mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-23 11:13:28 +01:00
f248f61115
This provides a convenient way to print VPValues and recipes in a debugger. In particular it saves the user from instantiating VPSlotTracker to print recipes or values.
1007 lines
36 KiB
C++
1007 lines
36 KiB
C++
//===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// \file
|
|
/// This is the LLVM vectorization plan. It represents a candidate for
|
|
/// vectorization, allowing to plan and optimize how to vectorize a given loop
|
|
/// before generating LLVM-IR.
|
|
/// The vectorizer uses vectorization plans to estimate the costs of potential
|
|
/// candidates and if profitable to execute the desired plan, generating vector
|
|
/// LLVM-IR code.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "VPlan.h"
|
|
#include "VPlanDominatorTree.h"
|
|
#include "llvm/ADT/DepthFirstIterator.h"
|
|
#include "llvm/ADT/PostOrderIterator.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/CFG.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/GenericDomTreeConstruction.h"
|
|
#include "llvm/Support/GraphWriter.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include <cassert>
|
|
#include <iterator>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
extern cl::opt<bool> EnableVPlanNativePath;
|
|
|
|
#define DEBUG_TYPE "vplan"
|
|
|
|
raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) {
|
|
const VPInstruction *Instr = dyn_cast<VPInstruction>(&V);
|
|
VPSlotTracker SlotTracker(
|
|
(Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
|
|
V.print(OS, SlotTracker);
|
|
return OS;
|
|
}
|
|
|
|
void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const {
|
|
if (const VPInstruction *Instr = dyn_cast<VPInstruction>(this))
|
|
Instr->print(OS, SlotTracker);
|
|
else
|
|
printAsOperand(OS, SlotTracker);
|
|
}
|
|
|
|
void VPValue::dump() const {
|
|
const VPInstruction *Instr = dyn_cast<VPInstruction>(this);
|
|
VPSlotTracker SlotTracker(
|
|
(Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
|
|
print(dbgs(), SlotTracker);
|
|
dbgs() << "\n";
|
|
}
|
|
|
|
void VPRecipeBase::dump() const {
|
|
VPSlotTracker SlotTracker(nullptr);
|
|
print(dbgs(), "", SlotTracker);
|
|
dbgs() << "\n";
|
|
}
|
|
|
|
// Get the top-most entry block of \p Start. This is the entry block of the
|
|
// containing VPlan. This function is templated to support both const and non-const blocks
|
|
template <typename T> static T *getPlanEntry(T *Start) {
|
|
T *Next = Start;
|
|
T *Current = Start;
|
|
while ((Next = Next->getParent()))
|
|
Current = Next;
|
|
|
|
SmallSetVector<T *, 8> WorkList;
|
|
WorkList.insert(Current);
|
|
|
|
for (unsigned i = 0; i < WorkList.size(); i++) {
|
|
T *Current = WorkList[i];
|
|
if (Current->getNumPredecessors() == 0)
|
|
return Current;
|
|
auto &Predecessors = Current->getPredecessors();
|
|
WorkList.insert(Predecessors.begin(), Predecessors.end());
|
|
}
|
|
|
|
llvm_unreachable("VPlan without any entry node without predecessors");
|
|
}
|
|
|
|
VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; }
|
|
|
|
const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; }
|
|
|
|
/// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
|
|
const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const {
|
|
const VPBlockBase *Block = this;
|
|
while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
|
|
Block = Region->getEntry();
|
|
return cast<VPBasicBlock>(Block);
|
|
}
|
|
|
|
VPBasicBlock *VPBlockBase::getEntryBasicBlock() {
|
|
VPBlockBase *Block = this;
|
|
while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
|
|
Block = Region->getEntry();
|
|
return cast<VPBasicBlock>(Block);
|
|
}
|
|
|
|
void VPBlockBase::setPlan(VPlan *ParentPlan) {
|
|
assert(ParentPlan->getEntry() == this &&
|
|
"Can only set plan on its entry block.");
|
|
Plan = ParentPlan;
|
|
}
|
|
|
|
/// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
|
|
const VPBasicBlock *VPBlockBase::getExitBasicBlock() const {
|
|
const VPBlockBase *Block = this;
|
|
while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
|
|
Block = Region->getExit();
|
|
return cast<VPBasicBlock>(Block);
|
|
}
|
|
|
|
VPBasicBlock *VPBlockBase::getExitBasicBlock() {
|
|
VPBlockBase *Block = this;
|
|
while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
|
|
Block = Region->getExit();
|
|
return cast<VPBasicBlock>(Block);
|
|
}
|
|
|
|
VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() {
|
|
if (!Successors.empty() || !Parent)
|
|
return this;
|
|
assert(Parent->getExit() == this &&
|
|
"Block w/o successors not the exit of its parent.");
|
|
return Parent->getEnclosingBlockWithSuccessors();
|
|
}
|
|
|
|
VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() {
|
|
if (!Predecessors.empty() || !Parent)
|
|
return this;
|
|
assert(Parent->getEntry() == this &&
|
|
"Block w/o predecessors not the entry of its parent.");
|
|
return Parent->getEnclosingBlockWithPredecessors();
|
|
}
|
|
|
|
void VPBlockBase::deleteCFG(VPBlockBase *Entry) {
|
|
SmallVector<VPBlockBase *, 8> Blocks;
|
|
for (VPBlockBase *Block : depth_first(Entry))
|
|
Blocks.push_back(Block);
|
|
|
|
for (VPBlockBase *Block : Blocks)
|
|
delete Block;
|
|
}
|
|
|
|
BasicBlock *
|
|
VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
|
|
// BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
|
|
// Pred stands for Predessor. Prev stands for Previous - last visited/created.
|
|
BasicBlock *PrevBB = CFG.PrevBB;
|
|
BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
|
|
PrevBB->getParent(), CFG.LastBB);
|
|
LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
|
|
|
|
// Hook up the new basic block to its predecessors.
|
|
for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
|
|
VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock();
|
|
auto &PredVPSuccessors = PredVPBB->getSuccessors();
|
|
BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
|
|
|
|
// In outer loop vectorization scenario, the predecessor BBlock may not yet
|
|
// be visited(backedge). Mark the VPBasicBlock for fixup at the end of
|
|
// vectorization. We do not encounter this case in inner loop vectorization
|
|
// as we start out by building a loop skeleton with the vector loop header
|
|
// and latch blocks. As a result, we never enter this function for the
|
|
// header block in the non VPlan-native path.
|
|
if (!PredBB) {
|
|
assert(EnableVPlanNativePath &&
|
|
"Unexpected null predecessor in non VPlan-native path");
|
|
CFG.VPBBsToFix.push_back(PredVPBB);
|
|
continue;
|
|
}
|
|
|
|
assert(PredBB && "Predecessor basic-block not found building successor.");
|
|
auto *PredBBTerminator = PredBB->getTerminator();
|
|
LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
|
|
if (isa<UnreachableInst>(PredBBTerminator)) {
|
|
assert(PredVPSuccessors.size() == 1 &&
|
|
"Predecessor ending w/o branch must have single successor.");
|
|
PredBBTerminator->eraseFromParent();
|
|
BranchInst::Create(NewBB, PredBB);
|
|
} else {
|
|
assert(PredVPSuccessors.size() == 2 &&
|
|
"Predecessor ending with branch must have two successors.");
|
|
unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
|
|
assert(!PredBBTerminator->getSuccessor(idx) &&
|
|
"Trying to reset an existing successor block.");
|
|
PredBBTerminator->setSuccessor(idx, NewBB);
|
|
}
|
|
}
|
|
return NewBB;
|
|
}
|
|
|
|
void VPBasicBlock::execute(VPTransformState *State) {
|
|
bool Replica = State->Instance &&
|
|
!(State->Instance->Part == 0 && State->Instance->Lane == 0);
|
|
VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB;
|
|
VPBlockBase *SingleHPred = nullptr;
|
|
BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
|
|
|
|
// 1. Create an IR basic block, or reuse the last one if possible.
|
|
// The last IR basic block is reused, as an optimization, in three cases:
|
|
// A. the first VPBB reuses the loop header BB - when PrevVPBB is null;
|
|
// B. when the current VPBB has a single (hierarchical) predecessor which
|
|
// is PrevVPBB and the latter has a single (hierarchical) successor; and
|
|
// C. when the current VPBB is an entry of a region replica - where PrevVPBB
|
|
// is the exit of this region from a previous instance, or the predecessor
|
|
// of this region.
|
|
if (PrevVPBB && /* A */
|
|
!((SingleHPred = getSingleHierarchicalPredecessor()) &&
|
|
SingleHPred->getExitBasicBlock() == PrevVPBB &&
|
|
PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */
|
|
!(Replica && getPredecessors().empty())) { /* C */
|
|
NewBB = createEmptyBasicBlock(State->CFG);
|
|
State->Builder.SetInsertPoint(NewBB);
|
|
// Temporarily terminate with unreachable until CFG is rewired.
|
|
UnreachableInst *Terminator = State->Builder.CreateUnreachable();
|
|
State->Builder.SetInsertPoint(Terminator);
|
|
// Register NewBB in its loop. In innermost loops its the same for all BB's.
|
|
Loop *L = State->LI->getLoopFor(State->CFG.LastBB);
|
|
L->addBasicBlockToLoop(NewBB, *State->LI);
|
|
State->CFG.PrevBB = NewBB;
|
|
}
|
|
|
|
// 2. Fill the IR basic block with IR instructions.
|
|
LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
|
|
<< " in BB:" << NewBB->getName() << '\n');
|
|
|
|
State->CFG.VPBB2IRBB[this] = NewBB;
|
|
State->CFG.PrevVPBB = this;
|
|
|
|
for (VPRecipeBase &Recipe : Recipes)
|
|
Recipe.execute(*State);
|
|
|
|
VPValue *CBV;
|
|
if (EnableVPlanNativePath && (CBV = getCondBit())) {
|
|
Value *IRCBV = CBV->getUnderlyingValue();
|
|
assert(IRCBV && "Unexpected null underlying value for condition bit");
|
|
|
|
// Condition bit value in a VPBasicBlock is used as the branch selector. In
|
|
// the VPlan-native path case, since all branches are uniform we generate a
|
|
// branch instruction using the condition value from vector lane 0 and dummy
|
|
// successors. The successors are fixed later when the successor blocks are
|
|
// visited.
|
|
Value *NewCond = State->Callback.getOrCreateVectorValues(IRCBV, 0);
|
|
NewCond = State->Builder.CreateExtractElement(NewCond,
|
|
State->Builder.getInt32(0));
|
|
|
|
// Replace the temporary unreachable terminator with the new conditional
|
|
// branch.
|
|
auto *CurrentTerminator = NewBB->getTerminator();
|
|
assert(isa<UnreachableInst>(CurrentTerminator) &&
|
|
"Expected to replace unreachable terminator with conditional "
|
|
"branch.");
|
|
auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond);
|
|
CondBr->setSuccessor(0, nullptr);
|
|
ReplaceInstWithInst(CurrentTerminator, CondBr);
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB);
|
|
}
|
|
|
|
void VPRegionBlock::execute(VPTransformState *State) {
|
|
ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry);
|
|
|
|
if (!isReplicator()) {
|
|
// Visit the VPBlocks connected to "this", starting from it.
|
|
for (VPBlockBase *Block : RPOT) {
|
|
if (EnableVPlanNativePath) {
|
|
// The inner loop vectorization path does not represent loop preheader
|
|
// and exit blocks as part of the VPlan. In the VPlan-native path, skip
|
|
// vectorizing loop preheader block. In future, we may replace this
|
|
// check with the check for loop preheader.
|
|
if (Block->getNumPredecessors() == 0)
|
|
continue;
|
|
|
|
// Skip vectorizing loop exit block. In future, we may replace this
|
|
// check with the check for loop exit.
|
|
if (Block->getNumSuccessors() == 0)
|
|
continue;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
|
|
Block->execute(State);
|
|
}
|
|
return;
|
|
}
|
|
|
|
assert(!State->Instance && "Replicating a Region with non-null instance.");
|
|
|
|
// Enter replicating mode.
|
|
State->Instance = {0, 0};
|
|
|
|
for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) {
|
|
State->Instance->Part = Part;
|
|
assert(!State->VF.isScalable() && "VF is assumed to be non scalable.");
|
|
for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF;
|
|
++Lane) {
|
|
State->Instance->Lane = Lane;
|
|
// Visit the VPBlocks connected to \p this, starting from it.
|
|
for (VPBlockBase *Block : RPOT) {
|
|
LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
|
|
Block->execute(State);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Exit replicating mode.
|
|
State->Instance.reset();
|
|
}
|
|
|
|
void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) {
|
|
assert(!Parent && "Recipe already in some VPBasicBlock");
|
|
assert(InsertPos->getParent() &&
|
|
"Insertion position not in any VPBasicBlock");
|
|
Parent = InsertPos->getParent();
|
|
Parent->getRecipeList().insert(InsertPos->getIterator(), this);
|
|
}
|
|
|
|
void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) {
|
|
assert(!Parent && "Recipe already in some VPBasicBlock");
|
|
assert(InsertPos->getParent() &&
|
|
"Insertion position not in any VPBasicBlock");
|
|
Parent = InsertPos->getParent();
|
|
Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this);
|
|
}
|
|
|
|
void VPRecipeBase::removeFromParent() {
|
|
assert(getParent() && "Recipe not in any VPBasicBlock");
|
|
getParent()->getRecipeList().remove(getIterator());
|
|
Parent = nullptr;
|
|
}
|
|
|
|
iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() {
|
|
assert(getParent() && "Recipe not in any VPBasicBlock");
|
|
return getParent()->getRecipeList().erase(getIterator());
|
|
}
|
|
|
|
void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) {
|
|
removeFromParent();
|
|
insertAfter(InsertPos);
|
|
}
|
|
|
|
void VPInstruction::generateInstruction(VPTransformState &State,
|
|
unsigned Part) {
|
|
IRBuilder<> &Builder = State.Builder;
|
|
|
|
if (Instruction::isBinaryOp(getOpcode())) {
|
|
Value *A = State.get(getOperand(0), Part);
|
|
Value *B = State.get(getOperand(1), Part);
|
|
Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B);
|
|
State.set(this, V, Part);
|
|
return;
|
|
}
|
|
|
|
switch (getOpcode()) {
|
|
case VPInstruction::Not: {
|
|
Value *A = State.get(getOperand(0), Part);
|
|
Value *V = Builder.CreateNot(A);
|
|
State.set(this, V, Part);
|
|
break;
|
|
}
|
|
case VPInstruction::ICmpULE: {
|
|
Value *IV = State.get(getOperand(0), Part);
|
|
Value *TC = State.get(getOperand(1), Part);
|
|
Value *V = Builder.CreateICmpULE(IV, TC);
|
|
State.set(this, V, Part);
|
|
break;
|
|
}
|
|
case Instruction::Select: {
|
|
Value *Cond = State.get(getOperand(0), Part);
|
|
Value *Op1 = State.get(getOperand(1), Part);
|
|
Value *Op2 = State.get(getOperand(2), Part);
|
|
Value *V = Builder.CreateSelect(Cond, Op1, Op2);
|
|
State.set(this, V, Part);
|
|
break;
|
|
}
|
|
case VPInstruction::ActiveLaneMask: {
|
|
// Get first lane of vector induction variable.
|
|
Value *VIVElem0 = State.get(getOperand(0), {Part, 0});
|
|
// Get the original loop tripcount.
|
|
Value *ScalarTC = State.TripCount;
|
|
|
|
auto *Int1Ty = Type::getInt1Ty(Builder.getContext());
|
|
auto *PredTy = FixedVectorType::get(Int1Ty, State.VF.getKnownMinValue());
|
|
Instruction *Call = Builder.CreateIntrinsic(
|
|
Intrinsic::get_active_lane_mask, {PredTy, ScalarTC->getType()},
|
|
{VIVElem0, ScalarTC}, nullptr, "active.lane.mask");
|
|
State.set(this, Call, Part);
|
|
break;
|
|
}
|
|
default:
|
|
llvm_unreachable("Unsupported opcode for instruction");
|
|
}
|
|
}
|
|
|
|
void VPInstruction::execute(VPTransformState &State) {
|
|
assert(!State.Instance && "VPInstruction executing an Instance");
|
|
for (unsigned Part = 0; Part < State.UF; ++Part)
|
|
generateInstruction(State, Part);
|
|
}
|
|
|
|
void VPInstruction::print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const {
|
|
O << "\"EMIT ";
|
|
print(O, SlotTracker);
|
|
}
|
|
|
|
void VPInstruction::print(raw_ostream &O) const {
|
|
VPSlotTracker SlotTracker(getParent()->getPlan());
|
|
print(O, SlotTracker);
|
|
}
|
|
|
|
void VPInstruction::print(raw_ostream &O, VPSlotTracker &SlotTracker) const {
|
|
if (hasResult()) {
|
|
printAsOperand(O, SlotTracker);
|
|
O << " = ";
|
|
}
|
|
|
|
switch (getOpcode()) {
|
|
case VPInstruction::Not:
|
|
O << "not";
|
|
break;
|
|
case VPInstruction::ICmpULE:
|
|
O << "icmp ule";
|
|
break;
|
|
case VPInstruction::SLPLoad:
|
|
O << "combined load";
|
|
break;
|
|
case VPInstruction::SLPStore:
|
|
O << "combined store";
|
|
break;
|
|
case VPInstruction::ActiveLaneMask:
|
|
O << "active lane mask";
|
|
break;
|
|
|
|
default:
|
|
O << Instruction::getOpcodeName(getOpcode());
|
|
}
|
|
|
|
for (const VPValue *Operand : operands()) {
|
|
O << " ";
|
|
Operand->printAsOperand(O, SlotTracker);
|
|
}
|
|
}
|
|
|
|
/// Generate the code inside the body of the vectorized loop. Assumes a single
|
|
/// LoopVectorBody basic-block was created for this. Introduce additional
|
|
/// basic-blocks as needed, and fill them all.
|
|
void VPlan::execute(VPTransformState *State) {
|
|
// -1. Check if the backedge taken count is needed, and if so build it.
|
|
if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
|
|
Value *TC = State->TripCount;
|
|
IRBuilder<> Builder(State->CFG.PrevBB->getTerminator());
|
|
auto *TCMO = Builder.CreateSub(TC, ConstantInt::get(TC->getType(), 1),
|
|
"trip.count.minus.1");
|
|
auto VF = State->VF;
|
|
Value *VTCMO =
|
|
VF == 1 ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast");
|
|
for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part)
|
|
State->set(BackedgeTakenCount, VTCMO, Part);
|
|
}
|
|
|
|
// 0. Set the reverse mapping from VPValues to Values for code generation.
|
|
for (auto &Entry : Value2VPValue)
|
|
State->VPValue2Value[Entry.second] = Entry.first;
|
|
|
|
BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB;
|
|
BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor();
|
|
assert(VectorHeaderBB && "Loop preheader does not have a single successor.");
|
|
|
|
// 1. Make room to generate basic-blocks inside loop body if needed.
|
|
BasicBlock *VectorLatchBB = VectorHeaderBB->splitBasicBlock(
|
|
VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch");
|
|
Loop *L = State->LI->getLoopFor(VectorHeaderBB);
|
|
L->addBasicBlockToLoop(VectorLatchBB, *State->LI);
|
|
// Remove the edge between Header and Latch to allow other connections.
|
|
// Temporarily terminate with unreachable until CFG is rewired.
|
|
// Note: this asserts the generated code's assumption that
|
|
// getFirstInsertionPt() can be dereferenced into an Instruction.
|
|
VectorHeaderBB->getTerminator()->eraseFromParent();
|
|
State->Builder.SetInsertPoint(VectorHeaderBB);
|
|
UnreachableInst *Terminator = State->Builder.CreateUnreachable();
|
|
State->Builder.SetInsertPoint(Terminator);
|
|
|
|
// 2. Generate code in loop body.
|
|
State->CFG.PrevVPBB = nullptr;
|
|
State->CFG.PrevBB = VectorHeaderBB;
|
|
State->CFG.LastBB = VectorLatchBB;
|
|
|
|
for (VPBlockBase *Block : depth_first(Entry))
|
|
Block->execute(State);
|
|
|
|
// Setup branch terminator successors for VPBBs in VPBBsToFix based on
|
|
// VPBB's successors.
|
|
for (auto VPBB : State->CFG.VPBBsToFix) {
|
|
assert(EnableVPlanNativePath &&
|
|
"Unexpected VPBBsToFix in non VPlan-native path");
|
|
BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB];
|
|
assert(BB && "Unexpected null basic block for VPBB");
|
|
|
|
unsigned Idx = 0;
|
|
auto *BBTerminator = BB->getTerminator();
|
|
|
|
for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) {
|
|
VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock();
|
|
BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]);
|
|
++Idx;
|
|
}
|
|
}
|
|
|
|
// 3. Merge the temporary latch created with the last basic-block filled.
|
|
BasicBlock *LastBB = State->CFG.PrevBB;
|
|
// Connect LastBB to VectorLatchBB to facilitate their merge.
|
|
assert((EnableVPlanNativePath ||
|
|
isa<UnreachableInst>(LastBB->getTerminator())) &&
|
|
"Expected InnerLoop VPlan CFG to terminate with unreachable");
|
|
assert((!EnableVPlanNativePath || isa<BranchInst>(LastBB->getTerminator())) &&
|
|
"Expected VPlan CFG to terminate with branch in NativePath");
|
|
LastBB->getTerminator()->eraseFromParent();
|
|
BranchInst::Create(VectorLatchBB, LastBB);
|
|
|
|
// Merge LastBB with Latch.
|
|
bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI);
|
|
(void)Merged;
|
|
assert(Merged && "Could not merge last basic block with latch.");
|
|
VectorLatchBB = LastBB;
|
|
|
|
// We do not attempt to preserve DT for outer loop vectorization currently.
|
|
if (!EnableVPlanNativePath)
|
|
updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB,
|
|
L->getExitBlock());
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
LLVM_DUMP_METHOD
|
|
void VPlan::dump() const { dbgs() << *this << '\n'; }
|
|
#endif
|
|
|
|
void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB,
|
|
BasicBlock *LoopLatchBB,
|
|
BasicBlock *LoopExitBB) {
|
|
BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor();
|
|
assert(LoopHeaderBB && "Loop preheader does not have a single successor.");
|
|
// The vector body may be more than a single basic-block by this point.
|
|
// Update the dominator tree information inside the vector body by propagating
|
|
// it from header to latch, expecting only triangular control-flow, if any.
|
|
BasicBlock *PostDomSucc = nullptr;
|
|
for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) {
|
|
// Get the list of successors of this block.
|
|
std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB));
|
|
assert(Succs.size() <= 2 &&
|
|
"Basic block in vector loop has more than 2 successors.");
|
|
PostDomSucc = Succs[0];
|
|
if (Succs.size() == 1) {
|
|
assert(PostDomSucc->getSinglePredecessor() &&
|
|
"PostDom successor has more than one predecessor.");
|
|
DT->addNewBlock(PostDomSucc, BB);
|
|
continue;
|
|
}
|
|
BasicBlock *InterimSucc = Succs[1];
|
|
if (PostDomSucc->getSingleSuccessor() == InterimSucc) {
|
|
PostDomSucc = Succs[1];
|
|
InterimSucc = Succs[0];
|
|
}
|
|
assert(InterimSucc->getSingleSuccessor() == PostDomSucc &&
|
|
"One successor of a basic block does not lead to the other.");
|
|
assert(InterimSucc->getSinglePredecessor() &&
|
|
"Interim successor has more than one predecessor.");
|
|
assert(PostDomSucc->hasNPredecessors(2) &&
|
|
"PostDom successor has more than two predecessors.");
|
|
DT->addNewBlock(InterimSucc, BB);
|
|
DT->addNewBlock(PostDomSucc, BB);
|
|
}
|
|
// Latch block is a new dominator for the loop exit.
|
|
DT->changeImmediateDominator(LoopExitBB, LoopLatchBB);
|
|
assert(DT->verify(DominatorTree::VerificationLevel::Fast));
|
|
}
|
|
|
|
const Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
|
|
return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
|
|
Twine(getOrCreateBID(Block));
|
|
}
|
|
|
|
const Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
|
|
const std::string &Name = Block->getName();
|
|
if (!Name.empty())
|
|
return Name;
|
|
return "VPB" + Twine(getOrCreateBID(Block));
|
|
}
|
|
|
|
void VPlanPrinter::dump() {
|
|
Depth = 1;
|
|
bumpIndent(0);
|
|
OS << "digraph VPlan {\n";
|
|
OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
|
|
if (!Plan.getName().empty())
|
|
OS << "\\n" << DOT::EscapeString(Plan.getName());
|
|
if (Plan.BackedgeTakenCount) {
|
|
OS << ", where:\\n";
|
|
Plan.BackedgeTakenCount->print(OS, SlotTracker);
|
|
OS << " := BackedgeTakenCount";
|
|
}
|
|
OS << "\"]\n";
|
|
OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
|
|
OS << "edge [fontname=Courier, fontsize=30]\n";
|
|
OS << "compound=true\n";
|
|
|
|
for (const VPBlockBase *Block : depth_first(Plan.getEntry()))
|
|
dumpBlock(Block);
|
|
|
|
OS << "}\n";
|
|
}
|
|
|
|
void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
|
|
if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
|
|
dumpBasicBlock(BasicBlock);
|
|
else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
|
|
dumpRegion(Region);
|
|
else
|
|
llvm_unreachable("Unsupported kind of VPBlock.");
|
|
}
|
|
|
|
void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
|
|
bool Hidden, const Twine &Label) {
|
|
// Due to "dot" we print an edge between two regions as an edge between the
|
|
// exit basic block and the entry basic of the respective regions.
|
|
const VPBlockBase *Tail = From->getExitBasicBlock();
|
|
const VPBlockBase *Head = To->getEntryBasicBlock();
|
|
OS << Indent << getUID(Tail) << " -> " << getUID(Head);
|
|
OS << " [ label=\"" << Label << '\"';
|
|
if (Tail != From)
|
|
OS << " ltail=" << getUID(From);
|
|
if (Head != To)
|
|
OS << " lhead=" << getUID(To);
|
|
if (Hidden)
|
|
OS << "; splines=none";
|
|
OS << "]\n";
|
|
}
|
|
|
|
void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
|
|
auto &Successors = Block->getSuccessors();
|
|
if (Successors.size() == 1)
|
|
drawEdge(Block, Successors.front(), false, "");
|
|
else if (Successors.size() == 2) {
|
|
drawEdge(Block, Successors.front(), false, "T");
|
|
drawEdge(Block, Successors.back(), false, "F");
|
|
} else {
|
|
unsigned SuccessorNumber = 0;
|
|
for (auto *Successor : Successors)
|
|
drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
|
|
}
|
|
}
|
|
|
|
void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
|
|
OS << Indent << getUID(BasicBlock) << " [label =\n";
|
|
bumpIndent(1);
|
|
OS << Indent << "\"" << DOT::EscapeString(BasicBlock->getName()) << ":\\n\"";
|
|
bumpIndent(1);
|
|
|
|
// Dump the block predicate.
|
|
const VPValue *Pred = BasicBlock->getPredicate();
|
|
if (Pred) {
|
|
OS << " +\n" << Indent << " \"BlockPredicate: ";
|
|
if (const VPInstruction *PredI = dyn_cast<VPInstruction>(Pred)) {
|
|
PredI->printAsOperand(OS, SlotTracker);
|
|
OS << " (" << DOT::EscapeString(PredI->getParent()->getName())
|
|
<< ")\\l\"";
|
|
} else
|
|
Pred->printAsOperand(OS, SlotTracker);
|
|
}
|
|
|
|
for (const VPRecipeBase &Recipe : *BasicBlock) {
|
|
OS << " +\n" << Indent;
|
|
Recipe.print(OS, Indent, SlotTracker);
|
|
OS << "\\l\"";
|
|
}
|
|
|
|
// Dump the condition bit.
|
|
const VPValue *CBV = BasicBlock->getCondBit();
|
|
if (CBV) {
|
|
OS << " +\n" << Indent << " \"CondBit: ";
|
|
if (const VPInstruction *CBI = dyn_cast<VPInstruction>(CBV)) {
|
|
CBI->printAsOperand(OS, SlotTracker);
|
|
OS << " (" << DOT::EscapeString(CBI->getParent()->getName()) << ")\\l\"";
|
|
} else {
|
|
CBV->printAsOperand(OS, SlotTracker);
|
|
OS << "\"";
|
|
}
|
|
}
|
|
|
|
bumpIndent(-2);
|
|
OS << "\n" << Indent << "]\n";
|
|
dumpEdges(BasicBlock);
|
|
}
|
|
|
|
void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
|
|
OS << Indent << "subgraph " << getUID(Region) << " {\n";
|
|
bumpIndent(1);
|
|
OS << Indent << "fontname=Courier\n"
|
|
<< Indent << "label=\""
|
|
<< DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
|
|
<< DOT::EscapeString(Region->getName()) << "\"\n";
|
|
// Dump the blocks of the region.
|
|
assert(Region->getEntry() && "Region contains no inner blocks.");
|
|
for (const VPBlockBase *Block : depth_first(Region->getEntry()))
|
|
dumpBlock(Block);
|
|
bumpIndent(-1);
|
|
OS << Indent << "}\n";
|
|
dumpEdges(Region);
|
|
}
|
|
|
|
void VPlanPrinter::printAsIngredient(raw_ostream &O, Value *V) {
|
|
std::string IngredientString;
|
|
raw_string_ostream RSO(IngredientString);
|
|
if (auto *Inst = dyn_cast<Instruction>(V)) {
|
|
if (!Inst->getType()->isVoidTy()) {
|
|
Inst->printAsOperand(RSO, false);
|
|
RSO << " = ";
|
|
}
|
|
RSO << Inst->getOpcodeName() << " ";
|
|
unsigned E = Inst->getNumOperands();
|
|
if (E > 0) {
|
|
Inst->getOperand(0)->printAsOperand(RSO, false);
|
|
for (unsigned I = 1; I < E; ++I)
|
|
Inst->getOperand(I)->printAsOperand(RSO << ", ", false);
|
|
}
|
|
} else // !Inst
|
|
V->printAsOperand(RSO, false);
|
|
RSO.flush();
|
|
O << DOT::EscapeString(IngredientString);
|
|
}
|
|
|
|
void VPWidenCallRecipe::print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const {
|
|
O << "\"WIDEN-CALL " << VPlanIngredient(&Ingredient);
|
|
}
|
|
|
|
void VPWidenSelectRecipe::print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const {
|
|
O << "\"WIDEN-SELECT" << VPlanIngredient(&Ingredient)
|
|
<< (InvariantCond ? " (condition is loop invariant)" : "");
|
|
}
|
|
|
|
void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const {
|
|
O << "\"WIDEN\\l\"";
|
|
O << "\" " << VPlanIngredient(&Ingredient);
|
|
}
|
|
|
|
void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const {
|
|
O << "\"WIDEN-INDUCTION";
|
|
if (Trunc) {
|
|
O << "\\l\"";
|
|
O << " +\n" << Indent << "\" " << VPlanIngredient(IV) << "\\l\"";
|
|
O << " +\n" << Indent << "\" " << VPlanIngredient(Trunc);
|
|
} else
|
|
O << " " << VPlanIngredient(IV);
|
|
}
|
|
|
|
void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const {
|
|
O << "\"WIDEN-GEP ";
|
|
O << (IsPtrLoopInvariant ? "Inv" : "Var");
|
|
size_t IndicesNumber = IsIndexLoopInvariant.size();
|
|
for (size_t I = 0; I < IndicesNumber; ++I)
|
|
O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]";
|
|
O << "\\l\"";
|
|
O << " +\n" << Indent << "\" " << VPlanIngredient(GEP);
|
|
}
|
|
|
|
void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const {
|
|
O << "\"WIDEN-PHI " << VPlanIngredient(Phi);
|
|
}
|
|
|
|
void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const {
|
|
O << "\"BLEND ";
|
|
Phi->printAsOperand(O, false);
|
|
O << " =";
|
|
if (getNumIncomingValues() == 1) {
|
|
// Not a User of any mask: not really blending, this is a
|
|
// single-predecessor phi.
|
|
O << " ";
|
|
getIncomingValue(0)->printAsOperand(O, SlotTracker);
|
|
} else {
|
|
for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) {
|
|
O << " ";
|
|
getIncomingValue(I)->printAsOperand(O, SlotTracker);
|
|
O << "/";
|
|
getMask(I)->printAsOperand(O, SlotTracker);
|
|
}
|
|
}
|
|
}
|
|
|
|
void VPReductionRecipe::print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const {
|
|
O << "\"REDUCE of" << *I << " as ";
|
|
ChainOp->printAsOperand(O, SlotTracker);
|
|
O << " + reduce(";
|
|
VecOp->printAsOperand(O, SlotTracker);
|
|
O << ")";
|
|
}
|
|
|
|
void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const {
|
|
O << "\"" << (IsUniform ? "CLONE " : "REPLICATE ")
|
|
<< VPlanIngredient(Ingredient);
|
|
if (AlsoPack)
|
|
O << " (S->V)";
|
|
}
|
|
|
|
void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const {
|
|
O << "\"PHI-PREDICATED-INSTRUCTION " << VPlanIngredient(PredInst);
|
|
}
|
|
|
|
void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const {
|
|
O << "\"WIDEN " << VPlanIngredient(&Instr);
|
|
O << ", ";
|
|
getAddr()->printAsOperand(O, SlotTracker);
|
|
VPValue *Mask = getMask();
|
|
if (Mask) {
|
|
O << ", ";
|
|
Mask->printAsOperand(O, SlotTracker);
|
|
}
|
|
}
|
|
|
|
void VPWidenCanonicalIVRecipe::execute(VPTransformState &State) {
|
|
Value *CanonicalIV = State.CanonicalIV;
|
|
Type *STy = CanonicalIV->getType();
|
|
IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
|
|
ElementCount VF = State.VF;
|
|
assert(!VF.isScalable() && "the code following assumes non scalables ECs");
|
|
Value *VStart = VF.isScalar()
|
|
? CanonicalIV
|
|
: Builder.CreateVectorSplat(VF.getKnownMinValue(),
|
|
CanonicalIV, "broadcast");
|
|
for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) {
|
|
SmallVector<Constant *, 8> Indices;
|
|
for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
|
|
Indices.push_back(
|
|
ConstantInt::get(STy, Part * VF.getKnownMinValue() + Lane));
|
|
// If VF == 1, there is only one iteration in the loop above, thus the
|
|
// element pushed back into Indices is ConstantInt::get(STy, Part)
|
|
Constant *VStep = VF == 1 ? Indices.back() : ConstantVector::get(Indices);
|
|
// Add the consecutive indices to the vector value.
|
|
Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv");
|
|
State.set(getVPValue(), CanonicalVectorIV, Part);
|
|
}
|
|
}
|
|
|
|
void VPWidenCanonicalIVRecipe::print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const {
|
|
O << "\"EMIT ";
|
|
getVPValue()->printAsOperand(O, SlotTracker);
|
|
O << " = WIDEN-CANONICAL-INDUCTION";
|
|
}
|
|
|
|
template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT);
|
|
|
|
void VPValue::replaceAllUsesWith(VPValue *New) {
|
|
for (VPUser *User : users())
|
|
for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I)
|
|
if (User->getOperand(I) == this)
|
|
User->setOperand(I, New);
|
|
}
|
|
|
|
void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const {
|
|
if (const Value *UV = getUnderlyingValue()) {
|
|
OS << "ir<";
|
|
UV->printAsOperand(OS, false);
|
|
OS << ">";
|
|
return;
|
|
}
|
|
|
|
unsigned Slot = Tracker.getSlot(this);
|
|
if (Slot == unsigned(-1))
|
|
OS << "<badref>";
|
|
else
|
|
OS << "vp<%" << Tracker.getSlot(this) << ">";
|
|
}
|
|
|
|
void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region,
|
|
Old2NewTy &Old2New,
|
|
InterleavedAccessInfo &IAI) {
|
|
ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry());
|
|
for (VPBlockBase *Base : RPOT) {
|
|
visitBlock(Base, Old2New, IAI);
|
|
}
|
|
}
|
|
|
|
void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
|
|
InterleavedAccessInfo &IAI) {
|
|
if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) {
|
|
for (VPRecipeBase &VPI : *VPBB) {
|
|
assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions");
|
|
auto *VPInst = cast<VPInstruction>(&VPI);
|
|
auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue());
|
|
auto *IG = IAI.getInterleaveGroup(Inst);
|
|
if (!IG)
|
|
continue;
|
|
|
|
auto NewIGIter = Old2New.find(IG);
|
|
if (NewIGIter == Old2New.end())
|
|
Old2New[IG] = new InterleaveGroup<VPInstruction>(
|
|
IG->getFactor(), IG->isReverse(), IG->getAlign());
|
|
|
|
if (Inst == IG->getInsertPos())
|
|
Old2New[IG]->setInsertPos(VPInst);
|
|
|
|
InterleaveGroupMap[VPInst] = Old2New[IG];
|
|
InterleaveGroupMap[VPInst]->insertMember(
|
|
VPInst, IG->getIndex(Inst),
|
|
Align(IG->isReverse() ? (-1) * int(IG->getFactor())
|
|
: IG->getFactor()));
|
|
}
|
|
} else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
|
|
visitRegion(Region, Old2New, IAI);
|
|
else
|
|
llvm_unreachable("Unsupported kind of VPBlock.");
|
|
}
|
|
|
|
VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan,
|
|
InterleavedAccessInfo &IAI) {
|
|
Old2NewTy Old2New;
|
|
visitRegion(cast<VPRegionBlock>(Plan.getEntry()), Old2New, IAI);
|
|
}
|
|
|
|
void VPSlotTracker::assignSlot(const VPValue *V) {
|
|
assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!");
|
|
const Value *UV = V->getUnderlyingValue();
|
|
if (UV)
|
|
return;
|
|
const auto *VPI = dyn_cast<VPInstruction>(V);
|
|
if (VPI && !VPI->hasResult())
|
|
return;
|
|
|
|
Slots[V] = NextSlot++;
|
|
}
|
|
|
|
void VPSlotTracker::assignSlots(const VPBlockBase *VPBB) {
|
|
if (auto *Region = dyn_cast<VPRegionBlock>(VPBB))
|
|
assignSlots(Region);
|
|
else
|
|
assignSlots(cast<VPBasicBlock>(VPBB));
|
|
}
|
|
|
|
void VPSlotTracker::assignSlots(const VPRegionBlock *Region) {
|
|
ReversePostOrderTraversal<const VPBlockBase *> RPOT(Region->getEntry());
|
|
for (const VPBlockBase *Block : RPOT)
|
|
assignSlots(Block);
|
|
}
|
|
|
|
void VPSlotTracker::assignSlots(const VPBasicBlock *VPBB) {
|
|
for (const VPRecipeBase &Recipe : *VPBB) {
|
|
if (const auto *VPI = dyn_cast<VPInstruction>(&Recipe))
|
|
assignSlot(VPI);
|
|
else if (const auto *VPIV = dyn_cast<VPWidenCanonicalIVRecipe>(&Recipe))
|
|
assignSlot(VPIV->getVPValue());
|
|
}
|
|
}
|
|
|
|
void VPSlotTracker::assignSlots(const VPlan &Plan) {
|
|
|
|
for (const VPValue *V : Plan.VPExternalDefs)
|
|
assignSlot(V);
|
|
|
|
for (auto &E : Plan.Value2VPValue)
|
|
if (!isa<VPInstruction>(E.second))
|
|
assignSlot(E.second);
|
|
|
|
for (const VPValue *V : Plan.VPCBVs)
|
|
assignSlot(V);
|
|
|
|
if (Plan.BackedgeTakenCount)
|
|
assignSlot(Plan.BackedgeTakenCount);
|
|
|
|
ReversePostOrderTraversal<const VPBlockBase *> RPOT(Plan.getEntry());
|
|
for (const VPBlockBase *Block : RPOT)
|
|
assignSlots(Block);
|
|
}
|