// a uniform instruction will only be used by uniform instructions.
unsigned idx = 0;
while (idx != Worklist.size()) {
Instruction *I = Worklist[idx++];
for (auto OV : I->operand_values()) {
// isOutOfScope operands cannot be uniform instructions.
if (isOutOfScope(OV))
continue;
// First order recurrence Phi's should typically be considered
// non-uniform.
auto *OP = dyn_cast<PHINode>(OV);
if (OP && Legal->isFirstOrderRecurrence(OP))
continue;
// If all the users of the operand are uniform, then add the
// operand into the uniform worklist.
auto *OI = cast<Instruction>(OV);
if (llvm::all_of(OI->users(), [&](User *U) -> bool {
auto *J = cast<Instruction>(U);
return Worklist.count(J) || isVectorizedMemAccessUse(J, OI);
}))
addToWorklistIfAllowed(OI);
}
}
// For an instruction to be added into Worklist above, all its users inside
// the loop should also be in Worklist. However, this condition cannot be
// true for phi nodes that form a cyclic dependence. We must process phi
// nodes separately. An induction variable will remain uniform if all users
// of the induction variable and induction variable update remain uniform.
// The code below handles both pointer and non-pointer induction variables.
for (auto &Induction : Legal->getInductionVars()) {
auto *Ind = Induction.first;
auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
// Determine if all users of the induction variable are uniform after
// vectorization.
auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
auto *I = cast<Instruction>(U);
return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
isVectorizedMemAccessUse(I, Ind);
});
if (!UniformInd)
continue;
// Determine if all users of the induction variable update instruction are
// uniform after vectorization.
auto UniformIndUpdate =
llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
auto *I = cast<Instruction>(U);
return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
isVectorizedMemAccessUse(I, IndUpdate);
});
if (!UniformIndUpdate)
continue;
// The induction variable and its update instruction will remain uniform.
addToWorklistIfAllowed(Ind);
addToWorklistIfAllowed(IndUpdate);
}
Uniforms[VF].insert(Worklist.begin(), Worklist.end());
}
bool LoopVectorizationCostModel::runtimeChecksRequired() {
LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
if (Legal->getRuntimePointerChecking()->Need) {
reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
"runtime pointer checks needed. Enable vectorization of this "
"loop with '#pragma clang loop vectorize(enable)' when "
"compiling with -Os/-Oz",
"CantVersionLoopWithOptForSize", ORE, TheLoop);
return true;
}
if (!PSE.getUnionPredicate().getPredicates().empty()) {
reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
"runtime SCEV checks needed. Enable vectorization of this "
"loop with '#pragma clang loop vectorize(enable)' when "
"compiling with -Os/-Oz",
"CantVersionLoopWithOptForSize", ORE, TheLoop);
return true;
}
// FIXME: Avoid specializing for stride==1 instead of bailing out.
if (!Legal->getLAI()->getSymbolicStrides().empty()) {
reportVectorizationFailure("Runtime stride check for small trip count",
"runtime stride == 1 checks needed. Enable vectorization of "
"this loop without such check by compiling with -Os/-Oz",
"CantVersionLoopWithOptForSize", ORE, TheLoop);
return true;
}
return false;
}
ElementCount
LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) {
if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) {
reportVectorizationInfo(
"Disabling scalable vectorization, because target does not "
"support scalable vectors.",
"ScalableVectorsUnsupported", ORE, TheLoop);
return ElementCount::getScalable(0);
}
if (Hints->isScalableVectorizationDisabled()) {
reportVectorizationInfo("Scalable vectorization is explicitly disabled",
"ScalableVectorizationDisabled", ORE, TheLoop);
return ElementCount::getScalable(0);
}
auto MaxScalableVF = ElementCount::getScalable(
std::numeric_limits<ElementCount::ScalarTy>::max());
// Test that the loop-vectorizer can legalize all operations for this MaxVF.
// FIXME: While for scalable vectors this is currently sufficient, this should
// be replaced by a more detailed mechanism that filters out specific VFs,
// instead of invalidating vectorization for a whole set of VFs based on the
// MaxVF.
// Disable scalable vectorization if the loop contains unsupported reductions.
if (!canVectorizeReductions(MaxScalableVF)) {
reportVectorizationInfo(
"Scalable vectorization not supported for the reduction "
"operations found in this loop.",
"ScalableVFUnfeasible", ORE, TheLoop);
return ElementCount::getScalable(0);
}
// Disable scalable vectorization if the loop contains any instructions
// with element types not supported for scalable vectors.
if (any_of(ElementTypesInLoop, [&](Type *Ty) {
return !Ty->isVoidTy() &&
!this->TTI.isElementTypeLegalForScalableVector(Ty);
})) {
reportVectorizationInfo("Scalable vectorization is not supported "
"for all element types found in this loop.",
"ScalableVFUnfeasible", ORE, TheLoop);
return ElementCount::getScalable(0);
}
if (Legal->isSafeForAnyVectorWidth())
return MaxScalableVF;
// Limit MaxScalableVF by the maximum safe dependence distance.
Optional<unsigned> MaxVScale = TTI.getMaxVScale();
MaxScalableVF = ElementCount::getScalable(
MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0);
if (!MaxScalableVF)
reportVectorizationInfo(
"Max legal vector width too small, scalable vectorization "
"unfeasible.",
"ScalableVFUnfeasible", ORE, TheLoop);
return MaxScalableVF;
}
FixedScalableVFPair
LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount,
ElementCount UserVF) {
MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
unsigned SmallestType, WidestType;
std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
// Get the maximum safe dependence distance in bits computed by LAA.
// It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
// the memory accesses that is most restrictive (involved in the smallest
// dependence distance).
unsigned MaxSafeElements =
PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType);
auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements);
auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements);
LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF
<< ".\n");
LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF
<< ".\n");
// First analyze the UserVF, fall back if the UserVF should be ignored.
if (UserVF) {
auto MaxSafeUserVF =
UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
// If `VF=vscale x N` is safe, then so is `VF=N`
if (UserVF.isScalable())
return FixedScalableVFPair(
ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF);
else
return UserVF;
}
assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
// Only clamp if the UserVF is not scalable. If the UserVF is scalable, it
// is better to ignore the hint and let the compiler choose a suitable VF.
if (!UserVF.isScalable()) {
LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
<< " is unsafe, clamping to max safe VF="
<< MaxSafeFixedVF << ".\n");
ORE->emit([&]() {
return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
TheLoop->getStartLoc(),
TheLoop->getHeader())
<< "User-specified vectorization factor "
<< ore::NV("UserVectorizationFactor", UserVF)
<< " is unsafe, clamping to maximum safe vectorization factor "
<< ore::NV("VectorizationFactor", MaxSafeFixedVF);
});
return MaxSafeFixedVF;
}
LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
<< " is unsafe. Ignoring scalable UserVF.\n");
ORE->emit([&]() {
return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
TheLoop->getStartLoc(),
TheLoop->getHeader())
<< "User-specified vectorization factor "
<< ore::NV("UserVectorizationFactor", UserVF)
<< " is unsafe. Ignoring the hint to let the compiler pick a "
"suitable VF.";
});
}
LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
<< " / " << WidestType << " bits.\n");
FixedScalableVFPair Result(ElementCount::getFixed(1),
ElementCount::getScalable(0));
if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType,
WidestType, MaxSafeFixedVF))
Result.FixedVF = MaxVF;
if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType,
WidestType, MaxSafeScalableVF))
if (MaxVF.isScalable()) {
Result.ScalableVF = MaxVF;
LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF
<< "\n");
}
return Result;
}
FixedScalableVFPair
LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
// TODO: It may by useful to do since it's still likely to be dynamically
// uniform if the target can skip.
reportVectorizationFailure(
"Not inserting runtime ptr check for divergent target",
"runtime pointer checks needed. Not enabled for divergent target",
"CantVersionLoopWithDivergentTarget", ORE, TheLoop);
return FixedScalableVFPair::getNone();
}
unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
if (TC == 1) {
reportVectorizationFailure("Single iteration (non) loop",
"loop trip count is one, irrelevant for vectorization",
"SingleIterationLoop", ORE, TheLoop);
return FixedScalableVFPair::getNone();
}
switch (ScalarEpilogueStatus) {
case CM_ScalarEpilogueAllowed:
return computeFeasibleMaxVF(TC, UserVF);
case CM_ScalarEpilogueNotAllowedUsePredicate:
LLVM_FALLTHROUGH;
case CM_ScalarEpilogueNotNeededUsePredicate:
LLVM_DEBUG(
dbgs() << "LV: vector predicate hint/switch found.\n"
<< "LV: Not allowing scalar epilogue, creating predicated "
<< "vector loop.\n");
break;
case CM_ScalarEpilogueNotAllowedLowTripLoop:
// fallthrough as a special case of OptForSize
case CM_ScalarEpilogueNotAllowedOptSize:
if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
LLVM_DEBUG(
dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
else
LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
<< "count.\n");
// Bail if runtime checks are required, which are not good when optimising
// for size.
if (runtimeChecksRequired())
return FixedScalableVFPair::getNone();
break;
}
// The only loops we can vectorize without a scalar epilogue, are loops with
// a bottom-test and a single exiting block. We'd have to handle the fact
// that not every instruction executes on the last iteration. This will
// require a lane mask which varies through the vector loop body. (TODO)
if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
// If there was a tail-folding hint/switch, but we can't fold the tail by
// masking, fallback to a vectorization with a scalar epilogue.
if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
"scalar epilogue instead.\n");
ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
return computeFeasibleMaxVF(TC, UserVF);
}
return FixedScalableVFPair::getNone();
}
// Now try the tail folding
// Invalidate interleave groups that require an epilogue if we can't mask
// the interleave-group.
if (!useMaskedInterleavedAccesses(TTI)) {
assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
"No decisions should have been taken at this point");
// Note: There is no need to invalidate any cost modeling decisions here, as
// non where taken so far.
InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
}
FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF);
// Avoid tail folding if the trip count is known to be a multiple of any VF
// we chose.
// FIXME: The condition below pessimises the case for fixed-width vectors,
// when scalable VFs are also candidates for vectorization.
if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) {
ElementCount MaxFixedVF = MaxFactors.FixedVF;
assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) &&
"MaxFixedVF must be a power of 2");
unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC
: MaxFixedVF.getFixedValue();
ScalarEvolution *SE = PSE.getSE();
const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
const SCEV *ExitCount = SE->getAddExpr(
BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
const SCEV *Rem = SE->getURemExpr(
SE->applyLoopGuards(ExitCount, TheLoop),
SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
if (Rem->isZero()) {
// Accept MaxFixedVF if we do not have a tail.
LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
return MaxFactors;
}
}
// For scalable vectors, don't use tail folding as this is currently not yet
// supported. The code is likely to have ended up here if the tripcount is
// low, in which case it makes sense not to use scalable vectors.
if (MaxFactors.ScalableVF.isVector())
MaxFactors.ScalableVF = ElementCount::getScalable(0);
// If we don't know the precise trip count, or if the trip count that we
// found modulo the vectorization factor is not zero, try to fold the tail
// by masking.
// FIXME: look for a smaller MaxVF that does divide TC rather than masking.
if (Legal->prepareToFoldTailByMasking()) {
FoldTailByMasking = true;
return MaxFactors;
}
// If there was a tail-folding hint/switch, but we can't fold the tail by
// masking, fallback to a vectorization with a scalar epilogue.
if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
"scalar epilogue instead.\n");
ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
return MaxFactors;
}
if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
return FixedScalableVFPair::getNone();
}
if (TC == 0) {
reportVectorizationFailure(
"Unable to calculate the loop count due to complex control flow",
"unable to calculate the loop count due to complex control flow",
"UnknownLoopCountComplexCFG", ORE, TheLoop);
return FixedScalableVFPair::getNone();
}
reportVectorizationFailure(
"Cannot optimize for size and vectorize at the same time.",
"cannot optimize for size and vectorize at the same time. "
"Enable vectorization of this loop with '#pragma clang loop "
"vectorize(enable)' when compiling with -Os/-Oz",
"NoTailLoopWithOptForSize", ORE, TheLoop);
return FixedScalableVFPair::getNone();
}
ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType,
const ElementCount &MaxSafeVF) {
bool ComputeScalableMaxVF = MaxSafeVF.isScalable();
TypeSize WidestRegister = TTI.getRegisterBitWidth(
ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
: TargetTransformInfo::RGK_FixedWidthVector);
// Convenience function to return the minimum of two ElementCounts.
auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) {
assert((LHS.isScalable() == RHS.isScalable()) &&
"Scalable flags must match");
return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS;
};
// Ensure MaxVF is a power of 2; the dependence distance bound may not be.
// Note that both WidestRegister and WidestType may not be a powers of 2.
auto MaxVectorElementCount = ElementCount::get(
PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType),
ComputeScalableMaxVF);
MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
<< (MaxVectorElementCount * WidestType) << " bits.\n");
if (!MaxVectorElementCount) {
LLVM_DEBUG(dbgs() << "LV: The target has no "
<< (ComputeScalableMaxVF ? "scalable" : "fixed")
<< " vector registers.\n");
return ElementCount::getFixed(1);
}
const auto TripCountEC = ElementCount::getFixed(ConstTripCount);
if (ConstTripCount &&
ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) &&
isPowerOf2_32(ConstTripCount)) {
// We need to clamp the VF to be the ConstTripCount. There is no point in
// choosing a higher viable VF as done in the loop below. If
// MaxVectorElementCount is scalable, we only fall back on a fixed VF when
// the TC is less than or equal to the known number of lanes.
LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: "
<< ConstTripCount << "\n");
return TripCountEC;
}
ElementCount MaxVF = MaxVectorElementCount;
if (TTI.shouldMaximizeVectorBandwidth() ||
(MaximizeBandwidth && isScalarEpilogueAllowed())) {
auto MaxVectorElementCountMaxBW = ElementCount::get(
PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType),
ComputeScalableMaxVF);
MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
// Collect all viable vectorization factors larger than the default MaxVF
// (i.e. MaxVectorElementCount).
SmallVector<ElementCount, 8> VFs;
for (ElementCount VS = MaxVectorElementCount * 2;
ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2)
VFs.push_back(VS);
// For each VF calculate its register usage.
auto RUs = calculateRegisterUsage(VFs);
// Select the largest VF which doesn't require more registers than existing
// ones.
for (int i = RUs.size() - 1; i >= 0; --i) {
bool Selected = true;
for (auto &pair : RUs[i].MaxLocalUsers) {
unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
if (pair.second > TargetNumRegisters)
Selected = false;
}
if (Selected) {
MaxVF = VFs[i];
break;
}
}
if (ElementCount MinVF =
TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
if (ElementCount::isKnownLT(MaxVF, MinVF)) {
LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
<< ") with target's minimum: " << MinVF << '\n');
MaxVF = MinVF;
}
}
}
return MaxVF;
}
bool LoopVectorizationCostModel::isMoreProfitable(
const VectorizationFactor &A, const VectorizationFactor &B) const {
InstructionCost CostA = A.Cost;
InstructionCost CostB = B.Cost;
unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop);
if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking &&
MaxTripCount) {
// If we are folding the tail and the trip count is a known (possibly small)
// constant, the trip count will be rounded up to an integer number of
// iterations. The total cost will be PerIterationCost*ceil(TripCount/VF),
// which we compare directly. When not folding the tail, the total cost will
// be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is
// approximated with the per-lane cost below instead of using the tripcount
// as here.
auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue());
auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue());
return RTCostA < RTCostB;
}
// When set to preferred, for now assume vscale may be larger than 1, so
// that scalable vectorization is slightly favorable over fixed-width
// vectorization.
if (Hints->isScalableVectorizationPreferred())
if (A.Width.isScalable() && !B.Width.isScalable())
return (CostA * B.Width.getKnownMinValue()) <=
(CostB * A.Width.getKnownMinValue());
// To avoid the need for FP division:
// (CostA / A.Width) < (CostB / B.Width)
// <=> (CostA * B.Width) < (CostB * A.Width)
return (CostA * B.Width.getKnownMinValue()) <
(CostB * A.Width.getKnownMinValue());
}
VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor(
const ElementCountSet &VFCandidates) {
InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first;
LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
assert(VFCandidates.count(ElementCount::getFixed(1)) &&
"Expected Scalar VF to be a candidate");
const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost);
VectorizationFactor ChosenFactor = ScalarCost;
bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
if (ForceVectorization && VFCandidates.size() > 1) {
// Ignore scalar width, because the user explicitly wants vectorization.
// Initialize cost to max so that VF = 2 is, at least, chosen during cost
// evaluation.
ChosenFactor.Cost = InstructionCost::getMax();
}
SmallVector<InstructionVFPair> InvalidCosts;
for (const auto &i : VFCandidates) {
// The cost for scalar VF=1 is already calculated, so ignore it.
if (i.isScalar())
continue;
VectorizationCostTy C = expectedCost(i, &InvalidCosts);
VectorizationFactor Candidate(i, C.first);
LLVM_DEBUG(
dbgs() << "LV: Vector loop of width " << i << " costs: "
<< (Candidate.Cost / Candidate.Width.getKnownMinValue())
<< (i.isScalable() ? " (assuming a minimum vscale of 1)" : "")
<< ".\n");
if (!C.second && !ForceVectorization) {
LLVM_DEBUG(
dbgs() << "LV: Not considering vector loop of width " << i
<< " because it will not generate any vector instructions.\n");
continue;
}
// If profitable add it to ProfitableVF list.
if (isMoreProfitable(Candidate, ScalarCost))
ProfitableVFs.push_back(Candidate);
if (isMoreProfitable(Candidate, ChosenFactor))
ChosenFactor = Candidate;
}
// Emit a report of VFs with invalid costs in the loop.
if (!InvalidCosts.empty()) {
// Group the remarks per instruction, keeping the instruction order from
// InvalidCosts.
std::map<Instruction *, unsigned> Numbering;
unsigned I = 0;
for (auto &Pair : InvalidCosts)
if (!Numbering.count(Pair.first))
Numbering[Pair.first] = I++;
// Sort the list, first on instruction(number) then on VF.
llvm::sort(InvalidCosts,
[&Numbering](InstructionVFPair &A, InstructionVFPair &B) {
if (Numbering[A.first] != Numbering[B.first])
return Numbering[A.first] < Numbering[B.first];
ElementCountComparator ECC;
return ECC(A.second, B.second);
});
// For a list of ordered instruction-vf pairs:
// [(load, vf1), (load, vf2), (store, vf1)]
// Group the instructions together to emit separate remarks for:
// load (vf1, vf2)
// store (vf1)
auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts);
auto Subset = ArrayRef<InstructionVFPair>();
do {
if (Subset.empty())
Subset = Tail.take_front(1);
Instruction *I = Subset.front().first;
// If the next instruction is different, or if there are no other pairs,
// emit a remark for the collated subset. e.g.
// [(load, vf1), (load, vf2))]
// to emit:
// remark: invalid costs for 'load' at VF=(vf, vf2)
if (Subset == Tail || Tail[Subset.size()].first != I) {
std::string OutString;
raw_string_ostream OS(OutString);
assert(!Subset.empty() && "Unexpected empty range");
OS << "Instruction with invalid costs prevented vectorization at VF=(";
for (auto &Pair : Subset)
OS << (Pair.second == Subset.front().second ? "" : ", ")
<< Pair.second;
OS << "):";
if (auto *CI = dyn_cast<CallInst>(I))
OS << " call to " << CI->getCalledFunction()->getName();
else
OS << " " << I->getOpcodeName();
OS.flush();
reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I);
Tail = Tail.drop_front(Subset.size());
Subset = {};
} else
// Grow the subset by one element
Subset = Tail.take_front(Subset.size() + 1);
} while (!Tail.empty());
}
if (!EnableCondStoresVectorization && NumPredStores) {
reportVectorizationFailure("There are conditional stores.",
"store that is conditionally executed prevents vectorization",
"ConditionalStore", ORE, TheLoop);
ChosenFactor = ScalarCost;
}
LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
ChosenFactor.Cost >= ScalarCost.Cost) dbgs()
<< "LV: Vectorization seems to be not beneficial, "
<< "but was forced by a user.\n");
LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n");
return ChosenFactor;
}
bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization(
const Loop &L, ElementCount VF) const {
// Cross iteration phis such as reductions need special handling and are
// currently unsupported.
if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) {
return Legal->isFirstOrderRecurrence(&Phi) ||
Legal->isReductionVariable(&Phi);
}))
return false;
// Phis with uses outside of the loop require special handling and are
// currently unsupported.
for (auto &Entry : Legal->getInductionVars()) {
// Look for uses of the value of the induction at the last iteration.
Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch());
for (User *U : PostInc->users())
if (!L.contains(cast<Instruction>(U)))
return false;
// Look for uses of penultimate value of the induction.
for (User *U : Entry.first->users())
if (!L.contains(cast<Instruction>(U)))
return false;
}
// Induction variables that are widened require special handling that is
// currently not supported.
if (any_of(Legal->getInductionVars(), [&](auto &Entry) {
return !(this->isScalarAfterVectorization(Entry.first, VF) ||
this->isProfitableToScalarize(Entry.first, VF));
}))
return false;
// Epilogue vectorization code has not been auditted to ensure it handles
// non-latch exits properly. It may be fine, but it needs auditted and
// tested.
if (L.getExitingBlock() != L.getLoopLatch())
return false;
return true;
}
bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable(
const ElementCount VF) const {
// FIXME: We need a much better cost-model to take different parameters such
// as register pressure, code size increase and cost of extra branches into
// account. For now we apply a very crude heuristic and only consider loops
// with vectorization factors larger than a certain value.
// We also consider epilogue vectorization unprofitable for targets that don't
// consider interleaving beneficial (eg. MVE).
if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1)
return false;
if (VF.getFixedValue() >= EpilogueVectorizationMinVF)
return true;
return false;
}
VectorizationFactor
LoopVectorizationCostModel::selectEpilogueVectorizationFactor(
const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) {
VectorizationFactor Result = VectorizationFactor::Disabled();
if (!EnableEpilogueVectorization) {
LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";);
return Result;
}
if (!isScalarEpilogueAllowed()) {
LLVM_DEBUG(
dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is "
"allowed.\n";);
return Result;
}
// FIXME: This can be fixed for scalable vectors later, because at this stage
// the LoopVectorizer will only consider vectorizing a loop with scalable
// vectors when the loop has a hint to enable vectorization for a given VF.
if (MainLoopVF.isScalable()) {
LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization for scalable vectors not "
"yet supported.\n");
return Result;
}
// Not really a cost consideration, but check for unsupported cases here to
// simplify the logic.
if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) {
LLVM_DEBUG(
dbgs() << "LEV: Unable to vectorize epilogue because the loop is "
"not a supported candidate.\n";);
return Result;
}
if (EpilogueVectorizationForceVF > 1) {
LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";);
if (LVP.hasPlanWithVFs(
{MainLoopVF, ElementCount::getFixed(EpilogueVectorizationForceVF)}))
return {ElementCount::getFixed(EpilogueVectorizationForceVF), 0};
else {
LLVM_DEBUG(
dbgs()
<< "LEV: Epilogue vectorization forced factor is not viable.\n";);
return Result;
}
}
if (TheLoop->getHeader()->getParent()->hasOptSize() ||
TheLoop->getHeader()->getParent()->hasMinSize()) {
LLVM_DEBUG(
dbgs()
<< "LEV: Epilogue vectorization skipped due to opt for size.\n";);
return Result;
}
if (!isEpilogueVectorizationProfitable(MainLoopVF))
return Result;
for (auto &NextVF : ProfitableVFs)
if (ElementCount::isKnownLT(NextVF.Width, MainLoopVF) &&
(Result.Width.getFixedValue() == 1 ||
isMoreProfitable(NextVF, Result)) &&
LVP.hasPlanWithVFs({MainLoopVF, NextVF.Width}))
Result = NextVF;
if (Result != VectorizationFactor::Disabled())
LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
<< Result.Width.getFixedValue() << "\n";);
return Result;
}
std::pair<unsigned, unsigned>
LoopVectorizationCostModel::getSmallestAndWidestTypes() {
unsigned MinWidth = -1U;
unsigned MaxWidth = 8;
const DataLayout &DL = TheFunction->getParent()->getDataLayout();
for (Type *T : ElementTypesInLoop) {
MinWidth = std::min<unsigned>(
MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
MaxWidth = std::max<unsigned>(
MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
}
return {MinWidth, MaxWidth};
}
void LoopVectorizationCostModel::collectElementTypesForWidening() {
ElementTypesInLoop.clear();
// For each block.
for (BasicBlock *BB : TheLoop->blocks()) {
// For each instruction in the loop.
for (Instruction &I : BB->instructionsWithoutDebug()) {
Type *T = I.getType();
// Skip ignored values.
if (ValuesToIgnore.count(&I))
continue;
// Only examine Loads, Stores and PHINodes.
if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
continue;
// Examine PHI nodes that are reduction variables. Update the type to
// account for the recurrence type.
if (auto *PN = dyn_cast<PHINode>(&I)) {
if (!Legal->isReductionVariable(PN))
continue;
const RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[PN];
if (PreferInLoopReductions || useOrderedReductions(RdxDesc) ||
TTI.preferInLoopReduction(RdxDesc.getOpcode(),
RdxDesc.getRecurrenceType(),
TargetTransformInfo::ReductionFlags()))
continue;
T = RdxDesc.getRecurrenceType();
}
// Examine the stored values.
if (auto *ST = dyn_cast<StoreInst>(&I))
T = ST->getValueOperand()->getType();
// Ignore loaded pointer types and stored pointer types that are not
// vectorizable.
//
// FIXME: The check here attempts to predict whether a load or store will
// be vectorized. We only know this for certain after a VF has
// been selected. Here, we assume that if an access can be
// vectorized, it will be. We should also look at extending this
// optimization to non-pointer types.
//
if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) &&
!isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I))
continue;
ElementTypesInLoop.insert(T);
}
}
}
unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF,
unsigned LoopCost) {
// -- The interleave heuristics --
// We interleave the loop in order to expose ILP and reduce the loop overhead.
// There are many micro-architectural considerations that we can't predict
// at this level. For example, frontend pressure (on decode or fetch) due to
// code size, or the number and capabilities of the execution ports.
//
// We use the following heuristics to select the interleave count:
// 1. If the code has reductions, then we interleave to break the cross
// iteration dependency.
// 2. If the loop is really small, then we interleave to reduce the loop
// overhead.
// 3. We don't interleave if we think that we will spill registers to memory
// due to the increased register pressure.
if (!isScalarEpilogueAllowed())
return 1;
// We used the distance for the interleave count.
if (Legal->getMaxSafeDepDistBytes() != -1U)
return 1;
auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
const bool HasReductions = !Legal->getReductionVars().empty();
// Do not interleave loops with a relatively small known or estimated trip
// count. But we will interleave when InterleaveSmallLoopScalarReduction is
// enabled, and the code has scalar reductions(HasReductions && VF = 1),
// because with the above conditions interleaving can expose ILP and break
// cross iteration dependences for reductions.
if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) &&
!(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar()))
return 1;
RegisterUsage R = calculateRegisterUsage({VF})[0];
// We divide by these constants so assume that we have at least one
// instruction that uses at least one register.
for (auto& pair : R.MaxLocalUsers) {
pair.second = std::max(pair.second, 1U);
}
// We calculate the interleave count using the following formula.
// Subtract the number of loop invariants from the number of available
// registers. These registers are used by all of the interleaved instances.
// Next, divide the remaining registers by the number of registers that is
// required by the loop, in order to estimate how many parallel instances
// fit without causing spills. All of this is rounded down if necessary to be
// a power of two. We want power of two interleave count to simplify any
// addressing operations or alignment considerations.
// We also want power of two interleave counts to ensure that the induction
// variable of the vector loop wraps to zero, when tail is folded by masking;
// this currently happens when OptForSize, in which case IC is set to 1 above.
unsigned IC = UINT_MAX;
for (auto& pair : R.MaxLocalUsers) {
unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
<< " registers of "
<< TTI.getRegisterClassName(pair.first) << " register class\n");
if (VF.isScalar()) {
if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
TargetNumRegisters = ForceTargetNumScalarRegs;
} else {
if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
TargetNumRegisters = ForceTargetNumVectorRegs;
}
unsigned MaxLocalUsers = pair.second;
unsigned LoopInvariantRegs = 0;
if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
// Don't count the induction variable as interleaved.
if (EnableIndVarRegisterHeur) {
TmpIC =
PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
std::max(1U, (MaxLocalUsers - 1)));
}
IC = std::min(IC, TmpIC);
}
// Clamp the interleave ranges to reasonable counts.
unsigned MaxInterleaveCount =
TTI.getMaxInterleaveFactor(VF.getKnownMinValue());
// Check if the user has overridden the max.
if (VF.isScalar()) {
if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
} else {
if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
}
// If trip count is known or estimated compile time constant, limit the
// interleave count to be less than the trip count divided by VF, provided it
// is at least 1.
//
// For scalable vectors we can't know if interleaving is beneficial. It may
// not be beneficial for small loops if none of the lanes in the second vector
// iterations is enabled. However, for larger loops, there is likely to be a
// similar benefit as for fixed-width vectors. For now, we choose to leave
// the InterleaveCount as if vscale is '1', although if some information about
// the vector is known (e.g. min vector size), we can make a better decision.
if (BestKnownTC) {
MaxInterleaveCount =
std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount);
// Make sure MaxInterleaveCount is greater than 0.
MaxInterleaveCount = std::max(1u, MaxInterleaveCount);
}
assert(MaxInterleaveCount > 0 &&
"Maximum interleave count must be greater than 0");
// Clamp the calculated IC to be between the 1 and the max interleave count
// that the target and trip count allows.
if (IC > MaxInterleaveCount)
IC = MaxInterleaveCount;
else
// Make sure IC is greater than 0.
IC = std::max(1u, IC);
assert(IC > 0 && "Interleave count must be greater than 0.");
// If we did not calculate the cost for VF (because the user selected the VF)
// then we calculate the cost of VF here.
if (LoopCost == 0) {
InstructionCost C = expectedCost(VF).first;
assert(C.isValid() && "Expected to have chosen a VF with valid cost");
LoopCost = *C.getValue();
}
assert(LoopCost && "Non-zero loop cost expected");
// Interleave if we vectorized this loop and there is a reduction that could
// benefit from interleaving.
if (VF.isVector() && HasReductions) {
LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
return IC;
}
// Note that if we've already vectorized the loop we will have done the
// runtime check and so interleaving won't require further checks.
bool InterleavingRequiresRuntimePointerCheck =
(VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
// We want to interleave small loops in order to reduce the loop overhead and
// potentially expose ILP opportunities.
LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
<< "LV: IC is " << IC << '\n'
<< "LV: VF is " << VF << '\n');
const bool AggressivelyInterleaveReductions =
TTI.enableAggressiveInterleaving(HasReductions);
if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
// We assume that the cost overhead is 1 and we use the cost model
// to estimate the cost of the loop and interleave until the cost of the
// loop overhead is about 5% of the cost of the loop.
unsigned SmallIC =
std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
// Interleave until store/load ports (estimated by max interleave count) are
// saturated.
unsigned NumStores = Legal->getNumStores();
unsigned NumLoads = Legal->getNumLoads();
unsigned StoresIC = IC / (NumStores ? NumStores : 1);
unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
// If we have a scalar reduction (vector reductions are already dealt with
// by this point), we can increase the critical path length if the loop
// we're interleaving is inside another loop. For tree-wise reductions
// set the limit to 2, and for ordered reductions it's best to disable
// interleaving entirely.
if (HasReductions && TheLoop->getLoopDepth() > 1) {
bool HasOrderedReductions =
any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
const RecurrenceDescriptor &RdxDesc = Reduction.second;
return RdxDesc.isOrdered();
});
if (HasOrderedReductions) {
LLVM_DEBUG(
dbgs() << "LV: Not interleaving scalar ordered reductions.\n");
return 1;
}
unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
SmallIC = std::min(SmallIC, F);
StoresIC = std::min(StoresIC, F);
LoadsIC = std::min(LoadsIC, F);
}
if (EnableLoadStoreRuntimeInterleave &&
std::max(StoresIC, LoadsIC) > SmallIC) {
LLVM_DEBUG(
dbgs() << "LV: Interleaving to saturate store or load ports.\n");
return std::max(StoresIC, LoadsIC);
}
// If there are scalar reductions and TTI has enabled aggressive
// interleaving for reductions, we will interleave to expose ILP.
if (InterleaveSmallLoopScalarReduction && VF.isScalar() &&
AggressivelyInterleaveReductions) {
LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
// Interleave no less than SmallIC but not as aggressive as the normal IC
// to satisfy the rare situation when resources are too limited.
return std::max(IC / 2, SmallIC);
} else {
LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
return SmallIC;
}
}
// Interleave if this is a large loop (small loops are already dealt with by
// this point) that could benefit from interleaving.
if (AggressivelyInterleaveReductions) {
LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
return IC;
}
LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
return 1;
}
SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) {
// This function calculates the register usage by measuring the highest number
// of values that are alive at a single location. Obviously, this is a very
// rough estimation. We scan the loop in a topological order in order and
// assign a number to each instruction. We use RPO to ensure that defs are
// met before their users. We assume that each instruction that has in-loop
// users starts an interval. We record every time that an in-loop value is
// used, so we have a list of the first and last occurrences of each
// instruction. Next, we transpose this data structure into a multi map that
// holds the list of intervals that *end* at a specific location. This multi
// map allows us to perform a linear search. We scan the instructions linearly
// and record each time that a new interval starts, by placing it in a set.
// If we find this value in the multi-map then we remove it from the set.
// The max register usage is the maximum size of the set.
// We also search for instructions that are defined outside the loop, but are
// used inside the loop. We need this number separately from the max-interval
// usage number because when we unroll, loop-invariant values do not take
// more register.
LoopBlocksDFS DFS(TheLoop);
DFS.perform(LI);
RegisterUsage RU;
// Each 'key' in the map opens a new interval. The values
// of the map are the index of the 'last seen' usage of the
// instruction that is the key.
using IntervalMap = DenseMap<Instruction *, unsigned>;
// Maps instruction to its index.
SmallVector<Instruction *, 64> IdxToInstr;
// Marks the end of each interval.
IntervalMap EndPoint;
// Saves the list of instruction indices that are used in the loop.
SmallPtrSet<Instruction *, 8> Ends;
// Saves the list of values that are used in the loop but are
// defined outside the loop, such as arguments and constants.
SmallPtrSet<Value *, 8> LoopInvariants;
for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
for (Instruction &I : BB->instructionsWithoutDebug()) {
IdxToInstr.push_back(&I);
// Save the end location of each USE.
for (Value *U : I.operands()) {
auto *Instr = dyn_cast<Instruction>(U);
// Ignore non-instruction values such as arguments, constants, etc.
if (!Instr)
continue;
// If this instruction is outside the loop then record it and continue.
if (!TheLoop->contains(Instr)) {
LoopInvariants.insert(Instr);
continue;
}
// Overwrite previous end points.
EndPoint[Instr] = IdxToInstr.size();
Ends.insert(Instr);
}
}
}
// Saves the list of intervals that end with the index in 'key'.
using InstrList = SmallVector<Instruction *, 2>;
DenseMap<unsigned, InstrList> TransposeEnds;
// Transpose the EndPoints to a list of values that end at each index.
for (auto &Interval : EndPoint)
TransposeEnds[Interval.second].push_back(Interval.first);
SmallPtrSet<Instruction *, 8> OpenIntervals;
SmallVector<RegisterUsage, 8> RUs(VFs.size());
SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
// A lambda that gets the register usage for the given type and VF.
const auto &TTICapture = TTI;
auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned {
if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty))
return 0;
InstructionCost::CostType RegUsage =
*TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue();
assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() &&
"Nonsensical values for register usage.");
return RegUsage;
};
for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
Instruction *I = IdxToInstr[i];
// Remove all of the instructions that end at this location.
InstrList &List = TransposeEnds[i];
for (Instruction *ToRemove : List)
OpenIntervals.erase(ToRemove);
// Ignore instructions that are never used within the loop.
if (!Ends.count(I))
continue;
// Skip ignored values.
if (ValuesToIgnore.count(I))
continue;
// For each VF find the maximum usage of registers.
for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
// Count the number of live intervals.
SmallMapVector<unsigned, unsigned, 4> RegUsage;
if (VFs[j].isScalar()) {
for (auto Inst : OpenIntervals) {
unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
if (RegUsage.find(ClassID) == RegUsage.end())
RegUsage[ClassID] = 1;
else
RegUsage[ClassID] += 1;
}
} else {
collectUniformsAndScalars(VFs[j]);
for (auto Inst : OpenIntervals) {
// Skip ignored values for VF > 1.
if (VecValuesToIgnore.count(Inst))
continue;
if (isScalarAfterVectorization(Inst, VFs[j])) {
unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
if (RegUsage.find(ClassID) == RegUsage.end())
RegUsage[ClassID] = 1;
else
RegUsage[ClassID] += 1;
} else {
unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType());
if (RegUsage.find(ClassID) == RegUsage.end())
RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]);
else
RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
}
}
}
for (auto& pair : RegUsage) {
if (MaxUsages[j].find(pair.first) != MaxUsages[j].end())
MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second);
else
MaxUsages[j][pair.first] = pair.second;
}
}
LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
<< OpenIntervals.size() << '\n');
// Add the current instruction to the list of open intervals.
OpenIntervals.insert(I);
}
for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
SmallMapVector<unsigned, unsigned, 4> Invariant;
for (auto Inst : LoopInvariants) {
unsigned Usage =
VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]);
unsigned ClassID =
TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType());
if (Invariant.find(ClassID) == Invariant.end())
Invariant[ClassID] = Usage;
else
Invariant[ClassID] += Usage;
}
LLVM_DEBUG({
dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
<< " item\n";
for (const auto &pair : MaxUsages[i]) {
dbgs() << "LV(REG): RegisterClass: "
<< TTI.getRegisterClassName(pair.first) << ", " << pair.second
<< " registers\n";
}
dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
<< " item\n";
for (const auto &pair : Invariant) {
dbgs() << "LV(REG): RegisterClass: "
<< TTI.getRegisterClassName(pair.first) << ", " << pair.second
<< " registers\n";
}
});
RU.LoopInvariantRegs = Invariant;
RU.MaxLocalUsers = MaxUsages[i];
RUs[i] = RU;
}
return RUs;
}
bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){
// TODO: Cost model for emulated masked load/store is completely
// broken. This hack guides the cost model to use an artificially
// high enough value to practically disable vectorization with such
// operations, except where previously deployed legality hack allowed
// using very low cost values. This is to avoid regressions coming simply
// from moving "masked load/store" check from legality to cost model.
// Masked Load/Gather emulation was previously never allowed.
// Limited number of Masked Store/Scatter emulation was allowed.
assert(isPredicatedInst(I) &&
"Expecting a scalar emulated instruction");
return isa<LoadInst>(I) ||
(isa<StoreInst>(I) &&
NumPredStores > NumberOfStoresToPredicate);
}
void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) {
// If we aren't vectorizing the loop, or if we've already collected the
// instructions to scalarize, there's nothing to do. Collection may already
// have occurred if we have a user-selected VF and are now computing the
// expected cost for interleaving.
if (VF.isScalar() || VF.isZero() ||
InstsToScalarize.find(VF) != InstsToScalarize.end())
return;
// Initialize a mapping for VF in InstsToScalalarize. If we find that it's
// not profitable to scalarize any instructions, the presence of VF in the
// map will indicate that we've analyzed it already.
ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
// Find all the instructions that are scalar with predication in the loop and
// determine if it would be better to not if-convert the blocks they are in.
// If so, we also record the instructions to scalarize.
for (BasicBlock *BB : TheLoop->blocks()) {
if (!blockNeedsPredication(BB))
continue;
for (Instruction &I : *BB)
if (isScalarWithPredication(&I)) {
ScalarCostsTy ScalarCosts;
// Do not apply discount if scalable, because that would lead to
// invalid scalarization costs.
// Do not apply discount logic if hacked cost is needed
// for emulated masked memrefs.
if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I) &&
computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
// Remember that BB will remain after vectorization.
PredicatedBBsAfterVectorization.insert(BB);
}
}
}
int LoopVectorizationCostModel::computePredInstDiscount(
Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
assert(!isUniformAfterVectorization(PredInst, VF) &&
"Instruction marked uniform-after-vectorization will be predicated");
// Initialize the discount to zero, meaning that the scalar version and the
// vector version cost the same.
InstructionCost Discount = 0;
// Holds instructions to analyze. The instructions we visit are mapped in
// ScalarCosts. Those instructions are the ones that would be scalarized if
// we find that the scalar version costs less.
SmallVector<Instruction *, 8> Worklist;
// Returns true if the given instruction can be scalarized.
auto canBeScalarized = [&](Instruction *I) -> bool {
// We only attempt to scalarize instructions forming a single-use chain
// from the original predicated block that would otherwise be vectorized.
// Although not strictly necessary, we give up on instructions we know will
// already be scalar to avoid traversing chains that are unlikely to be
// beneficial.
if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
isScalarAfterVectorization(I, VF))
return false;
// If the instruction is scalar with predication, it will be analyzed
// separately. We ignore it within the context of PredInst.
if (isScalarWithPredication(I))
return false;
// If any of the instruction's operands are uniform after vectorization,
// the instruction cannot be scalarized. This prevents, for example, a
// masked load from being scalarized.
//
// We assume we will only emit a value for lane zero of an instruction
// marked uniform after vectorization, rather than VF identical values.
// Thus, if we scalarize an instruction that uses a uniform, we would
// create uses of values corresponding to the lanes we aren't emitting code
// for. This behavior can be changed by allowing getScalarValue to clone
// the lane zero values for uniforms rather than asserting.
for (Use &U : I->operands())
if (auto *J = dyn_cast<Instruction>(U.get()))
if (isUniformAfterVectorization(J, VF))
return false;
// Otherwise, we can scalarize the instruction.
return true;
};
// Compute the expected cost discount from scalarizing the entire expression
// feeding the predicated instruction. We currently only consider expressions
// that are single-use instruction chains.
Worklist.push_back(PredInst);
while (!Worklist.empty()) {
Instruction *I = Worklist.pop_back_val();
// If we've already analyzed the instruction, there's nothing to do.
if (ScalarCosts.find(I) != ScalarCosts.end())
continue;
// Compute the cost of the vector instruction. Note that this cost already
// includes the scalarization overhead of the predicated instruction.
InstructionCost VectorCost = getInstructionCost(I, VF).first;
// Compute the cost of the scalarized instruction. This cost is the cost of
// the instruction as if it wasn't if-converted and instead remained in the
// predicated block. We will scale this cost by block probability after
// computing the scalarization overhead.
InstructionCost ScalarCost =
VF.getFixedValue() *
getInstructionCost(I, ElementCount::getFixed(1)).first;
// Compute the scalarization overhead of needed insertelement instructions
// and phi nodes.
if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) {
ScalarCost += TTI.getScalarizationOverhead(
cast<VectorType>(ToVectorTy(I->getType(), VF)),
APInt::getAllOnesValue(VF.getFixedValue()), true, false);
ScalarCost +=
VF.getFixedValue() *
TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput);
}
// Compute the scalarization overhead of needed extractelement
// instructions. For each of the instruction's operands, if the operand can
// be scalarized, add it to the worklist; otherwise, account for the
// overhead.
for (Use &U : I->operands())
if (auto *J = dyn_cast<Instruction>(U.get())) {
assert(VectorType::isValidElementType(J->getType()) &&
"Instruction has non-scalar type");
if (canBeScalarized(J))
Worklist.push_back(J);
else if (needsExtract(J, VF)) {
ScalarCost += TTI.getScalarizationOverhead(
cast<VectorType>(ToVectorTy(J->getType(), VF)),
APInt::getAllOnesValue(VF.getFixedValue()), false, true);
}
}
// Scale the total scalar cost by block probability.
ScalarCost /= getReciprocalPredBlockProb();
// Compute the discount. A non-negative discount means the vector version
// of the instruction costs more, and scalarizing would be beneficial.
Discount += VectorCost - ScalarCost;
ScalarCosts[I] = ScalarCost;
}
return *Discount.getValue();
}
LoopVectorizationCostModel::VectorizationCostTy
LoopVectorizationCostModel::expectedCost(
ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) {
VectorizationCostTy Cost;
// For each block.
for (BasicBlock *BB : TheLoop->blocks()) {
VectorizationCostTy BlockCost;
// For each instruction in the old loop.
for (Instruction &I : BB->instructionsWithoutDebug()) {
// Skip ignored values.
if (ValuesToIgnore.count(&I) ||
(VF.isVector() && VecValuesToIgnore.count(&I)))
continue;
VectorizationCostTy C = getInstructionCost(&I, VF);
// Check if we should override the cost.
if (C.first.isValid() &&
ForceTargetInstructionCost.getNumOccurrences() > 0)
C.first = InstructionCost(ForceTargetInstructionCost);
// Keep a list of instructions with invalid costs.
if (Invalid && !C.first.isValid())
Invalid->emplace_back(&I, VF);
BlockCost.first += C.first;
BlockCost.second |= C.second;
LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
<< " for VF " << VF << " For instruction: " << I
<< '\n');
}
// If we are vectorizing a predicated block, it will have been
// if-converted. This means that the block's instructions (aside from
// stores and instructions that may divide by zero) will now be
// unconditionally executed. For the scalar case, we may not always execute
// the predicated block, if it is an if-else block. Thus, scale the block's
// cost by the probability of executing it. blockNeedsPredication from
// Legal is used so as to not include all blocks in tail folded loops.
if (VF.isScalar() && Legal->blockNeedsPredication(BB))
BlockCost.first /= getReciprocalPredBlockProb();
Cost.first += BlockCost.first;
Cost.second |= BlockCost.second;
}
return Cost;
}
/// Gets Address Access SCEV after verifying that the access pattern
/// is loop invariant except the induction variable dependence.
///
/// This SCEV can be sent to the Target in order to estimate the address
/// calculation cost.
static const SCEV *getAddressAccessSCEV(
Value *Ptr,
LoopVectorizationLegality *Legal,
PredicatedScalarEvolution &PSE,
const Loop *TheLoop) {
auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
if (!Gep)
return nullptr;
// We are looking for a gep with all loop invariant indices except for one
// which should be an induction variable.
auto SE = PSE.getSE();
unsigned NumOperands = Gep->getNumOperands();
for (unsigned i = 1; i < NumOperands; ++i) {
Value *Opd = Gep->getOperand(i);
if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
!Legal->isInductionVariable(Opd))
return nullptr;
}
// Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
return PSE.getSCEV(Ptr);
}
static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
return Legal->hasStride(I->getOperand(0)) ||
Legal->hasStride(I->getOperand(1));
}
InstructionCost
LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
ElementCount VF) {
assert(VF.isVector() &&
"Scalarization cost of instruction implies vectorization.");
if (VF.isScalable())
return InstructionCost::getInvalid();
Type *ValTy = getLoadStoreType(I);
auto SE = PSE.getSE();
unsigned AS = getLoadStoreAddressSpace(I);
Value *Ptr = getLoadStorePointerOperand(I);
Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
// Figure out whether the access is strided and get the stride value
// if it's known in compile time
const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
// Get the cost of the scalar memory instruction and address computation.
InstructionCost Cost =
VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
// Don't pass *I here, since it is scalar but will actually be part of a
// vectorized loop where the user of it is a vectorized instruction.
const Align Alignment = getLoadStoreAlignment(I);
Cost += VF.getKnownMinValue() *
TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
AS, TTI::TCK_RecipThroughput);
// Get the overhead of the extractelement and insertelement instructions
// we might create due to scalarization.
Cost += getScalarizationOverhead(I, VF);
// If we have a predicated load/store, it will need extra i1 extracts and
// conditional branches, but may not be executed for each vector lane. Scale
// the cost by the probability of executing the predicated block.
if (isPredicatedInst(I)) {
Cost /= getReciprocalPredBlockProb();
// Add the cost of an i1 extract and a branch
auto *Vec_i1Ty =
VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
Cost += TTI.getScalarizationOverhead(
Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()),
/*Insert=*/false, /*Extract=*/true);
Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
if (useEmulatedMaskMemRefHack(I))
// Artificially setting to a high enough value to practically disable
// vectorization with such operations.
Cost = 3000000;
}
return Cost;
}
InstructionCost
LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
ElementCount VF) {
Type *ValTy = getLoadStoreType(I);
auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
Value *Ptr = getLoadStorePointerOperand(I);
unsigned AS = getLoadStoreAddressSpace(I);
int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
"Stride should be 1 or -1 for consecutive memory access");
const Align Alignment = getLoadStoreAlignment(I);
InstructionCost Cost = 0;
if (Legal->isMaskRequired(I))
Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
CostKind);
else
Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
CostKind, I);
bool Reverse = ConsecutiveStride < 0;
if (Reverse)
Cost +=
TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
return Cost;
}
InstructionCost
LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
ElementCount VF) {
assert(Legal->isUniformMemOp(*I));
Type *ValTy = getLoadStoreType(I);
auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
const Align Alignment = getLoadStoreAlignment(I);
unsigned AS = getLoadStoreAddressSpace(I);
enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
if (isa<LoadInst>(I)) {
return TTI.getAddressComputationCost(ValTy) +
TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
CostKind) +
TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
}
StoreInst *SI = cast<StoreInst>(I);
bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
return TTI.getAddressComputationCost(ValTy) +
TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
CostKind) +
(isLoopInvariantStoreValue
? 0
: TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
VF.getKnownMinValue() - 1));
}
InstructionCost
LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
ElementCount VF) {
Type *ValTy = getLoadStoreType(I);
auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
const Align Alignment = getLoadStoreAlignment(I);
const Value *Ptr = getLoadStorePointerOperand(I);
return TTI.getAddressComputationCost(VectorTy) +
TTI.getGatherScatterOpCost(
I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment,
TargetTransformInfo::TCK_RecipThroughput, I);
}
InstructionCost
LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
ElementCount VF) {
// TODO: Once we have support for interleaving with scalable vectors
// we can calculate the cost properly here.
if (VF.isScalable())
return InstructionCost::getInvalid();
Type *ValTy = getLoadStoreType(I);
auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
unsigned AS = getLoadStoreAddressSpace(I);
auto Group = getInterleavedAccessGroup(I);
assert(Group && "Fail to get an interleaved access group.");
unsigned InterleaveFactor = Group->getFactor();
auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
// Holds the indices of existing members in an interleaved load group.
// An interleaved store group doesn't need this as it doesn't allow gaps.
SmallVector<unsigned, 4> Indices;
if (isa<LoadInst>(I)) {
for (unsigned i = 0; i < InterleaveFactor; i++)
if (Group->getMember(i))
Indices.push_back(i);
}
// Calculate the cost of the whole interleaved group.
bool UseMaskForGaps =
Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed();
InstructionCost Cost = TTI.getInterleavedMemoryOpCost(
I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(),
AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps);
if (Group->isReverse()) {
// TODO: Add support for reversed masked interleaved access.
assert(!Legal->isMaskRequired(I) &&
"Reverse masked interleaved access not supported.");
Cost +=
Group->getNumMembers() *
TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
}
return Cost;
}
Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost(
Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) {
using namespace llvm::PatternMatch;
// Early exit for no inloop reductions
if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty))
return None;
auto *VectorTy = cast<VectorType>(Ty);
// We are looking for a pattern of, and finding the minimal acceptable cost:
// reduce(mul(ext(A), ext(B))) or
// reduce(mul(A, B)) or
// reduce(ext(A)) or
// reduce(A).
// The basic idea is that we walk down the tree to do that, finding the root
// reduction instruction in InLoopReductionImmediateChains. From there we find
// the pattern of mul/ext and test the cost of the entire pattern vs the cost
// of the components. If the reduction cost is lower then we return it for the
// reduction instruction and 0 for the other instructions in the pattern. If
// it is not we return an invalid cost specifying the orignal cost method
// should be used.
Instruction *RetI = I;
if (match(RetI, m_ZExtOrSExt(m_Value()))) {
if (!RetI->hasOneUser())
return None;
RetI = RetI->user_back();
}
if (match(RetI, m_Mul(m_Value(), m_Value())) &&
RetI->user_back()->getOpcode() == Instruction::Add) {
if (!RetI->hasOneUser())
return None;
RetI = RetI->user_back();
}
// Test if the found instruction is a reduction, and if not return an invalid
// cost specifying the parent to use the original cost modelling.
if (!InLoopReductionImmediateChains.count(RetI))
return None;
// Find the reduction this chain is a part of and calculate the basic cost of
// the reduction on its own.
Instruction *LastChain = InLoopReductionImmediateChains[RetI];
Instruction *ReductionPhi = LastChain;
while (!isa<PHINode>(ReductionPhi))
ReductionPhi = InLoopReductionImmediateChains[ReductionPhi];
const RecurrenceDescriptor &RdxDesc =
Legal->getReductionVars()[cast<PHINode>(ReductionPhi)];
InstructionCost BaseCost = TTI.getArithmeticReductionCost(
RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind);
// If we're using ordered reductions then we can just return the base cost
// here, since getArithmeticReductionCost calculates the full ordered
// reduction cost when FP reassociation is not allowed.
if (useOrderedReductions(RdxDesc))
return BaseCost;
// Get the operand that was not the reduction chain and match it to one of the
// patterns, returning the better cost if it is found.
Instruction *RedOp = RetI->getOperand(1) == LastChain
? dyn_cast<Instruction>(RetI->getOperand(0))
: dyn_cast<Instruction>(RetI->getOperand(1));
VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
Instruction *Op0, *Op1;
if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) &&
!TheLoop->isLoopInvariant(RedOp)) {
// Matched reduce(ext(A))
bool IsUnsigned = isa<ZExtInst>(RedOp);
auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
InstructionCost RedCost = TTI.getExtendedAddReductionCost(
/*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
CostKind);
InstructionCost ExtCost =
TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
TTI::CastContextHint::None, CostKind, RedOp);
if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
return I == RetI ? RedCost : 0;
} else if (RedOp &&
match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) {
if (match(Op0, m_ZExtOrSExt(m_Value())) &&
Op0->getOpcode() == Op1->getOpcode() &&
Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
!TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
bool IsUnsigned = isa<ZExtInst>(Op0);
auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
// Matched reduce(mul(ext, ext))
InstructionCost ExtCost =
TTI.getCastInstrCost(Op0->getOpcode(), VectorTy, ExtType,
TTI::CastContextHint::None, CostKind, Op0);
InstructionCost MulCost =
TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
InstructionCost RedCost = TTI.getExtendedAddReductionCost(
/*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
CostKind);
if (RedCost.isValid() && RedCost < ExtCost * 2 + MulCost + BaseCost)
return I == RetI ? RedCost : 0;
} else {
// Matched reduce(mul())
InstructionCost MulCost =
TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
InstructionCost RedCost = TTI.getExtendedAddReductionCost(
/*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy,
CostKind);
if (RedCost.isValid() && RedCost < MulCost + BaseCost)
return I == RetI ? RedCost : 0;
}
}
return I == RetI ? Optional<InstructionCost>(BaseCost) : None;
}
InstructionCost
LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
ElementCount VF) {
// Calculate scalar cost only. Vectorization cost should be ready at this
// moment.
if (VF.isScalar()) {
Type *ValTy = getLoadStoreType(I);
const Align Alignment = getLoadStoreAlignment(I);
unsigned AS = getLoadStoreAddressSpace(I);
return TTI.getAddressComputationCost(ValTy) +
TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
TTI::TCK_RecipThroughput, I);
}
return getWideningCost(I, VF);
}
LoopVectorizationCostModel::VectorizationCostTy
LoopVectorizationCostModel::getInstructionCost(Instruction *I,
ElementCount VF) {
// If we know that this instruction will remain uniform, check the cost of
// the scalar version.
if (isUniformAfterVectorization(I, VF))
VF = ElementCount::getFixed(1);
if (VF.isVector() && isProfitableToScalarize(I, VF))
return VectorizationCostTy(InstsToScalarize[VF][I], false);
// Forced scalars do not have any scalarization overhead.
auto ForcedScalar = ForcedScalars.find(VF);
if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
auto InstSet = ForcedScalar->second;
if (InstSet.count(I))
return VectorizationCostTy(
(getInstructionCost(I, ElementCount::getFixed(1)).first *
VF.getKnownMinValue()),
false);
}
Type *VectorTy;
InstructionCost C = getInstructionCost(I, VF, VectorTy);
bool TypeNotScalarized =
VF.isVector() && VectorTy->isVectorTy() &&
TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue();
return VectorizationCostTy(C, TypeNotScalarized);
}
InstructionCost
LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
ElementCount VF) const {
// There is no mechanism yet to create a scalable scalarization loop,
// so this is currently Invalid.
if (VF.isScalable())
return InstructionCost::getInvalid();
if (VF.isScalar())
return 0;
InstructionCost Cost = 0;
Type *RetTy = ToVectorTy(I->getType(), VF);
if (!RetTy->isVoidTy() &&
(!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
Cost += TTI.getScalarizationOverhead(
cast<VectorType>(RetTy), APInt::getAllOnesValue(VF.getKnownMinValue()),
true, false);
// Some targets keep addresses scalar.
if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
return Cost;
// Some targets support efficient element stores.
if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
return Cost;
// Collect operands to consider.
CallInst *CI = dyn_cast<CallInst>(I);
Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands();
// Skip operands that do not require extraction/scalarization and do not incur
// any overhead.
SmallVector<Type *> Tys;
for (auto *V : filterExtractingOperands(Ops, VF))
Tys.push_back(MaybeVectorizeType(V->getType(), VF));
return Cost + TTI.getOperandsScalarizationOverhead(
filterExtractingOperands(Ops, VF), Tys);
}
void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) {
if (VF.isScalar())
return;
NumPredStores = 0;
for (BasicBlock *BB : TheLoop->blocks()) {
// For each instruction in the old loop.
for (Instruction &I : *BB) {
Value *Ptr = getLoadStorePointerOperand(&I);
if (!Ptr)
continue;
// TODO: We should generate better code and update the cost model for
// predicated uniform stores. Today they are treated as any other
// predicated store (see added test cases in
// invariant-store-vectorization.ll).
if (isa<StoreInst>(&I) && isScalarWithPredication(&I))
NumPredStores++;
if (Legal->isUniformMemOp(I)) {
// TODO: Avoid replicating loads and stores instead of
// relying on instcombine to remove them.
// Load: Scalar load + broadcast
// Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
InstructionCost Cost;
if (isa<StoreInst>(&I) && VF.isScalable() &&
isLegalGatherOrScatter(&I)) {
Cost = getGatherScatterCost(&I, VF);
setWideningDecision(&I, VF, CM_GatherScatter, Cost);
} else {
assert((isa<LoadInst>(&I) || !VF.isScalable()) &&
"Cannot yet scalarize uniform stores");
Cost = getUniformMemOpCost(&I, VF);
setWideningDecision(&I, VF, CM_Scalarize, Cost);
}
continue;
}
// We assume that widening is the best solution when possible.
if (memoryInstructionCanBeWidened(&I, VF)) {
InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
int ConsecutiveStride =
Legal->isConsecutivePtr(getLoadStorePointerOperand(&I));
assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
"Expected consecutive stride.");
InstWidening Decision =
ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
setWideningDecision(&I, VF, Decision, Cost);
continue;
}
// Choose between Interleaving, Gather/Scatter or Scalarization.
InstructionCost InterleaveCost = InstructionCost::getInvalid();
unsigned NumAccesses = 1;
if (isAccessInterleaved(&I)) {
auto Group = getInterleavedAccessGroup(&I);
assert(Group && "Fail to get an interleaved access group.");
// Make one decision for the whole group.
if (getWideningDecision(&I, VF) != CM_Unknown)
continue;
NumAccesses = Group->getNumMembers();
if (interleavedAccessCanBeWidened(&I, VF))
InterleaveCost = getInterleaveGroupCost(&I, VF);
}
InstructionCost GatherScatterCost =
isLegalGatherOrScatter(&I)
? getGatherScatterCost(&I, VF) * NumAccesses
: InstructionCost::getInvalid();
InstructionCost ScalarizationCost =
getMemInstScalarizationCost(&I, VF) * NumAccesses;
// Choose better solution for the current VF,
// write down this decision and use it during vectorization.
InstructionCost Cost;
InstWidening Decision;
if (InterleaveCost <= GatherScatterCost &&
InterleaveCost < ScalarizationCost) {
Decision = CM_Interleave;
Cost = InterleaveCost;
} else if (GatherScatterCost < ScalarizationCost) {
Decision = CM_GatherScatter;
Cost = GatherScatterCost;
} else {
Decision = CM_Scalarize;
Cost = ScalarizationCost;
}
// If the instructions belongs to an interleave group, the whole group
// receives the same decision. The whole group receives the cost, but
// the cost will actually be assigned to one instruction.
if (auto Group = getInterleavedAccessGroup(&I))
setWideningDecision(Group, VF, Decision, Cost);
else
setWideningDecision(&I, VF, Decision, Cost);
}
}
// Make sure that any load of address and any other address computation
// remains scalar unless there is gather/scatter support. This avoids
// inevitable extracts into address registers, and also has the benefit of
// activating LSR more, since that pass can't optimize vectorized
// addresses.
if (TTI.prefersVectorizedAddressing())
return;
// Start with all scalar pointer uses.
SmallPtrSet<Instruction *, 8> AddrDefs;
for (BasicBlock *BB : TheLoop->blocks())
for (Instruction &I : *BB) {
Instruction *PtrDef =
dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
if (PtrDef && TheLoop->contains(PtrDef) &&
getWideningDecision(&I, VF) != CM_GatherScatter)
AddrDefs.insert(PtrDef);
}
// Add all instructions used to generate the addresses.
SmallVector<Instruction *, 4> Worklist;
append_range(Worklist, AddrDefs);
while (!Worklist.empty()) {
Instruction *I = Worklist.pop_back_val();
for (auto &Op : I->operands())
if (auto *InstOp = dyn_cast<Instruction>(Op))
if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
AddrDefs.insert(InstOp).second)
Worklist.push_back(InstOp);
}
for (auto *I : AddrDefs) {
if (isa<LoadInst>(I)) {
// Setting the desired widening decision should ideally be handled in
// by cost functions, but since this involves the task of finding out
// if the loaded register is involved in an address computation, it is
// instead changed here when we know this is the case.
InstWidening Decision = getWideningDecision(I, VF);
if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
// Scalarize a widened load of address.
setWideningDecision(
I, VF, CM_Scalarize,
(VF.getKnownMinValue() *
getMemoryInstructionCost(I, ElementCount::getFixed(1))));
else if (auto Group = getInterleavedAccessGroup(I)) {
// Scalarize an interleave group of address loads.
for (unsigned I = 0; I < Group->getFactor(); ++I) {
if (Instruction *Member = Group->getMember(I))
setWideningDecision(
Member, VF, CM_Scalarize,
(VF.getKnownMinValue() *
getMemoryInstructionCost(Member, ElementCount::getFixed(1))));
}
}
} else
// Make sure I gets scalarized and a cost estimate without
// scalarization overhead.
ForcedScalars[VF].insert(I);
}
}
InstructionCost
LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
Type *&VectorTy) {
Type *RetTy = I->getType();
if (canTruncateToMinimalBitwidth(I, VF))
RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
auto SE = PSE.getSE();
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
auto hasSingleCopyAfterVectorization = [this](Instruction *I,
ElementCount VF) -> bool {
if (VF.isScalar())
return true;
auto Scalarized = InstsToScalarize.find(VF);
assert(Scalarized != InstsToScalarize.end() &&
"VF not yet analyzed for scalarization profitability");
return !Scalarized->second.count(I) &&
llvm::all_of(I->users(), [&](User *U) {
auto *UI = cast<Instruction>(U);
return !Scalarized->second.count(UI);
});
};
(void) hasSingleCopyAfterVectorization;
if (isScalarAfterVectorization(I, VF)) {
// With the exception of GEPs and PHIs, after scalarization there should
// only be one copy of the instruction generated in the loop. This is
// because the VF is either 1, or any instructions that need scalarizing
// have already been dealt with by the the time we get here. As a result,
// it means we don't have to multiply the instruction cost by VF.
assert(I->getOpcode() == Instruction::GetElementPtr ||
I->getOpcode() == Instruction::PHI ||
(I->getOpcode() == Instruction::BitCast &&
I->getType()->isPointerTy()) ||
hasSingleCopyAfterVectorization(I, VF));
VectorTy = RetTy;
} else
VectorTy = ToVectorTy(RetTy, VF);
// TODO: We need to estimate the cost of intrinsic calls.
switch (I->getOpcode()) {
case Instruction::GetElementPtr:
// We mark this instruction as zero-cost because the cost of GEPs in
// vectorized code depends on whether the corresponding memory instruction
// is scalarized or not. Therefore, we handle GEPs with the memory
// instruction cost.
return 0;
case Instruction::Br: {
// In cases of scalarized and predicated instructions, there will be VF
// predicated blocks in the vectorized loop. Each branch around these
// blocks requires also an extract of its vector compare i1 element.
bool ScalarPredicatedBB = false;
BranchInst *BI = cast<BranchInst>(I);
if (VF.isVector() && BI->isConditional() &&
(PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) ||
PredicatedBBsAfterVectorization.count(BI->getSuccessor(1))))
ScalarPredicatedBB = true;
if (ScalarPredicatedBB) {
// Not possible to scalarize scalable vector with predicated instructions.
if (VF.isScalable())
return InstructionCost::getInvalid();
// Return cost for branches around scalarized and predicated blocks.
auto *Vec_i1Ty =
VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
return (
TTI.getScalarizationOverhead(
Vec_i1Ty, APInt::getAllOnesValue(VF.getFixedValue()), false,
true) +
(TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue()));
} else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
// The back-edge branch will remain, as will all scalar branches.
return TTI.getCFInstrCost(Instruction::Br, CostKind);
else
// This branch will be eliminated by if-conversion.
return 0;
// Note: We currently assume zero cost for an unconditional branch inside
// a predicated block since it will become a fall-through, although we
// may decide in the future to call TTI for all branches.
}
case Instruction::PHI: {
auto *Phi = cast<PHINode>(I);
// First-order recurrences are replaced by vector shuffles inside the loop.
// NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi))
return TTI.getShuffleCost(
TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy),
None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1));
// Phi nodes in non-header blocks (not inductions, reductions, etc.) are
// converted into select instructions. We require N - 1 selects per phi
// node, where N is the number of incoming values.
if (VF.isVector() && Phi->getParent() != TheLoop->getHeader())
return (Phi->getNumIncomingValues() - 1) *
TTI.getCmpSelInstrCost(
Instruction::Select, ToVectorTy(Phi->getType(), VF),
ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
CmpInst::BAD_ICMP_PREDICATE, CostKind);
return TTI.getCFInstrCost(Instruction::PHI, CostKind);
}
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::URem:
case Instruction::SRem:
// If we have a predicated instruction, it may not be executed for each
// vector lane. Get the scalarization cost and scale this amount by the
// probability of executing the predicated block. If the instruction is not
// predicated, we fall through to the next case.
if (VF.isVector() && isScalarWithPredication(I)) {
InstructionCost Cost = 0;
// These instructions have a non-void type, so account for the phi nodes
// that we will create. This cost is likely to be zero. The phi node
// cost, if any, should be scaled by the block probability because it
// models a copy at the end of each predicated block.
Cost += VF.getKnownMinValue() *
TTI.getCFInstrCost(Instruction::PHI, CostKind);
// The cost of the non-predicated instruction.
Cost += VF.getKnownMinValue() *
TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind);
// The cost of insertelement and extractelement instructions needed for
// scalarization.
Cost += getScalarizationOverhead(I, VF);
// Scale the cost by the probability of executing the predicated blocks.
// This assumes the predicated block for each vector lane is equally
// likely.
return Cost / getReciprocalPredBlockProb();
}
LLVM_FALLTHROUGH;
case Instruction::Add:
case Instruction::FAdd:
case Instruction::Sub:
case Instruction::FSub:
case Instruction::Mul:
case Instruction::FMul:
case Instruction::FDiv:
case Instruction::FRem:
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor: {
// Since we will replace the stride by 1 the multiplication should go away.
if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
return 0;
// Detect reduction patterns
if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
return *RedCost;
// Certain instructions can be cheaper to vectorize if they have a constant
// second vector operand. One example of this are shifts on x86.
Value *Op2 = I->getOperand(1);
TargetTransformInfo::OperandValueProperties Op2VP;
TargetTransformInfo::OperandValueKind Op2VK =
TTI.getOperandInfo(Op2, Op2VP);
if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
Op2VK = TargetTransformInfo::OK_UniformValue;
SmallVector<const Value *, 4> Operands(I->operand_values());
return TTI.getArithmeticInstrCost(
I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
}
case Instruction::FNeg: {
return TTI.getArithmeticInstrCost(
I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None,
TargetTransformInfo::OP_None, I->getOperand(0), I);
}
case Instruction::Select: {
SelectInst *SI = cast<SelectInst>(I);
const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
const Value *Op0, *Op1;
using namespace llvm::PatternMatch;
if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
// select x, y, false --> x & y
// select x, true, y --> x | y
TTI::OperandValueProperties Op1VP = TTI::OP_None;
TTI::OperandValueProperties Op2VP = TTI::OP_None;
TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP);
TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP);
assert(Op0->getType()->getScalarSizeInBits() == 1 &&
Op1->getType()->getScalarSizeInBits() == 1);
SmallVector<const Value *, 2> Operands{Op0, Op1};
return TTI.getArithmeticInstrCost(
match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy,
CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I);
}
Type *CondTy = SI->getCondition()->getType();
if (!ScalarCond)
CondTy = VectorType::get(CondTy, VF);
return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy,
CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
}
case Instruction::ICmp:
case Instruction::FCmp: {
Type *ValTy = I->getOperand(0)->getType();
Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
VectorTy = ToVectorTy(ValTy, VF);
return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr,
CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
}
case Instruction::Store:
case Instruction::Load: {
ElementCount Width = VF;
if (Width.isVector()) {
InstWidening Decision = getWideningDecision(I, Width);
assert(Decision != CM_Unknown &&
"CM decision should be taken at this point");
if (Decision == CM_Scalarize)
Width = ElementCount::getFixed(1);
}
VectorTy = ToVectorTy(getLoadStoreType(I), Width);
return getMemoryInstructionCost(I, VF);
}
case Instruction::BitCast:
if (I->getType()->isPointerTy())
return 0;
LLVM_FALLTHROUGH;
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::FPExt:
case Instruction::PtrToInt:
case Instruction::IntToPtr:
case Instruction::SIToFP:
case Instruction::UIToFP:
case Instruction::Trunc:
case Instruction::FPTrunc: {
// Computes the CastContextHint from a Load/Store instruction.
auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
"Expected a load or a store!");
if (VF.isScalar() || !TheLoop->contains(I))
return TTI::CastContextHint::Normal;
switch (getWideningDecision(I, VF)) {
case LoopVectorizationCostModel::CM_GatherScatter:
return TTI::CastContextHint::GatherScatter;
case LoopVectorizationCostModel::CM_Interleave:
return TTI::CastContextHint::Interleave;
case LoopVectorizationCostModel::CM_Scalarize:
case LoopVectorizationCostModel::CM_Widen:
return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked
: TTI::CastContextHint::Normal;
case LoopVectorizationCostModel::CM_Widen_Reverse:
return TTI::CastContextHint::Reversed;
case LoopVectorizationCostModel::CM_Unknown:
llvm_unreachable("Instr did not go through cost modelling?");
}
llvm_unreachable("Unhandled case!");
};
unsigned Opcode = I->getOpcode();
TTI::CastContextHint CCH = TTI::CastContextHint::None;
// For Trunc, the context is the only user, which must be a StoreInst.
if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
if (I->hasOneUse())
if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
CCH = ComputeCCH(Store);
}
// For Z/Sext, the context is the operand, which must be a LoadInst.
else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
Opcode == Instruction::FPExt) {
if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
CCH = ComputeCCH(Load);
}
// We optimize the truncation of induction variables having constant
// integer steps. The cost of these truncations is the same as the scalar
// operation.
if (isOptimizableIVTruncate(I, VF)) {
auto *Trunc = cast<TruncInst>(I);
return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
Trunc->getSrcTy(), CCH, CostKind, Trunc);
}
// Detect reduction patterns
if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
return *RedCost;
Type *SrcScalarTy = I->getOperand(0)->getType();
Type *SrcVecTy =
VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
if (canTruncateToMinimalBitwidth(I, VF)) {
// This cast is going to be shrunk. This may remove the cast or it might
// turn it into slightly different cast. For example, if MinBW == 16,
// "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
//
// Calculate the modified src and dest types.
Type *MinVecTy = VectorTy;
if (Opcode == Instruction::Trunc) {
SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
VectorTy =
largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
} else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
VectorTy =
smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
}
}
return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
}
case Instruction::Call: {
bool NeedToScalarize;
CallInst *CI = cast<CallInst>(I);
InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
if (getVectorIntrinsicIDForCall(CI, TLI)) {
InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF);
return std::min(CallCost, IntrinsicCost);
}
return CallCost;
}
case Instruction::ExtractValue:
return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput);
case Instruction::Alloca:
// We cannot easily widen alloca to a scalable alloca, as
// the result would need to be a vector of pointers.
if (VF.isScalable())
return InstructionCost::getInvalid();
LLVM_FALLTHROUGH;
default:
// This opcode is unknown. Assume that it is the same as 'mul'.
return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
} // end of switch.
}
char LoopVectorize::ID = 0;
static const char lv_name[] = "Loop Vectorization";
INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
namespace llvm {
Pass *createLoopVectorizePass() { return new LoopVectorize(); }
Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
bool VectorizeOnlyWhenForced) {
return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
}
} // end namespace llvm
bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
// Check if the pointer operand of a load or store instruction is
// consecutive.
if (auto *Ptr = getLoadStorePointerOperand(Inst))
return Legal->isConsecutivePtr(Ptr);
return false;
}
void LoopVectorizationCostModel::collectValuesToIgnore() {
// Ignore ephemeral values.
CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
// Ignore type-promoting instructions we identified during reduction
// detection.
for (auto &Reduction : Legal->getReductionVars()) {
RecurrenceDescriptor &RedDes = Reduction.second;
const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
VecValuesToIgnore.insert(Casts.begin(), Casts.end());
}
// Ignore type-casting instructions we identified during induction
// detection.
for (auto &Induction : Legal->getInductionVars()) {
InductionDescriptor &IndDes = Induction.second;
const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
VecValuesToIgnore.insert(Casts.begin(), Casts.end());
}
}
void LoopVectorizationCostModel::collectInLoopReductions() {
for (auto &Reduction : Legal->getReductionVars()) {
PHINode *Phi = Reduction.first;
RecurrenceDescriptor &RdxDesc = Reduction.second;
// We don't collect reductions that are type promoted (yet).
if (RdxDesc.getRecurrenceType() != Phi->getType())
continue;
// If the target would prefer this reduction to happen "in-loop", then we
// want to record it as such.
unsigned Opcode = RdxDesc.getOpcode();
if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
!TTI.preferInLoopReduction(Opcode, Phi->getType(),
TargetTransformInfo::ReductionFlags()))
continue;
// Check that we can correctly put the reductions into the loop, by
// finding the chain of operations that leads from the phi to the loop
// exit value.
SmallVector<Instruction *, 4> ReductionOperations =
RdxDesc.getReductionOpChain(Phi, TheLoop);
bool InLoop = !ReductionOperations.empty();
if (InLoop) {
InLoopReductionChains[Phi] = ReductionOperations;
// Add the elements to InLoopReductionImmediateChains for cost modelling.
Instruction *LastChain = Phi;
for (auto *I : ReductionOperations) {
InLoopReductionImmediateChains[I] = LastChain;
LastChain = I;
}
}
LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
<< " reduction for phi: " << *Phi << "\n");
}
}
// TODO: we could return a pair of values that specify the max VF and
// min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
// `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
// doesn't have a cost model that can choose which plan to execute if
// more than one is generated.
static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
LoopVectorizationCostModel &CM) {
unsigned WidestType;
std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
return WidestVectorRegBits / WidestType;
}
VectorizationFactor
LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) {
assert(!UserVF.isScalable() && "scalable vectors not yet supported");
ElementCount VF = UserVF;
// Outer loop handling: They may require CFG and instruction level
// transformations before even evaluating whether vectorization is profitable.
// Since we cannot modify the incoming IR, we need to build VPlan upfront in
// the vectorization pipeline.
if (!OrigLoop->isInnermost()) {
// If the user doesn't provide a vectorization factor, determine a
// reasonable one.
if (UserVF.isZero()) {
VF = ElementCount::getFixed(determineVPlanVF(
TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
.getFixedSize(),
CM));
LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
// Make sure we have a VF > 1 for stress testing.
if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
<< "overriding computed VF.\n");
VF = ElementCount::getFixed(4);
}
}
assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
assert(isPowerOf2_32(VF.getKnownMinValue()) &&
"VF needs to be a power of two");
LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
<< "VF " << VF << " to build VPlans.\n");
buildVPlans(VF, VF);
// For VPlan build stress testing, we bail out after VPlan construction.
if (VPlanBuildStressTest)
return VectorizationFactor::Disabled();
return {VF, 0 /*Cost*/};
}
LLVM_DEBUG(
dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
"VPlan-native path.\n");
return VectorizationFactor::Disabled();
}
Optional<VectorizationFactor>
LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
assert(OrigLoop->isInnermost() && "Inner loop expected.");
FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC);
if (!MaxFactors) // Cases that should not to be vectorized nor interleaved.
return None;
// Invalidate interleave groups if all blocks of loop will be predicated.
if (CM.blockNeedsPredication(OrigLoop->getHeader()) &&
!useMaskedInterleavedAccesses(*TTI)) {
LLVM_DEBUG(
dbgs()
<< "LV: Invalidate all interleaved groups due to fold-tail by masking "
"which requires masked-interleaved support.\n");
if (CM.InterleaveInfo.invalidateGroups())
// Invalidating interleave groups also requires invalidating all decisions
// based on them, which includes widening decisions and uniform and scalar
// values.
CM.invalidateCostModelingDecisions();
}
ElementCount MaxUserVF =
UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF;
bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF);
if (!UserVF.isZero() && UserVFIsLegal) {
assert(isPowerOf2_32(UserVF.getKnownMinValue()) &&
"VF needs to be a power of two");
// Collect the instructions (and their associated costs) that will be more
// profitable to scalarize.
if (CM.selectUserVectorizationFactor(UserVF)) {
LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
CM.collectInLoopReductions();
buildVPlansWithVPRecipes(UserVF, UserVF);
LLVM_DEBUG(printPlans(dbgs()));
return {{UserVF, 0}};
} else
reportVectorizationInfo("UserVF ignored because of invalid costs.",
"InvalidCost", ORE, OrigLoop);
}
// Populate the set of Vectorization Factor Candidates.
ElementCountSet VFCandidates;
for (auto VF = ElementCount::getFixed(1);
ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2)
VFCandidates.insert(VF);
for (auto VF = ElementCount::getScalable(1);
ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2)
VFCandidates.insert(VF);
for (const auto &VF : VFCandidates) {
// Collect Uniform and Scalar instructions after vectorization with VF.
CM.collectUniformsAndScalars(VF);
// Collect the instructions (and their associated costs) that will be more
// profitable to scalarize.
if (VF.isVector())
CM.collectInstsToScalarize(VF);
}
CM.collectInLoopReductions();
buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF);
buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF);
LLVM_DEBUG(printPlans(dbgs()));
if (!MaxFactors.hasVector())
return VectorizationFactor::Disabled();
// Select the optimal vectorization factor.
auto SelectedVF = CM.selectVectorizationFactor(VFCandidates);
// Check if it is profitable to vectorize with runtime checks.
unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks();
if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) {
bool PragmaThresholdReached =
NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
bool ThresholdReached =
NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
if ((ThresholdReached && !Hints.allowReordering()) ||
PragmaThresholdReached) {
ORE->emit([&]() {
return OptimizationRemarkAnalysisAliasing(
DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(),
OrigLoop->getHeader())
<< "loop not vectorized: cannot prove it is safe to reorder "
"memory operations";
});
LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
Hints.emitRemarkWithHints();
return VectorizationFactor::Disabled();
}
}
return SelectedVF;
}
void LoopVectorizationPlanner::setBestPlan(ElementCount VF, unsigned UF) {
LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF
<< '\n');
BestVF = VF;
BestUF = UF;
erase_if(VPlans, [VF](const VPlanPtr &Plan) {
return !Plan->hasVF(VF);
});
assert(VPlans.size() == 1 && "Best VF has not a single VPlan.");
}
void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV,
DominatorTree *DT) {
// Perform the actual loop transformation.
// 1. Create a new empty loop. Unlink the old loop and connect the new one.
assert(BestVF.hasValue() && "Vectorization Factor is missing");
assert(VPlans.size() == 1 && "Not a single VPlan to execute.");
VPTransformState State{
*BestVF, BestUF, LI, DT, ILV.Builder, &ILV, VPlans.front().get()};
State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton();
State.TripCount = ILV.getOrCreateTripCount(nullptr);
State.CanonicalIV = ILV.Induction;
ILV.printDebugTracesAtStart();
//===------------------------------------------------===//
//
// Notice: any optimization or new instruction that go
// into the code below should also be implemented in
// the cost-model.
//
//===------------------------------------------------===//
// 2. Copy and widen instructions from the old loop into the new loop.
VPlans.front()->execute(&State);
// 3. Fix the vectorized code: take care of header phi's, live-outs,
// predication, updating analyses.
ILV.fixVectorizedLoop(State);
ILV.printDebugTracesAtEnd();
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
for (const auto &Plan : VPlans)
if (PrintVPlansInDotFormat)
Plan->printDOT(O);
else
Plan->print(O);
}
#endif
void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
SmallPtrSetImpl<Instruction *> &DeadInstructions) {
// We create new control-flow for the vectorized loop, so the original exit
// conditions will be dead after vectorization if it's only used by the
// terminator
SmallVector<BasicBlock*> ExitingBlocks;
OrigLoop->getExitingBlocks(ExitingBlocks);
for (auto *BB : ExitingBlocks) {
auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0));
if (!Cmp || !Cmp->hasOneUse())
continue;
// TODO: we should introduce a getUniqueExitingBlocks on Loop
if (!DeadInstructions.insert(Cmp).second)
continue;
// The operands of the icmp is often a dead trunc, used by IndUpdate.
// TODO: can recurse through operands in general
for (Value *Op : Cmp->operands()) {
if (isa<TruncInst>(Op) && Op->hasOneUse())
DeadInstructions.insert(cast<Instruction>(Op));
}
}
// We create new "steps" for induction variable updates to which the original
// induction variables map. An original update instruction will be dead if
// all its users except the induction variable are dead.
auto *Latch = OrigLoop->getLoopLatch();
for (auto &Induction : Legal->getInductionVars()) {
PHINode *Ind = Induction.first;
auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
// If the tail is to be folded by masking, the primary induction variable,
// if exists, isn't dead: it will be used for masking. Don't kill it.
if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction())
continue;
if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
return U == Ind || DeadInstructions.count(cast<Instruction>(U));
}))
DeadInstructions.insert(IndUpdate);
// We record as "Dead" also the type-casting instructions we had identified
// during induction analysis. We don't need any handling for them in the
// vectorized loop because we have proven that, under a proper runtime
// test guarding the vectorized loop, the value of the phi, and the casted
// value of the phi, are the same. The last instruction in this casting chain
// will get its scalar/vector/widened def from the scalar/vector/widened def
// of the respective phi node. Any other casts in the induction def-use chain
// have no other uses outside the phi update chain, and will be ignored.
InductionDescriptor &IndDes = Induction.second;
const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
DeadInstructions.insert(Casts.begin(), Casts.end());
}
}
Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; }
Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step,
Instruction::BinaryOps BinOp) {
// When unrolling and the VF is 1, we only need to add a simple scalar.
Type *Ty = Val->getType();
assert(!Ty->isVectorTy() && "Val must be a scalar");
if (Ty->isFloatingPointTy()) {
Constant *C = ConstantFP::get(Ty, (double)StartIdx);
// Floating-point operations inherit FMF via the builder's flags.
Value *MulOp = Builder.CreateFMul(C, Step);
return Builder.CreateBinOp(BinOp, Val, MulOp);
}
Constant *C = ConstantInt::get(Ty, StartIdx);
return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction");
}
static void AddRuntimeUnrollDisableMetaData(Loop *L) {
SmallVector<Metadata *, 4> MDs;
// Reserve first location for self reference to the LoopID metadata node.
MDs.push_back(nullptr);
bool IsUnrollMetadata = false;
MDNode *LoopID = L->getLoopID();
if (LoopID) {
// First find existing loop unrolling disable metadata.
for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
if (MD) {
const auto *S = dyn_cast<MDString>(MD->getOperand(0));
IsUnrollMetadata =
S && S->getString().startswith("llvm.loop.unroll.disable");
}
MDs.push_back(LoopID->getOperand(i));
}
}
if (!IsUnrollMetadata) {
// Add runtime unroll disable metadata.
LLVMContext &Context = L->getHeader()->getContext();
SmallVector<Metadata *, 1> DisableOperands;
DisableOperands.push_back(
MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
MDNode *DisableNode = MDNode::get(Context, DisableOperands);
MDs.push_back(DisableNode);
MDNode *NewLoopID = MDNode::get(Context, MDs);
// Set operand 0 to refer to the loop id itself.
NewLoopID->replaceOperandWith(0, NewLoopID);
L->setLoopID(NewLoopID);
}
}
//===--------------------------------------------------------------------===//
// EpilogueVectorizerMainLoop
//===--------------------------------------------------------------------===//
/// This function is partially responsible for generating the control flow
/// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
BasicBlock *EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() {
MDNode *OrigLoopID = OrigLoop->getLoopID();
Loop *Lp = createVectorLoopSkeleton("");
// Generate the code to check the minimum iteration count of the vector
// epilogue (see below).
EPI.EpilogueIterationCountCheck =
emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true);
EPI.EpilogueIterationCountCheck->setName("iter.check");
// Generate the code to check any assumptions that we've made for SCEV
// expressions.
EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader);
// Generate the code that checks at runtime if arrays overlap. We put the
// checks into a separate block to make the more common case of few elements
// faster.
EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
// Generate the iteration count check for the main loop, *after* the check
// for the epilogue loop, so that the path-length is shorter for the case
// that goes directly through the vector epilogue. The longer-path length for
// the main loop is compensated for, by the gain from vectorizing the larger
// trip count. Note: the branch will get updated later on when we vectorize
// the epilogue.
EPI.MainLoopIterationCountCheck =
emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false);
// Generate the induction variable.
OldInduction = Legal->getPrimaryInduction();
Type *IdxTy = Legal->getWidestInductionType();
Value *StartIdx = ConstantInt::get(IdxTy, 0);
Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF);
Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
EPI.VectorTripCount = CountRoundDown;
Induction =
createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
getDebugLocFromInstOrOperands(OldInduction));
// Skip induction resume value creation here because they will be created in
// the second pass. If we created them here, they wouldn't be used anyway,
// because the vplan in the second pass still contains the inductions from the
// original loop.
return completeLoopSkeleton(Lp, OrigLoopID);
}
void EpilogueVectorizerMainLoop::printDebugTracesAtStart() {
LLVM_DEBUG({
dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
<< "Main Loop VF:" << EPI.MainLoopVF.getKnownMinValue()
<< ", Main Loop UF:" << EPI.MainLoopUF
<< ", Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue()
<< ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
});
}
void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() {
DEBUG_WITH_TYPE(VerboseDebug, {
dbgs() << "intermediate fn:\n" << *Induction->getFunction() << "\n";
});
}
BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck(
Loop *L, BasicBlock *Bypass, bool ForEpilogue) {
assert(L && "Expected valid Loop.");
assert(Bypass && "Expected valid bypass basic block.");
unsigned VFactor =
ForEpilogue ? EPI.EpilogueVF.getKnownMinValue() : VF.getKnownMinValue();
unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF;
Value *Count = getOrCreateTripCount(L);
// Reuse existing vector loop preheader for TC checks.
// Note that new preheader block is generated for vector loop.
BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
IRBuilder<> Builder(TCCheckBlock->getTerminator());
// Generate code to check if the loop's trip count is less than VF * UF of the
// main vector loop.
auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ?
ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
Value *CheckMinIters = Builder.CreateICmp(
P, Count, ConstantInt::get(Count->getType(), VFactor * UFactor),
"min.iters.check");
if (!ForEpilogue)
TCCheckBlock->setName("vector.main.loop.iter.check");
// Create new preheader for vector loop.
LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
DT, LI, nullptr, "vector.ph");
if (ForEpilogue) {
assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
DT->getNode(Bypass)->getIDom()) &&
"TC check is expected to dominate Bypass");
// Update dominator for Bypass & LoopExit.
DT->changeImmediateDominator(Bypass, TCCheckBlock);
if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
// For loops with multiple exits, there's no edge from the middle block
// to exit blocks (as the epilogue must run) and thus no need to update
// the immediate dominator of the exit blocks.
DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
LoopBypassBlocks.push_back(TCCheckBlock);
// Save the trip count so we don't have to regenerate it in the
// vec.epilog.iter.check. This is safe to do because the trip count
// generated here dominates the vector epilog iter check.
EPI.TripCount = Count;
}
ReplaceInstWithInst(
TCCheckBlock->getTerminator(),
BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
return TCCheckBlock;
}
//===--------------------------------------------------------------------===//
// EpilogueVectorizerEpilogueLoop
//===--------------------------------------------------------------------===//
/// This function is partially responsible for generating the control flow
/// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
BasicBlock *
EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() {
MDNode *OrigLoopID = OrigLoop->getLoopID();
Loop *Lp = createVectorLoopSkeleton("vec.epilog.");
// Now, compare the remaining count and if there aren't enough iterations to
// execute the vectorized epilogue skip to the scalar part.
BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader;
VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check");
LoopVectorPreHeader =
SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
LI, nullptr, "vec.epilog.ph");
emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader,
VecEpilogueIterationCountCheck);
// Adjust the control flow taking the state info from the main loop
// vectorization into account.
assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck &&
"expected this to be saved from the previous pass.");
EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith(
VecEpilogueIterationCountCheck, LoopVectorPreHeader);
DT->changeImmediateDominator(LoopVectorPreHeader,
EPI.MainLoopIterationCountCheck);
EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith(
VecEpilogueIterationCountCheck, LoopScalarPreHeader);
if (EPI.SCEVSafetyCheck)
EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith(
VecEpilogueIterationCountCheck, LoopScalarPreHeader);
if (EPI.MemSafetyCheck)
EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith(
VecEpilogueIterationCountCheck, LoopScalarPreHeader);
DT->changeImmediateDominator(
VecEpilogueIterationCountCheck,
VecEpilogueIterationCountCheck->getSinglePredecessor());
DT->changeImmediateDominator(LoopScalarPreHeader,
EPI.EpilogueIterationCountCheck);
if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
// If there is an epilogue which must run, there's no edge from the
// middle block to exit blocks and thus no need to update the immediate
// dominator of the exit blocks.
DT->changeImmediateDominator(LoopExitBlock,
EPI.EpilogueIterationCountCheck);
// Keep track of bypass blocks, as they feed start values to the induction
// phis in the scalar loop preheader.
if (EPI.SCEVSafetyCheck)
LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck);
if (EPI.MemSafetyCheck)
LoopBypassBlocks.push_back(EPI.MemSafetyCheck);
LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck);
// Generate a resume induction for the vector epilogue and put it in the
// vector epilogue preheader
Type *IdxTy = Legal->getWidestInductionType();
PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val",
LoopVectorPreHeader->getFirstNonPHI());
EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck);
EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0),
EPI.MainLoopIterationCountCheck);
// Generate the induction variable.
OldInduction = Legal->getPrimaryInduction();
Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF);
Value *StartIdx = EPResumeVal;
Induction =
createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
getDebugLocFromInstOrOperands(OldInduction));
// Generate induction resume values. These variables save the new starting
// indexes for the scalar loop. They are used to test if there are any tail
// iterations left once the vector loop has completed.
// Note that when the vectorized epilogue is skipped due to iteration count
// check, then the resume value for the induction variable comes from
// the trip count of the main vector loop, hence passing the AdditionalBypass
// argument.
createInductionResumeValues(Lp, CountRoundDown,
{VecEpilogueIterationCountCheck,
EPI.VectorTripCount} /* AdditionalBypass */);
AddRuntimeUnrollDisableMetaData(Lp);
return completeLoopSkeleton(Lp, OrigLoopID);
}
BasicBlock *
EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck(
Loop *L, BasicBlock *Bypass, BasicBlock *Insert) {
assert(EPI.TripCount &&
"Expected trip count to have been safed in the first pass.");
assert(
(!isa<Instruction>(EPI.TripCount) ||
DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) &&
"saved trip count does not dominate insertion point.");
Value *TC = EPI.TripCount;
IRBuilder<> Builder(Insert->getTerminator());
Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining");
// Generate code to check if the loop's trip count is less than VF * UF of the
// vector epilogue loop.
auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ?
ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
Value *CheckMinIters = Builder.CreateICmp(
P, Count,
ConstantInt::get(Count->getType(),
EPI.EpilogueVF.getKnownMinValue() * EPI.EpilogueUF),
"min.epilog.iters.check");
ReplaceInstWithInst(
Insert->getTerminator(),
BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
LoopBypassBlocks.push_back(Insert);
return Insert;
}
void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() {
LLVM_DEBUG({
dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
<< "Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue()
<< ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
});
}
void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() {
DEBUG_WITH_TYPE(VerboseDebug, {
dbgs() << "final fn:\n" << *Induction->getFunction() << "\n";
});
}
bool LoopVectorizationPlanner::getDecisionAndClampRange(
const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
assert(!Range.isEmpty() && "Trying to test an empty VF range.");
bool PredicateAtRangeStart = Predicate(Range.Start);
for (ElementCount TmpVF = Range.Start * 2;
ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2)
if (Predicate(TmpVF) != PredicateAtRangeStart) {
Range.End = TmpVF;
break;
}
return PredicateAtRangeStart;
}
/// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
/// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
/// of VF's starting at a given VF and extending it as much as possible. Each
/// vectorization decision can potentially shorten this sub-range during
/// buildVPlan().
void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
ElementCount MaxVF) {
auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
VFRange SubRange = {VF, MaxVFPlusOne};
VPlans.push_back(buildVPlan(SubRange));
VF = SubRange.End;
}
}
VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
VPlanPtr &Plan) {
assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
// Look for cached value.
std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
if (ECEntryIt != EdgeMaskCache.end())
return ECEntryIt->second;
VPValue *SrcMask = createBlockInMask(Src, Plan);
// The terminator has to be a branch inst!
BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
assert(BI && "Unexpected terminator found");
if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
return EdgeMaskCache[Edge] = SrcMask;
// If source is an exiting block, we know the exit edge is dynamically dead
// in the vector loop, and thus we don't need to restrict the mask. Avoid
// adding uses of an otherwise potentially dead instruction.
if (OrigLoop->isLoopExiting(Src))
return EdgeMaskCache[Edge] = SrcMask;
VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition());
assert(EdgeMask && "No Edge Mask found for condition");
if (BI->getSuccessor(0) != Dst)
EdgeMask = Builder.createNot(EdgeMask);
if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND.
// The condition is 'SrcMask && EdgeMask', which is equivalent to
// 'select i1 SrcMask, i1 EdgeMask, i1 false'.
// The select version does not introduce new UB if SrcMask is false and
// EdgeMask is poison. Using 'and' here introduces undefined behavior.
VPValue *False = Plan->getOrAddVPValue(
ConstantInt::getFalse(BI->getCondition()->getType()));
EdgeMask = Builder.createSelect(SrcMask, EdgeMask, False);
}
return EdgeMaskCache[Edge] = EdgeMask;
}
VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
// Look for cached value.
BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
if (BCEntryIt != BlockMaskCache.end())
return BCEntryIt->second;
// All-one mask is modelled as no-mask following the convention for masked
// load/store/gather/scatter. Initialize BlockMask to no-mask.
VPValue *BlockMask = nullptr;
if (OrigLoop->getHeader() == BB) {
if (!CM.blockNeedsPredication(BB))
return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
// Create the block in mask as the first non-phi instruction in the block.
VPBuilder::InsertPointGuard Guard(Builder);
auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi();
Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint);
// Introduce the early-exit compare IV <= BTC to form header block mask.
// This is used instead of IV < TC because TC may wrap, unlike BTC.
// Start by constructing the desired canonical IV.
VPValue *IV = nullptr;
if (Legal->getPrimaryInduction())
IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction());
else {
auto IVRecipe = new VPWidenCanonicalIVRecipe();
Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint);
IV = IVRecipe->getVPSingleValue();
}
VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
bool TailFolded = !CM.isScalarEpilogueAllowed();
if (TailFolded && CM.TTI.emitGetActiveLaneMask()) {
// While ActiveLaneMask is a binary op that consumes the loop tripcount
// as a second argument, we only pass the IV here and extract the
// tripcount from the transform state where codegen of the VP instructions
// happen.
BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV});
} else {
BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
}
return BlockMaskCache[BB] = BlockMask;
}
// This is the block mask. We OR all incoming edges.
for (auto *Predecessor : predecessors(BB)) {
VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
return BlockMaskCache[BB] = EdgeMask;
if (!BlockMask) { // BlockMask has its initialized nullptr value.
BlockMask = EdgeMask;
continue;
}
BlockMask = Builder.createOr(BlockMask, EdgeMask);
}
return BlockMaskCache[BB] = BlockMask;
}
VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I,
ArrayRef<VPValue *> Operands,
VFRange &Range,
VPlanPtr &Plan) {
assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
"Must be called with either a load or store");
auto willWiden = [&](ElementCount VF) -> bool {
if (VF.isScalar())
return false;
LoopVectorizationCostModel::InstWidening Decision =
CM.getWideningDecision(I, VF);
assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
"CM decision should be taken at this point.");
if (Decision == LoopVectorizationCostModel::CM_Interleave)
return true;
if (CM.isScalarAfterVectorization(I, VF) ||
CM.isProfitableToScalarize(I, VF))
return false;
return Decision != LoopVectorizationCostModel::CM_Scalarize;
};
if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
return nullptr;
VPValue *Mask = nullptr;
if (Legal->isMaskRequired(I))
Mask = createBlockInMask(I->getParent(), Plan);
if (LoadInst *Load = dyn_cast<LoadInst>(I))
return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask);
StoreInst *Store = cast<StoreInst>(I);
return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0],
Mask);
}
VPWidenIntOrFpInductionRecipe *
VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi,
ArrayRef<VPValue *> Operands) const {
// Check if this is an integer or fp induction. If so, build the recipe that
// produces its scalar and vector values.
InductionDescriptor II = Legal->getInductionVars().lookup(Phi);
if (II.getKind() == InductionDescriptor::IK_IntInduction ||
II.getKind() == InductionDescriptor::IK_FpInduction) {
assert(II.getStartValue() ==
Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
const SmallVectorImpl<Instruction *> &Casts = II.getCastInsts();
return new VPWidenIntOrFpInductionRecipe(
Phi, Operands[0], Casts.empty() ? nullptr : Casts.front());
}
return nullptr;
}
VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate(
TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range,
VPlan &Plan) const {
// Optimize the special case where the source is a constant integer
// induction variable. Notice that we can only optimize the 'trunc' case
// because (a) FP conversions lose precision, (b) sext/zext may wrap, and
// (c) other casts depend on pointer size.
// Determine whether \p K is a truncation based on an induction variable that
// can be optimized.
auto isOptimizableIVTruncate =
[&](Instruction *K) -> std::function<bool(ElementCount)> {
return [=](ElementCount VF) -> bool {
return CM.isOptimizableIVTruncate(K, VF);
};
};
if (LoopVectorizationPlanner::getDecisionAndClampRange(
isOptimizableIVTruncate(I), Range)) {
InductionDescriptor II =
Legal->getInductionVars().lookup(cast<PHINode>(I->getOperand(0)));
VPValue *Start = Plan.getOrAddVPValue(II.getStartValue());
return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)),
Start, nullptr, I);
}
return nullptr;
}
VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi,
ArrayRef<VPValue *> Operands,
VPlanPtr &Plan) {
// If all incoming values are equal, the incoming VPValue can be used directly
// instead of creating a new VPBlendRecipe.
VPValue *FirstIncoming = Operands[0];
if (all_of(Operands, [FirstIncoming](const VPValue *Inc) {
return FirstIncoming == Inc;
})) {
return Operands[0];
}
// We know that all PHIs in non-header blocks are converted into selects, so
// we don't have to worry about the insertion order and we can just use the
// builder. At this point we generate the predication tree. There may be
// duplications since this is a simple recursive scan, but future
// optimizations will clean it up.
SmallVector<VPValue *, 2> OperandsWithMask;
unsigned NumIncoming = Phi->getNumIncomingValues();
for (unsigned In = 0; In < NumIncoming; In++) {
VPValue *EdgeMask =
createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
assert((EdgeMask || NumIncoming == 1) &&
"Multiple predecessors with one having a full mask");
OperandsWithMask.push_back(Operands[In]);
if (EdgeMask)
OperandsWithMask.push_back(EdgeMask);
}
return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask));
}
VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
ArrayRef<VPValue *> Operands,
VFRange &Range) const {
bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
[this, CI](ElementCount VF) { return CM.isScalarWithPredication(CI); },
Range);
if (IsPredicated)
return nullptr;
Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
ID == Intrinsic::pseudoprobe ||
ID == Intrinsic::experimental_noalias_scope_decl))
return nullptr;
auto willWiden = [&](ElementCount VF) -> bool {
Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
// The following case may be scalarized depending on the VF.
// The flag shows whether we use Intrinsic or a usual Call for vectorized
// version of the instruction.
// Is it beneficial to perform intrinsic call compared to lib call?
bool NeedToScalarize = false;
InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0;
bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
return UseVectorIntrinsic || !NeedToScalarize;
};
if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
return nullptr;
ArrayRef<VPValue *> Ops = Operands.take_front(CI->getNumArgOperands());
return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end()));
}
bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
!isa<StoreInst>(I) && "Instruction should have been handled earlier");
// Instruction should be widened, unless it is scalar after vectorization,
// scalarization is profitable or it is predicated.
auto WillScalarize = [this, I](ElementCount VF) -> bool {
return CM.isScalarAfterVectorization(I, VF) ||
CM.isProfitableToScalarize(I, VF) || CM.isScalarWithPredication(I);
};
return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
Range);
}
VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I,
ArrayRef<VPValue *> Operands) const {
auto IsVectorizableOpcode = [](unsigned Opcode) {
switch (Opcode) {
case Instruction::Add:
case Instruction::And:
case Instruction::AShr:
case Instruction::BitCast:
case Instruction::FAdd:
case Instruction::FCmp:
case Instruction::FDiv:
case Instruction::FMul:
case Instruction::FNeg:
case Instruction::FPExt:
case Instruction::FPToSI:
case Instruction::FPToUI:
case Instruction::FPTrunc:
case Instruction::FRem:
case Instruction::FSub:
case Instruction::ICmp:
case Instruction::IntToPtr:
case Instruction::LShr:
case Instruction::Mul:
case Instruction::Or:
case Instruction::PtrToInt:
case Instruction::SDiv:
case Instruction::Select:
case Instruction::SExt:
case Instruction::Shl:
case Instruction::SIToFP:
case Instruction::SRem:
case Instruction::Sub:
case Instruction::Trunc:
case Instruction::UDiv:
case Instruction::UIToFP:
case Instruction::URem:
case Instruction::Xor:
case Instruction::ZExt:
return true;
}
return false;
};
if (!IsVectorizableOpcode(I->getOpcode()))
return nullptr;
// Success: widen this instruction.
return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end()));
}
void VPRecipeBuilder::fixHeaderPhis() {
BasicBlock *OrigLatch = OrigLoop->getLoopLatch();
for (VPWidenPHIRecipe *R : PhisToFix) {
auto *PN = cast<PHINode>(R->getUnderlyingValue());
VPRecipeBase *IncR =
getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch)));
R->addOperand(IncR->getVPSingleValue());
}
}
VPBasicBlock *VPRecipeBuilder::handleReplication(
Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
VPlanPtr &Plan) {
bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
[&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
Range);
bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
[&](ElementCount VF) { return CM.isPredicatedInst(I); }, Range);
auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()),
IsUniform, IsPredicated);
setRecipe(I, Recipe);
Plan->addVPValue(I, Recipe);
// Find if I uses a predicated instruction. If so, it will use its scalar
// value. Avoid hoisting the insert-element which packs the scalar value into
// a vector value, as that happens iff all users use the vector value.
for (VPValue *Op : Recipe->operands()) {
auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef());
if (!PredR)
continue;
auto *RepR =
cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef());
assert(RepR->isPredicated() &&
"expected Replicate recipe to be predicated");
RepR->setAlsoPack(false);
}
// Finalize the recipe for Instr, first if it is not predicated.
if (!IsPredicated) {
LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
VPBB->appendRecipe(Recipe);
return VPBB;
}
LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
assert(VPBB->getSuccessors().empty() &&
"VPBB has successors when handling predicated replication.");
// Record predicated instructions for above packing optimizations.
VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
VPBlockUtils::insertBlockAfter(Region, VPBB);
auto *RegSucc = new VPBasicBlock();
VPBlockUtils::insertBlockAfter(RegSucc, Region);
return RegSucc;
}
VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
VPRecipeBase *PredRecipe,
VPlanPtr &Plan) {
// Instructions marked for predication are replicated and placed under an
// if-then construct to prevent side-effects.
// Generate recipes to compute the block mask for this region.
VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
// Build the triangular if-then region.
std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
assert(Instr->getParent() && "Predicated instruction not in any basic block");
auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
auto *PHIRecipe = Instr->getType()->isVoidTy()
? nullptr
: new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr));
if (PHIRecipe) {
Plan->removeVPValueFor(Instr);
Plan->addVPValue(Instr, PHIRecipe);
}
auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
// Note: first set Entry as region entry and then connect successors starting
// from it in order, to propagate the "parent" of each VPBasicBlock.
VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry);
VPBlockUtils::connectBlocks(Pred, Exit);
return Region;
}
VPRecipeOrVPValueTy
VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
ArrayRef<VPValue *> Operands,
VFRange &Range, VPlanPtr &Plan) {
// First, check for specific widening recipes that deal with calls, memory
// operations, inductions and Phi nodes.
if (auto *CI = dyn_cast<CallInst>(Instr))
return toVPRecipeResult(tryToWidenCall(CI, Operands, Range));
if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan));
VPRecipeBase *Recipe;
if (auto Phi = dyn_cast<PHINode>(Instr)) {
if (Phi->getParent() != OrigLoop->getHeader())
return tryToBlend(Phi, Operands, Plan);
if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands)))
return toVPRecipeResult(Recipe);
VPWidenPHIRecipe *PhiRecipe = nullptr;
if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) {
VPValue *StartV = Operands[0];
if (Legal->isReductionVariable(Phi)) {
RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi];
assert(RdxDesc.getRecurrenceStartValue() ==
Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV,
CM.isInLoopReduction(Phi),
CM.useOrderedReductions(RdxDesc));
} else {
PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV);
}
// Record the incoming value from the backedge, so we can add the incoming
// value from the backedge after all recipes have been created.
recordRecipeOf(cast<Instruction>(
Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch())));
PhisToFix.push_back(PhiRecipe);
} else {
// TODO: record start and backedge value for remaining pointer induction
// phis.
assert(Phi->getType()->isPointerTy() &&
"only pointer phis should be handled here");
PhiRecipe = new VPWidenPHIRecipe(Phi);
}
return toVPRecipeResult(PhiRecipe);
}
if (isa<TruncInst>(Instr) &&
(Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands,
Range, *Plan)))
return toVPRecipeResult(Recipe);
if (!shouldWiden(Instr, Range))
return nullptr;
if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
return toVPRecipeResult(new VPWidenGEPRecipe(
GEP, make_range(Operands.begin(), Operands.end()), OrigLoop));
if (auto *SI = dyn_cast<SelectInst>(Instr)) {
bool InvariantCond =
PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
return toVPRecipeResult(new VPWidenSelectRecipe(
*SI, make_range(Operands.begin(), Operands.end()), InvariantCond));
}
return toVPRecipeResult(tryToWiden(Instr, Operands));
}
void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
ElementCount MaxVF) {
assert(OrigLoop->isInnermost() && "Inner loop expected.");
// Collect instructions from the original loop that will become trivially dead
// in the vectorized loop. We don't need to vectorize these instructions. For
// example, original induction update instructions can become dead because we
// separately emit induction "steps" when generating code for the new loop.
// Similarly, we create a new latch condition when setting up the structure
// of the new loop, so the old one can become dead.
SmallPtrSet<Instruction *, 4> DeadInstructions;
collectTriviallyDeadInstructions(DeadInstructions);
// Add assume instructions we need to drop to DeadInstructions, to prevent
// them from being added to the VPlan.
// TODO: We only need to drop assumes in blocks that get flattend. If the
// control flow is preserved, we should keep them.
auto &ConditionalAssumes = Legal->getConditionalAssumes();
DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
// Dead instructions do not need sinking. Remove them from SinkAfter.
for (Instruction *I : DeadInstructions)
SinkAfter.erase(I);
// Cannot sink instructions after dead instructions (there won't be any
// recipes for them). Instead, find the first non-dead previous instruction.
for (auto &P : Legal->getSinkAfter()) {
Instruction *SinkTarget = P.second;
Instruction *FirstInst = &*SinkTarget->getParent()->begin();
(void)FirstInst;
while (DeadInstructions.contains(SinkTarget)) {
assert(
SinkTarget != FirstInst &&
"Must find a live instruction (at least the one feeding the "
"first-order recurrence PHI) before reaching beginning of the block");
SinkTarget = SinkTarget->getPrevNode();
assert(SinkTarget != P.first &&
"sink source equals target, no sinking required");
}
P.second = SinkTarget;
}
auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
VFRange SubRange = {VF, MaxVFPlusOne};
VPlans.push_back(
buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter));
VF = SubRange.End;
}
}
VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
const MapVector<Instruction *, Instruction *> &SinkAfter) {
SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
// ---------------------------------------------------------------------------
// Pre-construction: record ingredients whose recipes we'll need to further
// process after constructing the initial VPlan.
// ---------------------------------------------------------------------------
// Mark instructions we'll need to sink later and their targets as
// ingredients whose recipe we'll need to record.
for (auto &Entry : SinkAfter) {
RecipeBuilder.recordRecipeOf(Entry.first);
RecipeBuilder.recordRecipeOf(Entry.second);
}
for (auto &Reduction : CM.getInLoopReductionChains()) {
PHINode *Phi = Reduction.first;
RecurKind Kind = Legal->getReductionVars()[Phi].getRecurrenceKind();
const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
RecipeBuilder.recordRecipeOf(Phi);
for (auto &R : ReductionOperations) {
RecipeBuilder.recordRecipeOf(R);
// For min/max reducitons, where we have a pair of icmp/select, we also
// need to record the ICmp recipe, so it can be removed later.
if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind))
RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0)));
}
}
// For each interleave group which is relevant for this (possibly trimmed)
// Range, add it to the set of groups to be later applied to the VPlan and add
// placeholders for its members' Recipes which we'll be replacing with a
// single VPInterleaveRecipe.
for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
auto applyIG = [IG, this](ElementCount VF) -> bool {
return (VF.isVector() && // Query is illegal for VF == 1
CM.getWideningDecision(IG->getInsertPos(), VF) ==
LoopVectorizationCostModel::CM_Interleave);
};
if (!getDecisionAndClampRange(applyIG, Range))
continue;
InterleaveGroups.insert(IG);
for (unsigned i = 0; i < IG->getFactor(); i++)
if (Instruction *Member = IG->getMember(i))
RecipeBuilder.recordRecipeOf(Member);
};
// ---------------------------------------------------------------------------
// Build initial VPlan: Scan the body of the loop in a topological order to
// visit each basic block after having visited its predecessor basic blocks.
// ---------------------------------------------------------------------------
// Create a dummy pre-entry VPBasicBlock to start building the VPlan.
auto Plan = std::make_unique<VPlan>();
VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry");
Plan->setEntry(VPBB);
// Scan the body of the loop in a topological order to visit each basic block
// after having visited its predecessor basic blocks.
LoopBlocksDFS DFS(OrigLoop);
DFS.perform(LI);
for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
// Relevant instructions from basic block BB will be grouped into VPRecipe
// ingredients and fill a new VPBasicBlock.
unsigned VPBBsForBB = 0;
auto *FirstVPBBForBB = new VPBasicBlock(BB->getName());
VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB);
VPBB = FirstVPBBForBB;
Builder.setInsertPoint(VPBB);
// Introduce each ingredient into VPlan.
// TODO: Model and preserve debug instrinsics in VPlan.
for (Instruction &I : BB->instructionsWithoutDebug()) {
Instruction *Instr = &I;
// First filter out irrelevant instructions, to ensure no recipes are
// built for them.
if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr))
continue;
SmallVector<VPValue *, 4> Operands;
auto *Phi = dyn_cast<PHINode>(Instr);
if (Phi && Phi->getParent() == OrigLoop->getHeader()) {
Operands.push_back(Plan->getOrAddVPValue(
Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())));
} else {
auto OpRange = Plan->mapToVPValues(Instr->operands());
Operands = {OpRange.begin(), OpRange.end()};
}
if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe(
Instr, Operands, Range, Plan)) {
// If Instr can be simplified to an existing VPValue, use it.
if (RecipeOrValue.is<VPValue *>()) {
auto *VPV = RecipeOrValue.get<VPValue *>();
Plan->addVPValue(Instr, VPV);
// If the re-used value is a recipe, register the recipe for the
// instruction, in case the recipe for Instr needs to be recorded.
if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef()))
RecipeBuilder.setRecipe(Instr, R);
continue;
}
// Otherwise, add the new recipe.
VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>();
for (auto *Def : Recipe->definedValues()) {
auto *UV = Def->getUnderlyingValue();
Plan->addVPValue(UV, Def);
}
RecipeBuilder.setRecipe(Instr, Recipe);
VPBB->appendRecipe(Recipe);
continue;
}
// Otherwise, if all widening options failed, Instruction is to be
// replicated. This may create a successor for VPBB.
VPBasicBlock *NextVPBB =
RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan);
if (NextVPBB != VPBB) {
VPBB = NextVPBB;
VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
: "");
}
}
}
RecipeBuilder.fixHeaderPhis();
// Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks
// may also be empty, such as the last one VPBB, reflecting original
// basic-blocks with no recipes.
VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry());
assert(PreEntry->empty() && "Expecting empty pre-entry block.");
VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor());
VPBlockUtils::disconnectBlocks(PreEntry, Entry);
delete PreEntry;
// ---------------------------------------------------------------------------
// Transform initial VPlan: Apply previously taken decisions, in order, to
// bring the VPlan to its final state.
// ---------------------------------------------------------------------------
// Apply Sink-After legal constraints.
auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * {
auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent());
if (Region && Region->isReplicator()) {
assert(Region->getNumSuccessors() == 1 &&
Region->getNumPredecessors() == 1 && "Expected SESE region!");
assert(R->getParent()->size() == 1 &&
"A recipe in an original replicator region must be the only "
"recipe in its block");
return Region;
}
return nullptr;
};
for (auto &Entry : SinkAfter) {
VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
auto *TargetRegion = GetReplicateRegion(Target);
auto *SinkRegion = GetReplicateRegion(Sink);
if (!SinkRegion) {
// If the sink source is not a replicate region, sink the recipe directly.
if (TargetRegion) {
// The target is in a replication region, make sure to move Sink to
// the block after it, not into the replication region itself.
VPBasicBlock *NextBlock =
cast<VPBasicBlock>(TargetRegion->getSuccessors().front());
Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi());
} else
Sink->moveAfter(Target);
continue;
}
// The sink source is in a replicate region. Unhook the region from the CFG.
auto *SinkPred = SinkRegion->getSinglePredecessor();
auto *SinkSucc = SinkRegion->getSingleSuccessor();
VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion);
VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc);
VPBlockUtils::connectBlocks(SinkPred, SinkSucc);
if (TargetRegion) {
// The target recipe is also in a replicate region, move the sink region
// after the target region.
auto *TargetSucc = TargetRegion->getSingleSuccessor();
VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc);
VPBlockUtils::connectBlocks(TargetRegion, SinkRegion);
VPBlockUtils::connectBlocks(SinkRegion, TargetSucc);
} else {
// The sink source is in a replicate region, we need to move the whole
// replicate region, which should only contain a single recipe in the
// main block.
auto *SplitBlock =
Target->getParent()->splitAt(std::next(Target->getIterator()));
auto *SplitPred = SplitBlock->getSinglePredecessor();
VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock);
VPBlockUtils::connectBlocks(SplitPred, SinkRegion);
VPBlockUtils::connectBlocks(SinkRegion, SplitBlock);
if (VPBB == SplitPred)
VPBB = SplitBlock;
}
}
// Introduce a recipe to combine the incoming and previous values of a
// first-order recurrence.
for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) {
auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R);
if (!RecurPhi)
continue;
auto *RecurSplice = cast<VPInstruction>(
Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice,
{RecurPhi, RecurPhi->getBackedgeValue()}));
VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe();
if (auto *Region = GetReplicateRegion(PrevRecipe)) {
VPBasicBlock *Succ = cast<VPBasicBlock>(Region->getSingleSuccessor());
RecurSplice->moveBefore(*Succ, Succ->getFirstNonPhi());
} else
RecurSplice->moveAfter(PrevRecipe);
RecurPhi->replaceAllUsesWith(RecurSplice);
// Set the first operand of RecurSplice to RecurPhi again, after replacing
// all users.
RecurSplice->setOperand(0, RecurPhi);
}
// Interleave memory: for each Interleave Group we marked earlier as relevant
// for this VPlan, replace the Recipes widening its memory instructions with a
// single VPInterleaveRecipe at its insertion point.
for (auto IG : InterleaveGroups) {
auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
RecipeBuilder.getRecipe(IG->getInsertPos()));
SmallVector<VPValue *, 4> StoredValues;
for (unsigned i = 0; i < IG->getFactor(); ++i)
if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) {
auto *StoreR =
cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI));
StoredValues.push_back(StoreR->getStoredValue());
}
auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues,
Recipe->getMask());
VPIG->insertBefore(Recipe);
unsigned J = 0;
for (unsigned i = 0; i < IG->getFactor(); ++i)
if (Instruction *Member = IG->getMember(i)) {
if (!Member->getType()->isVoidTy()) {
VPValue *OriginalV = Plan->getVPValue(Member);
Plan->removeVPValueFor(Member);
Plan->addVPValue(Member, VPIG->getVPValue(J));
OriginalV->replaceAllUsesWith(VPIG->getVPValue(J));
J++;
}
RecipeBuilder.getRecipe(Member)->eraseFromParent();
}
}
// Adjust the recipes for any inloop reductions.
adjustRecipesForInLoopReductions(Plan, RecipeBuilder, Range.Start);
// Finally, if tail is folded by masking, introduce selects between the phi
// and the live-out instruction of each reduction, at the end of the latch.
if (CM.foldTailByMasking() && !Legal->getReductionVars().empty()) {
Builder.setInsertPoint(VPBB);
auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
for (auto &Reduction : Legal->getReductionVars()) {
if (CM.isInLoopReduction(Reduction.first))
continue;
VPValue *Phi = Plan->getOrAddVPValue(Reduction.first);
VPValue *Red = Plan->getOrAddVPValue(Reduction.second.getLoopExitInstr());
Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi});
}
}
VPlanTransforms::sinkScalarOperands(*Plan);
VPlanTransforms::mergeReplicateRegions(*Plan);
std::string PlanName;
raw_string_ostream RSO(PlanName);
ElementCount VF = Range.Start;
Plan->addVF(VF);
RSO << "Initial VPlan for VF={" << VF;
for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) {
Plan->addVF(VF);
RSO << "," << VF;
}
RSO << "},UF>=1";
RSO.flush();
Plan->setName(PlanName);
return Plan;
}
VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
// Outer loop handling: They may require CFG and instruction level
// transformations before even evaluating whether vectorization is profitable.
// Since we cannot modify the incoming IR, we need to build VPlan upfront in
// the vectorization pipeline.
assert(!OrigLoop->isInnermost());
assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
// Create new empty VPlan
auto Plan = std::make_unique<VPlan>();
// Build hierarchical CFG
VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
HCFGBuilder.buildHierarchicalCFG();
for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End);
VF *= 2)
Plan->addVF(VF);
if (EnableVPlanPredication) {
VPlanPredicator VPP(*Plan);
VPP.predicate();
// Avoid running transformation to recipes until masked code generation in
// VPlan-native path is in place.
return Plan;
}
SmallPtrSet<Instruction *, 1> DeadInstructions;
VPlanTransforms::VPInstructionsToVPRecipes(OrigLoop, Plan,
Legal->getInductionVars(),
DeadInstructions, *PSE.getSE());
return Plan;
}
// Adjust the recipes for any inloop reductions. The chain of instructions
// leading from the loop exit instr to the phi need to be converted to
// reductions, with one operand being vector and the other being the scalar
// reduction chain.
void LoopVectorizationPlanner::adjustRecipesForInLoopReductions(
VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, ElementCount MinVF) {
for (auto &Reduction : CM.getInLoopReductionChains()) {
PHINode *Phi = Reduction.first;
RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi];
const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc))
continue;
// ReductionOperations are orders top-down from the phi's use to the
// LoopExitValue. We keep a track of the previous item (the Chain) to tell
// which of the two operands will remain scalar and which will be reduced.
// For minmax the chain will be the select instructions.
Instruction *Chain = Phi;
for (Instruction *R : ReductionOperations) {
VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R);
RecurKind Kind = RdxDesc.getRecurrenceKind();
VPValue *ChainOp = Plan->getVPValue(Chain);
unsigned FirstOpId;
if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
assert(isa<VPWidenSelectRecipe>(WidenRecipe) &&
"Expected to replace a VPWidenSelectSC");
FirstOpId = 1;
} else {
assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe)) &&
"Expected to replace a VPWidenSC");
FirstOpId = 0;
}
unsigned VecOpId =
R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId;
VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId));
auto *CondOp = CM.foldTailByMasking()
? RecipeBuilder.createBlockInMask(R->getParent(), Plan)
: nullptr;
VPReductionRecipe *RedRecipe = new VPReductionRecipe(
&RdxDesc, R, ChainOp, VecOp, CondOp, TTI);
WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
Plan->removeVPValueFor(R);
Plan->addVPValue(R, RedRecipe);
WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator());
WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
WidenRecipe->eraseFromParent();
if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
VPRecipeBase *CompareRecipe =
RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0)));
assert(isa<VPWidenRecipe>(CompareRecipe) &&
"Expected to replace a VPWidenSC");
assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 &&
"Expected no remaining users");
CompareRecipe->eraseFromParent();
}
Chain = R;
}
}
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const {
O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
IG->getInsertPos()->printAsOperand(O, false);
O << ", ";
getAddr()->printAsOperand(O, SlotTracker);
VPValue *Mask = getMask();
if (Mask) {
O << ", ";
Mask->printAsOperand(O, SlotTracker);
}
for (unsigned i = 0; i < IG->getFactor(); ++i)
if (Instruction *I = IG->getMember(i))
O << "\n" << Indent << " " << VPlanIngredient(I) << " " << i;
}
#endif
void VPWidenCallRecipe::execute(VPTransformState &State) {
State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this,
*this, State);
}
void VPWidenSelectRecipe::execute(VPTransformState &State) {
State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()),
this, *this, InvariantCond, State);
}
void VPWidenRecipe::execute(VPTransformState &State) {
State.ILV->widenInstruction(*getUnderlyingInstr(), this, *this, State);
}
void VPWidenGEPRecipe::execute(VPTransformState &State) {
State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this,
*this, State.UF, State.VF, IsPtrLoopInvariant,
IsIndexLoopInvariant, State);
}
void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
assert(!State.Instance && "Int or FP induction being replicated.");
State.ILV->widenIntOrFpInduction(IV, getStartValue()->getLiveInIRValue(),
getTruncInst(), getVPValue(0),
getCastValue(), State);
}
void VPWidenPHIRecipe::execute(VPTransformState &State) {
State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this,
State);
}
void VPBlendRecipe::execute(VPTransformState &State) {
State.ILV->setDebugLocFromInst(Phi, &State.Builder);
// We know that all PHIs in non-header blocks are converted into
// selects, so we don't have to worry about the insertion order and we
// can just use the builder.
// At this point we generate the predication tree. There may be
// duplications since this is a simple recursive scan, but future
// optimizations will clean it up.
unsigned NumIncoming = getNumIncomingValues();
// Generate a sequence of selects of the form:
// SELECT(Mask3, In3,
// SELECT(Mask2, In2,
// SELECT(Mask1, In1,
// In0)))
// Note that Mask0 is never used: lanes for which no path reaches this phi and
// are essentially undef are taken from In0.
InnerLoopVectorizer::VectorParts Entry(State.UF);
for (unsigned In = 0; In < NumIncoming; ++In) {
for (unsigned Part = 0; Part < State.UF; ++Part) {
// We might have single edge PHIs (blocks) - use an identity
// 'select' for the first PHI operand.
Value *In0 = State.get(getIncomingValue(In), Part);
if (In == 0)
Entry[Part] = In0; // Initialize with the first incoming value.
else {
// Select between the current value and the previous incoming edge
// based on the incoming mask.
Value *Cond = State.get(getMask(In), Part);
Entry[Part] =
State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
}
}
}
for (unsigned Part = 0; Part < State.UF; ++Part)
State.set(this, Entry[Part], Part);
}
void VPInterleaveRecipe::execute(VPTransformState &State) {
assert(!State.Instance && "Interleave group being replicated.");
State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(),
getStoredValues(), getMask());
}
void VPReductionRecipe::execute(VPTransformState &State) {
assert(!State.Instance && "Reduction being replicated.");
Value *PrevInChain = State.get(getChainOp(), 0);
for (unsigned Part = 0; Part < State.UF; ++Part) {
RecurKind Kind = RdxDesc->getRecurrenceKind();
bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc);
Value *NewVecOp = State.get(getVecOp(), Part);
if (VPValue *Cond = getCondOp()) {
Value *NewCond = State.get(Cond, Part);
VectorType *VecTy = cast<VectorType>(NewVecOp->getType());
Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity(
Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags());
Constant *IdenVec =
ConstantVector::getSplat(VecTy->getElementCount(), Iden);
Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec);
NewVecOp = Select;
}
Value *NewRed;
Value *NextInChain;
if (IsOrdered) {
if (State.VF.isVector())
NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp,
PrevInChain);
else
NewRed = State.Builder.CreateBinOp(
(Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(),
PrevInChain, NewVecOp);
PrevInChain = NewRed;
} else {
PrevInChain = State.get(getChainOp(), Part);
NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp);
}
if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
NextInChain =
createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(),
NewRed, PrevInChain);
} else if (IsOrdered)
NextInChain = NewRed;
else {
NextInChain = State.Builder.CreateBinOp(
(Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), NewRed,
PrevInChain);
}
State.set(this, NextInChain, Part);
}
}
void VPReplicateRecipe::execute(VPTransformState &State) {
if (State.Instance) { // Generate a single instance.
assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this,
*State.Instance, IsPredicated, State);
// Insert scalar instance packing it into a vector.
if (AlsoPack && State.VF.isVector()) {
// If we're constructing lane 0, initialize to start from poison.
if (State.Instance->Lane.isFirstLane()) {
assert(!State.VF.isScalable() && "VF is assumed to be non scalable.");
Value *Poison = PoisonValue::get(
VectorType::get(getUnderlyingValue()->getType(), State.VF));
State.set(this, Poison, State.Instance->Part);
}
State.ILV->packScalarIntoVectorValue(this, *State.Instance, State);
}
return;
}
// Generate scalar instances for all VF lanes of all UF parts, unless the
// instruction is uniform inwhich case generate only the first lane for each
// of the UF parts.
unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue();
assert((!State.VF.isScalable() || IsUniform) &&
"Can't scalarize a scalable vector");
for (unsigned Part = 0; Part < State.UF; ++Part)
for (unsigned Lane = 0; Lane < EndLane; ++Lane)
State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this,
VPIteration(Part, Lane), IsPredicated,
State);
}
void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
assert(State.Instance && "Branch on Mask works only on single instance.");
unsigned Part = State.Instance->Part;
unsigned Lane = State.Instance->Lane.getKnownLane();
Value *ConditionBit = nullptr;
VPValue *BlockInMask = getMask();
if (BlockInMask) {
ConditionBit = State.get(BlockInMask, Part);
if (ConditionBit->getType()->isVectorTy())
ConditionBit = State.Builder.CreateExtractElement(
ConditionBit, State.Builder.getInt32(Lane));
} else // Block in mask is all-one.
ConditionBit = State.Builder.getTrue();
// Replace the temporary unreachable terminator with a new conditional branch,
// whose two destinations will be set later when they are created.
auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
assert(isa<UnreachableInst>(CurrentTerminator) &&
"Expected to replace unreachable terminator with conditional branch.");
auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
CondBr->setSuccessor(0, nullptr);
ReplaceInstWithInst(CurrentTerminator, CondBr);
}
void VPPredInstPHIRecipe::execute(VPTransformState &State) {
assert(State.Instance && "Predicated instruction PHI works per instance.");
Instruction *ScalarPredInst =
cast<Instruction>(State.get(getOperand(0), *State.Instance));
BasicBlock *PredicatedBB = ScalarPredInst->getParent();
BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
assert(PredicatingBB && "Predicated block has no single predecessor.");
assert(isa<VPReplicateRecipe>(getOperand(0)) &&
"operand must be VPReplicateRecipe");
// By current pack/unpack logic we need to generate only a single phi node: if
// a vector value for the predicated instruction exists at this point it means
// the instruction has vector users only, and a phi for the vector value is
// needed. In this case the recipe of the predicated instruction is marked to
// also do that packing, thereby "hoisting" the insert-element sequence.
// Otherwise, a phi node for the scalar value is needed.
unsigned Part = State.Instance->Part;
if (State.hasVectorValue(getOperand(0), Part)) {
Value *VectorValue = State.get(getOperand(0), Part);
InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
if (State.hasVectorValue(this, Part))
State.reset(this, VPhi, Part);
else
State.set(this, VPhi, Part);
// NOTE: Currently we need to update the value of the operand, so the next
// predicated iteration inserts its generated value in the correct vector.
State.reset(getOperand(0), VPhi, Part);
} else {
Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType();
PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()),
PredicatingBB);
Phi->addIncoming(ScalarPredInst, PredicatedBB);
if (State.hasScalarValue(this, *State.Instance))
State.reset(this, Phi, *State.Instance);
else
State.set(this, Phi, *State.Instance);
// NOTE: Currently we need to update the value of the operand, so the next
// predicated iteration inserts its generated value in the correct vector.
State.reset(getOperand(0), Phi, *State.Instance);
}
}
void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
VPValue *StoredValue = isStore() ? getStoredValue() : nullptr;
State.ILV->vectorizeMemoryInstruction(
&Ingredient, State, StoredValue ? nullptr : getVPSingleValue(), getAddr(),
StoredValue, getMask());
}
// Determine how to lower the scalar epilogue, which depends on 1) optimising
// for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
// predication, and 4) a TTI hook that analyses whether the loop is suitable
// for predication.
static ScalarEpilogueLowering getScalarEpilogueLowering(
Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
LoopVectorizationLegality &LVL) {
// 1) OptSize takes precedence over all other options, i.e. if this is set,
// don't look at hints or options, and don't request a scalar epilogue.
// (For PGSO, as shouldOptimizeForSize isn't currently accessible from
// LoopAccessInfo (due to code dependency and not being able to reliably get
// PSI/BFI from a loop analysis under NPM), we cannot suppress the collection
// of strides in LoopAccessInfo::analyzeLoop() and vectorize without
// versioning when the vectorization is forced, unlike hasOptSize. So revert
// back to the old way and vectorize with versioning when forced. See D81345.)
if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
PGSOQueryType::IRPass) &&
Hints.getForce() != LoopVectorizeHints::FK_Enabled))
return CM_ScalarEpilogueNotAllowedOptSize;
// 2) If set, obey the directives
if (PreferPredicateOverEpilogue.getNumOccurrences()) {
switch (PreferPredicateOverEpilogue) {
case PreferPredicateTy::ScalarEpilogue:
return CM_ScalarEpilogueAllowed;
case PreferPredicateTy::PredicateElseScalarEpilogue:
return CM_ScalarEpilogueNotNeededUsePredicate;
case PreferPredicateTy::PredicateOrDontVectorize:
return CM_ScalarEpilogueNotAllowedUsePredicate;
};
}
// 3) If set, obey the hints
switch (Hints.getPredicate()) {
case LoopVectorizeHints::FK_Enabled:
return CM_ScalarEpilogueNotNeededUsePredicate;
case LoopVectorizeHints::FK_Disabled:
return CM_ScalarEpilogueAllowed;
};
// 4) if the TTI hook indicates this is profitable, request predication.
if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT,
LVL.getLAI()))
return CM_ScalarEpilogueNotNeededUsePredicate;
return CM_ScalarEpilogueAllowed;
}
Value *VPTransformState::get(VPValue *Def, unsigned Part) {
// If Values have been set for this Def return the one relevant for \p Part.
if (hasVectorValue(Def, Part))
return Data.PerPartOutput[Def][Part];
if (!hasScalarValue(Def, {Part, 0})) {
Value *IRV = Def->getLiveInIRValue();
Value *B = ILV->getBroadcastInstrs(IRV);
set(Def, B, Part);
return B;
}
Value *ScalarValue = get(Def, {Part, 0});
// If we aren't vectorizing, we can just copy the scalar map values over
// to the vector map.
if (VF.isScalar()) {
set(Def, ScalarValue, Part);
return ScalarValue;
}
auto *RepR = dyn_cast<VPReplicateRecipe>(Def);
bool IsUniform = RepR && RepR->isUniform();
unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
// Check if there is a scalar value for the selected lane.
if (!hasScalarValue(Def, {Part, LastLane})) {
// At the moment, VPWidenIntOrFpInductionRecipes can also be uniform.
assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) &&
"unexpected recipe found to be invariant");
IsUniform = true;
LastLane = 0;
}
auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
// Set the insert point after the last scalarized instruction or after the
// last PHI, if LastInst is a PHI. This ensures the insertelement sequence
// will directly follow the scalar definitions.
auto OldIP = Builder.saveIP();
auto NewIP =
isa<PHINode>(LastInst)
? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
: std::next(BasicBlock::iterator(LastInst));
Builder.SetInsertPoint(&*NewIP);
// However, if we are vectorizing, we need to construct the vector values.
// If the value is known to be uniform after vectorization, we can just
// broadcast the scalar value corresponding to lane zero for each unroll
// iteration. Otherwise, we construct the vector values using
// insertelement instructions. Since the resulting vectors are stored in
// State, we will only generate the insertelements once.
Value *VectorValue = nullptr;
if (IsUniform) {
VectorValue = ILV->getBroadcastInstrs(ScalarValue);
set(Def, VectorValue, Part);
} else {
// Initialize packing with insertelements to start from undef.
assert(!VF.isScalable() && "VF is assumed to be non scalable.");
Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
set(Def, Undef, Part);
for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this);
VectorValue = get(Def, Part);
}
Builder.restoreIP(OldIP);
return VectorValue;
}
// Process the loop in the VPlan-native vectorization path. This path builds
// VPlan upfront in the vectorization pipeline, which allows to apply
// VPlan-to-VPlan transformations from the very beginning without modifying the
// input LLVM IR.
static bool processLoopInVPlanNativePath(
Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints,
LoopVectorizationRequirements &Requirements) {
if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
return false;
}
assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
Function *F = L->getHeader()->getParent();
InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL);
LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
&Hints, IAI);
// Use the planner for outer loop vectorization.
// TODO: CM is not used at this point inside the planner. Turn CM into an
// optional argument if we don't need it in the future.
LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints,
Requirements, ORE);
// Get user vectorization factor.
ElementCount UserVF = Hints.getWidth();
CM.collectElementTypesForWidening();
// Plan how to best vectorize, return the best VF and its cost.
const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
// If we are stress testing VPlan builds, do not attempt to generate vector
// code. Masked vector code generation support will follow soon.
// Also, do not attempt to vectorize if no vector code will be produced.
if (VPlanBuildStressTest || EnableVPlanPredication ||
VectorizationFactor::Disabled() == VF)
return false;
LVP.setBestPlan(VF.Width, 1);
{
GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
F->getParent()->getDataLayout());
InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL,
&CM, BFI, PSI, Checks);
LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
<< L->getHeader()->getParent()->getName() << "\"\n");
LVP.executePlan(LB, DT);
}
// Mark the loop as already vectorized to avoid vectorizing again.
Hints.setAlreadyVectorized();
assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
return true;
}
// Emit a remark if there are stores to floats that required a floating point
// extension. If the vectorized loop was generated with floating point there
// will be a performance penalty from the conversion overhead and the change in
// the vector width.
static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) {
SmallVector<Instruction *, 4> Worklist;
for (BasicBlock *BB : L->getBlocks()) {
for (Instruction &Inst : *BB) {
if (auto *S = dyn_cast<StoreInst>(&Inst)) {
if (S->getValueOperand()->getType()->isFloatTy())
Worklist.push_back(S);
}
}
}
// Traverse the floating point stores upwards searching, for floating point
// conversions.
SmallPtrSet<const Instruction *, 4> Visited;
SmallPtrSet<const Instruction *, 4> EmittedRemark;
while (!Worklist.empty()) {
auto *I = Worklist.pop_back_val();
if (!L->contains(I))
continue;
if (!Visited.insert(I).second)
continue;
// Emit a remark if the floating point store required a floating
// point conversion.
// TODO: More work could be done to identify the root cause such as a
// constant or a function return type and point the user to it.
if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
ORE->emit([&]() {
return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
I->getDebugLoc(), L->getHeader())
<< "floating point conversion changes vector width. "
<< "Mixed floating point precision requires an up/down "
<< "cast that will negatively impact performance.";
});
for (Use &Op : I->operands())
if (auto *OpI = dyn_cast<Instruction>(Op))
Worklist.push_back(OpI);
}
}
LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
: InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
!EnableLoopInterleaving),
VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
!EnableLoopVectorization) {}
bool LoopVectorizePass::processLoop(Loop *L) {
assert((EnableVPlanNativePath || L->isInnermost()) &&
"VPlan-native path is not enabled. Only process inner loops.");
#ifndef NDEBUG
const std::string DebugLocStr = getDebugLocString(L);
#endif /* NDEBUG */
LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \""
<< L->getHeader()->getParent()->getName() << "\" from "
<< DebugLocStr << "\n");
LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE);
LLVM_DEBUG(
dbgs() << "LV: Loop hints:"
<< " force="
<< (Hints.getForce() == LoopVectorizeHints::FK_Disabled
? "disabled"
: (Hints.getForce() == LoopVectorizeHints::FK_Enabled
? "enabled"
: "?"))
<< " width=" << Hints.getWidth()
<< " interleave=" << Hints.getInterleave() << "\n");
// Function containing loop
Function *F = L->getHeader()->getParent();
// Looking at the diagnostic output is the only way to determine if a loop
// was vectorized (other than looking at the IR or machine code), so it
// is important to generate an optimization remark for each loop. Most of
// these messages are generated as OptimizationRemarkAnalysis. Remarks
// generated as OptimizationRemark and OptimizationRemarkMissed are
// less verbose reporting vectorized loops and unvectorized loops that may
// benefit from vectorization, respectively.
if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
return false;
}
PredicatedScalarEvolution PSE(*SE, *L);
// Check if it is legal to vectorize the loop.
LoopVectorizationRequirements Requirements;
LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
&Requirements, &Hints, DB, AC, BFI, PSI);
if (!LVL.canVectorize(EnableVPlanNativePath)) {
LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
Hints.emitRemarkWithHints();
return false;
}
// Check the function attributes and profiles to find out if this function
// should be optimized for size.
ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL);
// Entrance to the VPlan-native vectorization path. Outer loops are processed
// here. They may require CFG and instruction level transformations before
// even evaluating whether vectorization is profitable. Since we cannot modify
// the incoming IR, we need to build VPlan upfront in the vectorization
// pipeline.
if (!L->isInnermost())
return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
ORE, BFI, PSI, Hints, Requirements);
assert(L->isInnermost() && "Inner loop expected.");
// Check the loop for a trip count threshold: vectorize loops with a tiny trip
// count by optimizing for size, to minimize overheads.
auto ExpectedTC = getSmallBestKnownTC(*SE, L);
if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
<< "This loop is worth vectorizing only if no scalar "
<< "iteration overheads are incurred.");
if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
else {
LLVM_DEBUG(dbgs() << "\n");
SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
}
}
// Check the function attributes to see if implicit floats are allowed.
// FIXME: This check doesn't seem possibly correct -- what if the loop is
// an integer loop and the vector instructions selected are purely integer
// vector instructions?
if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
reportVectorizationFailure(
"Can't vectorize when the NoImplicitFloat attribute is used",
"loop not vectorized due to NoImplicitFloat attribute",
"NoImplicitFloat", ORE, L);
Hints.emitRemarkWithHints();
return false;
}
// Check if the target supports potentially unsafe FP vectorization.
// FIXME: Add a check for the type of safety issue (denormal, signaling)
// for the target we're vectorizing for, to make sure none of the
// additional fp-math flags can help.
if (Hints.isPotentiallyUnsafe() &&
TTI->isFPVectorizationPotentiallyUnsafe()) {
reportVectorizationFailure(
"Potentially unsafe FP op prevents vectorization",
"loop not vectorized due to unsafe FP support.",
"UnsafeFP", ORE, L);
Hints.emitRemarkWithHints();
return false;
}
if (!LVL.canVectorizeFPMath(EnableStrictReductions)) {
ORE->emit([&]() {
auto *ExactFPMathInst = Requirements.getExactFPInst();
return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
ExactFPMathInst->getDebugLoc(),
ExactFPMathInst->getParent())
<< "loop not vectorized: cannot prove it is safe to reorder "
"floating-point operations";
});
LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
"reorder floating-point operations\n");
Hints.emitRemarkWithHints();
return false;
}
bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
// If an override option has been passed in for interleaved accesses, use it.
if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
UseInterleaved = EnableInterleavedMemAccesses;
// Analyze interleaved memory accesses.
if (UseInterleaved) {
IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
}
// Use the cost model.
LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
F, &Hints, IAI);
CM.collectValuesToIgnore();
CM.collectElementTypesForWidening();
// Use the planner for vectorization.
LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints,
Requirements, ORE);
// Get user vectorization factor and interleave count.
ElementCount UserVF = Hints.getWidth();
unsigned UserIC = Hints.getInterleave();
// Plan how to best vectorize, return the best VF and its cost.
Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC);
VectorizationFactor VF = VectorizationFactor::Disabled();
unsigned IC = 1;
if (MaybeVF) {
VF = *MaybeVF;
// Select the interleave count.
IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue());
}
// Identify the diagnostic messages that should be produced.
std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
bool VectorizeLoop = true, InterleaveLoop = true;
if (VF.Width.isScalar()) {
LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
VecDiagMsg = std::make_pair(
"VectorizationNotBeneficial",
"the cost-model indicates that vectorization is not beneficial");
VectorizeLoop = false;
}
if (!MaybeVF && UserIC > 1) {
// Tell the user interleaving was avoided up-front, despite being explicitly
// requested.
LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
"interleaving should be avoided up front\n");
IntDiagMsg = std::make_pair(
"InterleavingAvoided",
"Ignoring UserIC, because interleaving was avoided up front");
InterleaveLoop = false;
} else if (IC == 1 && UserIC <= 1) {
// Tell the user interleaving is not beneficial.
LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
IntDiagMsg = std::make_pair(
"InterleavingNotBeneficial",
"the cost-model indicates that interleaving is not beneficial");
InterleaveLoop = false;
if (UserIC == 1) {
IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
IntDiagMsg.second +=
" and is explicitly disabled or interleave count is set to 1";
}
} else if (IC > 1 && UserIC == 1) {
// Tell the user interleaving is beneficial, but it explicitly disabled.
LLVM_DEBUG(
dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
IntDiagMsg = std::make_pair(
"InterleavingBeneficialButDisabled",
"the cost-model indicates that interleaving is beneficial "
"but is explicitly disabled or interleave count is set to 1");
InterleaveLoop = false;
}
// Override IC if user provided an interleave count.
IC = UserIC > 0 ? UserIC : IC;
// Emit diagnostic messages, if any.
const char *VAPassName = Hints.vectorizeAnalysisPassName();
if (!VectorizeLoop && !InterleaveLoop) {
// Do not vectorize or interleaving the loop.
ORE->emit([&]() {
return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
L->getStartLoc(), L->getHeader())
<< VecDiagMsg.second;
});
ORE->emit([&]() {
return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
L->getStartLoc(), L->getHeader())
<< IntDiagMsg.second;
});
return false;
} else if (!VectorizeLoop && InterleaveLoop) {
LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
ORE->emit([&]() {
return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
L->getStartLoc(), L->getHeader())
<< VecDiagMsg.second;
});
} else if (VectorizeLoop && !InterleaveLoop) {
LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
<< ") in " << DebugLocStr << '\n');
ORE->emit([&]() {
return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
L->getStartLoc(), L->getHeader())
<< IntDiagMsg.second;
});
} else if (VectorizeLoop && InterleaveLoop) {
LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
<< ") in " << DebugLocStr << '\n');
LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
}
bool DisableRuntimeUnroll = false;
MDNode *OrigLoopID = L->getLoopID();
{
// Optimistically generate runtime checks. Drop them if they turn out to not
// be profitable. Limit the scope of Checks, so the cleanup happens
// immediately after vector codegeneration is done.
GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
F->getParent()->getDataLayout());
if (!VF.Width.isScalar() || IC > 1)
Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate());
LVP.setBestPlan(VF.Width, IC);
using namespace ore;
if (!VectorizeLoop) {
assert(IC > 1 && "interleave count should not be 1 or 0");
// If we decided that it is not legal to vectorize the loop, then
// interleave it.
InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
&CM, BFI, PSI, Checks);
LVP.executePlan(Unroller, DT);
ORE->emit([&]() {
return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
L->getHeader())
<< "interleaved loop (interleaved count: "
<< NV("InterleaveCount", IC) << ")";
});
} else {
// If we decided that it is *legal* to vectorize the loop, then do it.
// Consider vectorizing the epilogue too if it's profitable.
VectorizationFactor EpilogueVF =
CM.selectEpilogueVectorizationFactor(VF.Width, LVP);
if (EpilogueVF.Width.isVector()) {
// The first pass vectorizes the main loop and creates a scalar epilogue
// to be vectorized by executing the plan (potentially with a different
// factor) again shortly afterwards.
EpilogueLoopVectorizationInfo EPI(VF.Width.getKnownMinValue(), IC,
EpilogueVF.Width.getKnownMinValue(),
1);
EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE,
EPI, &LVL, &CM, BFI, PSI, Checks);
LVP.setBestPlan(EPI.MainLoopVF, EPI.MainLoopUF);
LVP.executePlan(MainILV, DT);
++LoopsVectorized;
simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
formLCSSARecursively(*L, *DT, LI, SE);
// Second pass vectorizes the epilogue and adjusts the control flow
// edges from the first pass.
LVP.setBestPlan(EPI.EpilogueVF, EPI.EpilogueUF);
EPI.MainLoopVF = EPI.EpilogueVF;
EPI.MainLoopUF = EPI.EpilogueUF;
EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC,
ORE, EPI, &LVL, &CM, BFI, PSI,
Checks);
LVP.executePlan(EpilogILV, DT);
++LoopsEpilogueVectorized;
if (!MainILV.areSafetyChecksAdded())
DisableRuntimeUnroll = true;
} else {
InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
&LVL, &CM, BFI, PSI, Checks);
LVP.executePlan(LB, DT);
++LoopsVectorized;
// Add metadata to disable runtime unrolling a scalar loop when there
// are no runtime checks about strides and memory. A scalar loop that is
// rarely used is not worth unrolling.
if (!LB.areSafetyChecksAdded())
DisableRuntimeUnroll = true;
}
// Report the vectorization decision.
ORE->emit([&]() {
return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
L->getHeader())
<< "vectorized loop (vectorization width: "
<< NV("VectorizationFactor", VF.Width)
<< ", interleaved count: " << NV("InterleaveCount", IC) << ")";
});
}
if (ORE->allowExtraAnalysis(LV_NAME))
checkMixedPrecision(L, ORE);
}
Optional<MDNode *> RemainderLoopID =
makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
LLVMLoopVectorizeFollowupEpilogue});
if (RemainderLoopID.hasValue()) {
L->setLoopID(RemainderLoopID.getValue());
} else {
if (DisableRuntimeUnroll)
AddRuntimeUnrollDisableMetaData(L);
// Mark the loop as already vectorized to avoid vectorizing again.
Hints.setAlreadyVectorized();
}
assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
return true;
}
LoopVectorizeResult LoopVectorizePass::runImpl(
Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_,
std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
SE = &SE_;
LI = &LI_;
TTI = &TTI_;
DT = &DT_;
BFI = &BFI_;
TLI = TLI_;
AA = &AA_;
AC = &AC_;
GetLAA = &GetLAA_;
DB = &DB_;
ORE = &ORE_;
PSI = PSI_;
// Don't attempt if
// 1. the target claims to have no vector registers, and
// 2. interleaving won't help ILP.
//
// The second condition is necessary because, even if the target has no
// vector registers, loop vectorization may still enable scalar
// interleaving.
if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
TTI->getMaxInterleaveFactor(1) < 2)
return LoopVectorizeResult(false, false);
bool Changed = false, CFGChanged = false;
// The vectorizer requires loops to be in simplified form.
// Since simplification may add new inner loops, it has to run before the
// legality and profitability checks. This means running the loop vectorizer
// will simplify all loops, regardless of whether anything end up being
// vectorized.
for (auto &L : *LI)
Changed |= CFGChanged |=
simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
// Build up a worklist of inner-loops to vectorize. This is necessary as
// the act of vectorizing or partially unrolling a loop creates new loops
// and can invalidate iterators across the loops.
SmallVector<Loop *, 8> Worklist;
for (Loop *L : *LI)
collectSupportedLoops(*L, LI, ORE, Worklist);
LoopsAnalyzed += Worklist.size();
// Now walk the identified inner loops.
while (!Worklist.empty()) {
Loop *L = Worklist.pop_back_val();
// For the inner loops we actually process, form LCSSA to simplify the
// transform.
Changed |= formLCSSARecursively(*L, *DT, LI, SE);
Changed |= CFGChanged |= processLoop(L);
}
// Process each loop nest in the function.
return LoopVectorizeResult(Changed, CFGChanged);
}
PreservedAnalyses LoopVectorizePass::run(Function &F,
FunctionAnalysisManager &AM) {
auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
auto &LI = AM.getResult<LoopAnalysis>(F);
auto &TTI = AM.getResult<TargetIRAnalysis>(F);
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
auto &AA = AM.getResult<AAManager>(F);
auto &AC = AM.getResult<AssumptionAnalysis>(F);
auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
MemorySSA *MSSA = EnableMSSALoopDependency
? &AM.getResult<MemorySSAAnalysis>(F).getMSSA()
: nullptr;
auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
std::function<const LoopAccessInfo &(Loop &)> GetLAA =
[&](Loop &L) -> const LoopAccessInfo & {
LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE,
TLI, TTI, nullptr, MSSA};
return LAM.getResult<LoopAccessAnalysis>(L, AR);
};
auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
ProfileSummaryInfo *PSI =
MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
LoopVectorizeResult Result =
runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
if (!Result.MadeAnyChange)
return PreservedAnalyses::all();
PreservedAnalyses PA;
// We currently do not preserve loopinfo/dominator analyses with outer loop
// vectorization. Until this is addressed, mark these analyses as preserved
// only for non-VPlan-native path.
// TODO: Preserve Loop and Dominator analyses for VPlan-native path.
if (!EnableVPlanNativePath) {
PA.preserve<LoopAnalysis>();
PA.preserve<DominatorTreeAnalysis>();
}
if (!Result.MadeCFGChange)
PA.preserveSet<CFGAnalyses>();
return PA;
}