1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 19:52:54 +01:00
llvm-mirror/tools/llvm-objdump/llvm-objdump.cpp
2017-08-07 12:29:38 +00:00

2213 lines
75 KiB
C++

//===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This program is a utility that works like binutils "objdump", that is, it
// dumps out a plethora of information about an object file depending on the
// flags.
//
// The flags and output of this program should be near identical to those of
// binutils objdump.
//
//===----------------------------------------------------------------------===//
#include "llvm-objdump.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/Triple.h"
#include "llvm/CodeGen/FaultMaps.h"
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
#include "llvm/DebugInfo/Symbolize/Symbolize.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDisassembler/MCDisassembler.h"
#include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstPrinter.h"
#include "llvm/MC/MCInstrAnalysis.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCObjectFileInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Object/Archive.h"
#include "llvm/Object/COFF.h"
#include "llvm/Object/COFFImportFile.h"
#include "llvm/Object/ELFObjectFile.h"
#include "llvm/Object/MachO.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Object/Wasm.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/GraphWriter.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/PrettyStackTrace.h"
#include "llvm/Support/Signals.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cctype>
#include <cstring>
#include <system_error>
#include <unordered_map>
#include <utility>
using namespace llvm;
using namespace object;
static cl::list<std::string>
InputFilenames(cl::Positional, cl::desc("<input object files>"),cl::ZeroOrMore);
cl::opt<bool>
llvm::Disassemble("disassemble",
cl::desc("Display assembler mnemonics for the machine instructions"));
static cl::alias
Disassembled("d", cl::desc("Alias for --disassemble"),
cl::aliasopt(Disassemble));
cl::opt<bool>
llvm::DisassembleAll("disassemble-all",
cl::desc("Display assembler mnemonics for the machine instructions"));
static cl::alias
DisassembleAlld("D", cl::desc("Alias for --disassemble-all"),
cl::aliasopt(DisassembleAll));
cl::opt<bool>
llvm::Relocations("r", cl::desc("Display the relocation entries in the file"));
cl::opt<bool>
llvm::SectionContents("s", cl::desc("Display the content of each section"));
cl::opt<bool>
llvm::SymbolTable("t", cl::desc("Display the symbol table"));
cl::opt<bool>
llvm::ExportsTrie("exports-trie", cl::desc("Display mach-o exported symbols"));
cl::opt<bool>
llvm::Rebase("rebase", cl::desc("Display mach-o rebasing info"));
cl::opt<bool>
llvm::Bind("bind", cl::desc("Display mach-o binding info"));
cl::opt<bool>
llvm::LazyBind("lazy-bind", cl::desc("Display mach-o lazy binding info"));
cl::opt<bool>
llvm::WeakBind("weak-bind", cl::desc("Display mach-o weak binding info"));
cl::opt<bool>
llvm::RawClangAST("raw-clang-ast",
cl::desc("Dump the raw binary contents of the clang AST section"));
static cl::opt<bool>
MachOOpt("macho", cl::desc("Use MachO specific object file parser"));
static cl::alias
MachOm("m", cl::desc("Alias for --macho"), cl::aliasopt(MachOOpt));
cl::opt<std::string>
llvm::TripleName("triple", cl::desc("Target triple to disassemble for, "
"see -version for available targets"));
cl::opt<std::string>
llvm::MCPU("mcpu",
cl::desc("Target a specific cpu type (-mcpu=help for details)"),
cl::value_desc("cpu-name"),
cl::init(""));
cl::opt<std::string>
llvm::ArchName("arch-name", cl::desc("Target arch to disassemble for, "
"see -version for available targets"));
cl::opt<bool>
llvm::SectionHeaders("section-headers", cl::desc("Display summaries of the "
"headers for each section."));
static cl::alias
SectionHeadersShort("headers", cl::desc("Alias for --section-headers"),
cl::aliasopt(SectionHeaders));
static cl::alias
SectionHeadersShorter("h", cl::desc("Alias for --section-headers"),
cl::aliasopt(SectionHeaders));
cl::list<std::string>
llvm::FilterSections("section", cl::desc("Operate on the specified sections only. "
"With -macho dump segment,section"));
cl::alias
static FilterSectionsj("j", cl::desc("Alias for --section"),
cl::aliasopt(llvm::FilterSections));
cl::list<std::string>
llvm::MAttrs("mattr",
cl::CommaSeparated,
cl::desc("Target specific attributes"),
cl::value_desc("a1,+a2,-a3,..."));
cl::opt<bool>
llvm::NoShowRawInsn("no-show-raw-insn", cl::desc("When disassembling "
"instructions, do not print "
"the instruction bytes."));
cl::opt<bool>
llvm::NoLeadingAddr("no-leading-addr", cl::desc("Print no leading address"));
cl::opt<bool>
llvm::UnwindInfo("unwind-info", cl::desc("Display unwind information"));
static cl::alias
UnwindInfoShort("u", cl::desc("Alias for --unwind-info"),
cl::aliasopt(UnwindInfo));
cl::opt<bool>
llvm::PrivateHeaders("private-headers",
cl::desc("Display format specific file headers"));
cl::opt<bool>
llvm::FirstPrivateHeader("private-header",
cl::desc("Display only the first format specific file "
"header"));
static cl::alias
PrivateHeadersShort("p", cl::desc("Alias for --private-headers"),
cl::aliasopt(PrivateHeaders));
cl::opt<bool>
llvm::PrintImmHex("print-imm-hex",
cl::desc("Use hex format for immediate values"));
cl::opt<bool> PrintFaultMaps("fault-map-section",
cl::desc("Display contents of faultmap section"));
cl::opt<DIDumpType> llvm::DwarfDumpType(
"dwarf", cl::init(DIDT_Null), cl::desc("Dump of dwarf debug sections:"),
cl::values(clEnumValN(DIDT_Frames, "frames", ".debug_frame")));
cl::opt<bool> PrintSource(
"source",
cl::desc(
"Display source inlined with disassembly. Implies disassmble object"));
cl::alias PrintSourceShort("S", cl::desc("Alias for -source"),
cl::aliasopt(PrintSource));
cl::opt<bool> PrintLines("line-numbers",
cl::desc("Display source line numbers with "
"disassembly. Implies disassemble object"));
cl::alias PrintLinesShort("l", cl::desc("Alias for -line-numbers"),
cl::aliasopt(PrintLines));
cl::opt<unsigned long long>
StartAddress("start-address", cl::desc("Disassemble beginning at address"),
cl::value_desc("address"), cl::init(0));
cl::opt<unsigned long long>
StopAddress("stop-address", cl::desc("Stop disassembly at address"),
cl::value_desc("address"), cl::init(UINT64_MAX));
static StringRef ToolName;
typedef std::vector<std::tuple<uint64_t, StringRef, uint8_t>> SectionSymbolsTy;
namespace {
typedef std::function<bool(llvm::object::SectionRef const &)> FilterPredicate;
class SectionFilterIterator {
public:
SectionFilterIterator(FilterPredicate P,
llvm::object::section_iterator const &I,
llvm::object::section_iterator const &E)
: Predicate(std::move(P)), Iterator(I), End(E) {
ScanPredicate();
}
const llvm::object::SectionRef &operator*() const { return *Iterator; }
SectionFilterIterator &operator++() {
++Iterator;
ScanPredicate();
return *this;
}
bool operator!=(SectionFilterIterator const &Other) const {
return Iterator != Other.Iterator;
}
private:
void ScanPredicate() {
while (Iterator != End && !Predicate(*Iterator)) {
++Iterator;
}
}
FilterPredicate Predicate;
llvm::object::section_iterator Iterator;
llvm::object::section_iterator End;
};
class SectionFilter {
public:
SectionFilter(FilterPredicate P, llvm::object::ObjectFile const &O)
: Predicate(std::move(P)), Object(O) {}
SectionFilterIterator begin() {
return SectionFilterIterator(Predicate, Object.section_begin(),
Object.section_end());
}
SectionFilterIterator end() {
return SectionFilterIterator(Predicate, Object.section_end(),
Object.section_end());
}
private:
FilterPredicate Predicate;
llvm::object::ObjectFile const &Object;
};
SectionFilter ToolSectionFilter(llvm::object::ObjectFile const &O) {
return SectionFilter(
[](llvm::object::SectionRef const &S) {
if (FilterSections.empty())
return true;
llvm::StringRef String;
std::error_code error = S.getName(String);
if (error)
return false;
return is_contained(FilterSections, String);
},
O);
}
}
void llvm::error(std::error_code EC) {
if (!EC)
return;
errs() << ToolName << ": error reading file: " << EC.message() << ".\n";
errs().flush();
exit(1);
}
LLVM_ATTRIBUTE_NORETURN void llvm::error(Twine Message) {
errs() << ToolName << ": " << Message << ".\n";
errs().flush();
exit(1);
}
LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File,
Twine Message) {
errs() << ToolName << ": '" << File << "': " << Message << ".\n";
exit(1);
}
LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File,
std::error_code EC) {
assert(EC);
errs() << ToolName << ": '" << File << "': " << EC.message() << ".\n";
exit(1);
}
LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File,
llvm::Error E) {
assert(E);
std::string Buf;
raw_string_ostream OS(Buf);
logAllUnhandledErrors(std::move(E), OS, "");
OS.flush();
errs() << ToolName << ": '" << File << "': " << Buf;
exit(1);
}
LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef ArchiveName,
StringRef FileName,
llvm::Error E,
StringRef ArchitectureName) {
assert(E);
errs() << ToolName << ": ";
if (ArchiveName != "")
errs() << ArchiveName << "(" << FileName << ")";
else
errs() << "'" << FileName << "'";
if (!ArchitectureName.empty())
errs() << " (for architecture " << ArchitectureName << ")";
std::string Buf;
raw_string_ostream OS(Buf);
logAllUnhandledErrors(std::move(E), OS, "");
OS.flush();
errs() << ": " << Buf;
exit(1);
}
LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef ArchiveName,
const object::Archive::Child &C,
llvm::Error E,
StringRef ArchitectureName) {
Expected<StringRef> NameOrErr = C.getName();
// TODO: if we have a error getting the name then it would be nice to print
// the index of which archive member this is and or its offset in the
// archive instead of "???" as the name.
if (!NameOrErr) {
consumeError(NameOrErr.takeError());
llvm::report_error(ArchiveName, "???", std::move(E), ArchitectureName);
} else
llvm::report_error(ArchiveName, NameOrErr.get(), std::move(E),
ArchitectureName);
}
static const Target *getTarget(const ObjectFile *Obj = nullptr) {
// Figure out the target triple.
llvm::Triple TheTriple("unknown-unknown-unknown");
if (TripleName.empty()) {
if (Obj) {
auto Arch = Obj->getArch();
TheTriple.setArch(Triple::ArchType(Arch));
// For ARM targets, try to use the build attributes to build determine
// the build target. Target features are also added, but later during
// disassembly.
if (Arch == Triple::arm || Arch == Triple::armeb) {
Obj->setARMSubArch(TheTriple);
}
// TheTriple defaults to ELF, and COFF doesn't have an environment:
// the best we can do here is indicate that it is mach-o.
if (Obj->isMachO())
TheTriple.setObjectFormat(Triple::MachO);
if (Obj->isCOFF()) {
const auto COFFObj = dyn_cast<COFFObjectFile>(Obj);
if (COFFObj->getArch() == Triple::thumb)
TheTriple.setTriple("thumbv7-windows");
}
}
} else {
TheTriple.setTriple(Triple::normalize(TripleName));
// Use the triple, but also try to combine with ARM build attributes.
if (Obj) {
auto Arch = Obj->getArch();
if (Arch == Triple::arm || Arch == Triple::armeb) {
Obj->setARMSubArch(TheTriple);
}
}
}
// Get the target specific parser.
std::string Error;
const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
Error);
if (!TheTarget) {
if (Obj)
report_error(Obj->getFileName(), "can't find target: " + Error);
else
error("can't find target: " + Error);
}
// Update the triple name and return the found target.
TripleName = TheTriple.getTriple();
return TheTarget;
}
bool llvm::RelocAddressLess(RelocationRef a, RelocationRef b) {
return a.getOffset() < b.getOffset();
}
namespace {
class SourcePrinter {
protected:
DILineInfo OldLineInfo;
const ObjectFile *Obj;
std::unique_ptr<symbolize::LLVMSymbolizer> Symbolizer;
// File name to file contents of source
std::unordered_map<std::string, std::unique_ptr<MemoryBuffer>> SourceCache;
// Mark the line endings of the cached source
std::unordered_map<std::string, std::vector<StringRef>> LineCache;
private:
bool cacheSource(std::string File);
public:
virtual ~SourcePrinter() {}
SourcePrinter() : Obj(nullptr), Symbolizer(nullptr) {}
SourcePrinter(const ObjectFile *Obj, StringRef DefaultArch) : Obj(Obj) {
symbolize::LLVMSymbolizer::Options SymbolizerOpts(
DILineInfoSpecifier::FunctionNameKind::None, true, false, false,
DefaultArch);
Symbolizer.reset(new symbolize::LLVMSymbolizer(SymbolizerOpts));
}
virtual void printSourceLine(raw_ostream &OS, uint64_t Address,
StringRef Delimiter = "; ");
};
bool SourcePrinter::cacheSource(std::string File) {
auto BufferOrError = MemoryBuffer::getFile(File);
if (!BufferOrError)
return false;
// Chomp the file to get lines
size_t BufferSize = (*BufferOrError)->getBufferSize();
const char *BufferStart = (*BufferOrError)->getBufferStart();
for (const char *Start = BufferStart, *End = BufferStart;
End < BufferStart + BufferSize; End++)
if (*End == '\n' || End == BufferStart + BufferSize - 1 ||
(*End == '\r' && *(End + 1) == '\n')) {
LineCache[File].push_back(StringRef(Start, End - Start));
if (*End == '\r')
End++;
Start = End + 1;
}
SourceCache[File] = std::move(*BufferOrError);
return true;
}
void SourcePrinter::printSourceLine(raw_ostream &OS, uint64_t Address,
StringRef Delimiter) {
if (!Symbolizer)
return;
DILineInfo LineInfo = DILineInfo();
auto ExpectecLineInfo =
Symbolizer->symbolizeCode(Obj->getFileName(), Address);
if (!ExpectecLineInfo)
consumeError(ExpectecLineInfo.takeError());
else
LineInfo = *ExpectecLineInfo;
if ((LineInfo.FileName == "<invalid>") || OldLineInfo.Line == LineInfo.Line ||
LineInfo.Line == 0)
return;
if (PrintLines)
OS << Delimiter << LineInfo.FileName << ":" << LineInfo.Line << "\n";
if (PrintSource) {
if (SourceCache.find(LineInfo.FileName) == SourceCache.end())
if (!cacheSource(LineInfo.FileName))
return;
auto FileBuffer = SourceCache.find(LineInfo.FileName);
if (FileBuffer != SourceCache.end()) {
auto LineBuffer = LineCache.find(LineInfo.FileName);
if (LineBuffer != LineCache.end()) {
if (LineInfo.Line > LineBuffer->second.size())
return;
// Vector begins at 0, line numbers are non-zero
OS << Delimiter << LineBuffer->second[LineInfo.Line - 1].ltrim()
<< "\n";
}
}
}
OldLineInfo = LineInfo;
}
static bool isArmElf(const ObjectFile *Obj) {
return (Obj->isELF() &&
(Obj->getArch() == Triple::aarch64 ||
Obj->getArch() == Triple::aarch64_be ||
Obj->getArch() == Triple::arm || Obj->getArch() == Triple::armeb ||
Obj->getArch() == Triple::thumb ||
Obj->getArch() == Triple::thumbeb));
}
class PrettyPrinter {
public:
virtual ~PrettyPrinter(){}
virtual void printInst(MCInstPrinter &IP, const MCInst *MI,
ArrayRef<uint8_t> Bytes, uint64_t Address,
raw_ostream &OS, StringRef Annot,
MCSubtargetInfo const &STI, SourcePrinter *SP) {
if (SP && (PrintSource || PrintLines))
SP->printSourceLine(OS, Address);
if (!NoLeadingAddr)
OS << format("%8" PRIx64 ":", Address);
if (!NoShowRawInsn) {
OS << "\t";
dumpBytes(Bytes, OS);
}
if (MI)
IP.printInst(MI, OS, "", STI);
else
OS << " <unknown>";
}
};
PrettyPrinter PrettyPrinterInst;
class HexagonPrettyPrinter : public PrettyPrinter {
public:
void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
raw_ostream &OS) {
uint32_t opcode =
(Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
if (!NoLeadingAddr)
OS << format("%8" PRIx64 ":", Address);
if (!NoShowRawInsn) {
OS << "\t";
dumpBytes(Bytes.slice(0, 4), OS);
OS << format("%08" PRIx32, opcode);
}
}
void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
uint64_t Address, raw_ostream &OS, StringRef Annot,
MCSubtargetInfo const &STI, SourcePrinter *SP) override {
if (SP && (PrintSource || PrintLines))
SP->printSourceLine(OS, Address, "");
if (!MI) {
printLead(Bytes, Address, OS);
OS << " <unknown>";
return;
}
std::string Buffer;
{
raw_string_ostream TempStream(Buffer);
IP.printInst(MI, TempStream, "", STI);
}
StringRef Contents(Buffer);
// Split off bundle attributes
auto PacketBundle = Contents.rsplit('\n');
// Split off first instruction from the rest
auto HeadTail = PacketBundle.first.split('\n');
auto Preamble = " { ";
auto Separator = "";
while(!HeadTail.first.empty()) {
OS << Separator;
Separator = "\n";
if (SP && (PrintSource || PrintLines))
SP->printSourceLine(OS, Address, "");
printLead(Bytes, Address, OS);
OS << Preamble;
Preamble = " ";
StringRef Inst;
auto Duplex = HeadTail.first.split('\v');
if(!Duplex.second.empty()){
OS << Duplex.first;
OS << "; ";
Inst = Duplex.second;
}
else
Inst = HeadTail.first;
OS << Inst;
Bytes = Bytes.slice(4);
Address += 4;
HeadTail = HeadTail.second.split('\n');
}
OS << " } " << PacketBundle.second;
}
};
HexagonPrettyPrinter HexagonPrettyPrinterInst;
class AMDGCNPrettyPrinter : public PrettyPrinter {
public:
void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
uint64_t Address, raw_ostream &OS, StringRef Annot,
MCSubtargetInfo const &STI, SourcePrinter *SP) override {
if (SP && (PrintSource || PrintLines))
SP->printSourceLine(OS, Address);
if (!MI) {
OS << " <unknown>";
return;
}
SmallString<40> InstStr;
raw_svector_ostream IS(InstStr);
IP.printInst(MI, IS, "", STI);
OS << left_justify(IS.str(), 60) << format("// %012" PRIX64 ": ", Address);
typedef support::ulittle32_t U32;
for (auto D : makeArrayRef(reinterpret_cast<const U32*>(Bytes.data()),
Bytes.size() / sizeof(U32)))
// D should be explicitly casted to uint32_t here as it is passed
// by format to snprintf as vararg.
OS << format("%08" PRIX32 " ", static_cast<uint32_t>(D));
if (!Annot.empty())
OS << "// " << Annot;
}
};
AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;
class BPFPrettyPrinter : public PrettyPrinter {
public:
void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
uint64_t Address, raw_ostream &OS, StringRef Annot,
MCSubtargetInfo const &STI, SourcePrinter *SP) override {
if (SP && (PrintSource || PrintLines))
SP->printSourceLine(OS, Address);
if (!NoLeadingAddr)
OS << format("%8" PRId64 ":", Address / 8);
if (!NoShowRawInsn) {
OS << "\t";
dumpBytes(Bytes, OS);
}
if (MI)
IP.printInst(MI, OS, "", STI);
else
OS << " <unknown>";
}
};
BPFPrettyPrinter BPFPrettyPrinterInst;
PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
switch(Triple.getArch()) {
default:
return PrettyPrinterInst;
case Triple::hexagon:
return HexagonPrettyPrinterInst;
case Triple::amdgcn:
return AMDGCNPrettyPrinterInst;
case Triple::bpfel:
case Triple::bpfeb:
return BPFPrettyPrinterInst;
}
}
}
template <class ELFT>
static std::error_code getRelocationValueString(const ELFObjectFile<ELFT> *Obj,
const RelocationRef &RelRef,
SmallVectorImpl<char> &Result) {
DataRefImpl Rel = RelRef.getRawDataRefImpl();
typedef typename ELFObjectFile<ELFT>::Elf_Sym Elf_Sym;
typedef typename ELFObjectFile<ELFT>::Elf_Shdr Elf_Shdr;
typedef typename ELFObjectFile<ELFT>::Elf_Rela Elf_Rela;
const ELFFile<ELFT> &EF = *Obj->getELFFile();
auto SecOrErr = EF.getSection(Rel.d.a);
if (!SecOrErr)
return errorToErrorCode(SecOrErr.takeError());
const Elf_Shdr *Sec = *SecOrErr;
auto SymTabOrErr = EF.getSection(Sec->sh_link);
if (!SymTabOrErr)
return errorToErrorCode(SymTabOrErr.takeError());
const Elf_Shdr *SymTab = *SymTabOrErr;
assert(SymTab->sh_type == ELF::SHT_SYMTAB ||
SymTab->sh_type == ELF::SHT_DYNSYM);
auto StrTabSec = EF.getSection(SymTab->sh_link);
if (!StrTabSec)
return errorToErrorCode(StrTabSec.takeError());
auto StrTabOrErr = EF.getStringTable(*StrTabSec);
if (!StrTabOrErr)
return errorToErrorCode(StrTabOrErr.takeError());
StringRef StrTab = *StrTabOrErr;
uint8_t type = RelRef.getType();
StringRef res;
int64_t addend = 0;
switch (Sec->sh_type) {
default:
return object_error::parse_failed;
case ELF::SHT_REL: {
// TODO: Read implicit addend from section data.
break;
}
case ELF::SHT_RELA: {
const Elf_Rela *ERela = Obj->getRela(Rel);
addend = ERela->r_addend;
break;
}
}
symbol_iterator SI = RelRef.getSymbol();
const Elf_Sym *symb = Obj->getSymbol(SI->getRawDataRefImpl());
StringRef Target;
if (symb->getType() == ELF::STT_SECTION) {
Expected<section_iterator> SymSI = SI->getSection();
if (!SymSI)
return errorToErrorCode(SymSI.takeError());
const Elf_Shdr *SymSec = Obj->getSection((*SymSI)->getRawDataRefImpl());
auto SecName = EF.getSectionName(SymSec);
if (!SecName)
return errorToErrorCode(SecName.takeError());
Target = *SecName;
} else {
Expected<StringRef> SymName = symb->getName(StrTab);
if (!SymName)
return errorToErrorCode(SymName.takeError());
Target = *SymName;
}
switch (EF.getHeader()->e_machine) {
case ELF::EM_X86_64:
switch (type) {
case ELF::R_X86_64_PC8:
case ELF::R_X86_64_PC16:
case ELF::R_X86_64_PC32: {
std::string fmtbuf;
raw_string_ostream fmt(fmtbuf);
fmt << Target << (addend < 0 ? "" : "+") << addend << "-P";
fmt.flush();
Result.append(fmtbuf.begin(), fmtbuf.end());
} break;
case ELF::R_X86_64_8:
case ELF::R_X86_64_16:
case ELF::R_X86_64_32:
case ELF::R_X86_64_32S:
case ELF::R_X86_64_64: {
std::string fmtbuf;
raw_string_ostream fmt(fmtbuf);
fmt << Target << (addend < 0 ? "" : "+") << addend;
fmt.flush();
Result.append(fmtbuf.begin(), fmtbuf.end());
} break;
default:
res = "Unknown";
}
break;
case ELF::EM_LANAI:
case ELF::EM_AVR:
case ELF::EM_AARCH64: {
std::string fmtbuf;
raw_string_ostream fmt(fmtbuf);
fmt << Target;
if (addend != 0)
fmt << (addend < 0 ? "" : "+") << addend;
fmt.flush();
Result.append(fmtbuf.begin(), fmtbuf.end());
break;
}
case ELF::EM_386:
case ELF::EM_IAMCU:
case ELF::EM_ARM:
case ELF::EM_HEXAGON:
case ELF::EM_MIPS:
case ELF::EM_BPF:
case ELF::EM_RISCV:
res = Target;
break;
case ELF::EM_WEBASSEMBLY:
switch (type) {
case ELF::R_WEBASSEMBLY_DATA: {
std::string fmtbuf;
raw_string_ostream fmt(fmtbuf);
fmt << Target << (addend < 0 ? "" : "+") << addend;
fmt.flush();
Result.append(fmtbuf.begin(), fmtbuf.end());
break;
}
case ELF::R_WEBASSEMBLY_FUNCTION:
res = Target;
break;
default:
res = "Unknown";
}
break;
default:
res = "Unknown";
}
if (Result.empty())
Result.append(res.begin(), res.end());
return std::error_code();
}
static std::error_code getRelocationValueString(const ELFObjectFileBase *Obj,
const RelocationRef &Rel,
SmallVectorImpl<char> &Result) {
if (auto *ELF32LE = dyn_cast<ELF32LEObjectFile>(Obj))
return getRelocationValueString(ELF32LE, Rel, Result);
if (auto *ELF64LE = dyn_cast<ELF64LEObjectFile>(Obj))
return getRelocationValueString(ELF64LE, Rel, Result);
if (auto *ELF32BE = dyn_cast<ELF32BEObjectFile>(Obj))
return getRelocationValueString(ELF32BE, Rel, Result);
auto *ELF64BE = cast<ELF64BEObjectFile>(Obj);
return getRelocationValueString(ELF64BE, Rel, Result);
}
static std::error_code getRelocationValueString(const COFFObjectFile *Obj,
const RelocationRef &Rel,
SmallVectorImpl<char> &Result) {
symbol_iterator SymI = Rel.getSymbol();
Expected<StringRef> SymNameOrErr = SymI->getName();
if (!SymNameOrErr)
return errorToErrorCode(SymNameOrErr.takeError());
StringRef SymName = *SymNameOrErr;
Result.append(SymName.begin(), SymName.end());
return std::error_code();
}
static void printRelocationTargetName(const MachOObjectFile *O,
const MachO::any_relocation_info &RE,
raw_string_ostream &fmt) {
bool IsScattered = O->isRelocationScattered(RE);
// Target of a scattered relocation is an address. In the interest of
// generating pretty output, scan through the symbol table looking for a
// symbol that aligns with that address. If we find one, print it.
// Otherwise, we just print the hex address of the target.
if (IsScattered) {
uint32_t Val = O->getPlainRelocationSymbolNum(RE);
for (const SymbolRef &Symbol : O->symbols()) {
std::error_code ec;
Expected<uint64_t> Addr = Symbol.getAddress();
if (!Addr)
report_error(O->getFileName(), Addr.takeError());
if (*Addr != Val)
continue;
Expected<StringRef> Name = Symbol.getName();
if (!Name)
report_error(O->getFileName(), Name.takeError());
fmt << *Name;
return;
}
// If we couldn't find a symbol that this relocation refers to, try
// to find a section beginning instead.
for (const SectionRef &Section : ToolSectionFilter(*O)) {
std::error_code ec;
StringRef Name;
uint64_t Addr = Section.getAddress();
if (Addr != Val)
continue;
if ((ec = Section.getName(Name)))
report_error(O->getFileName(), ec);
fmt << Name;
return;
}
fmt << format("0x%x", Val);
return;
}
StringRef S;
bool isExtern = O->getPlainRelocationExternal(RE);
uint64_t Val = O->getPlainRelocationSymbolNum(RE);
if (O->getAnyRelocationType(RE) == MachO::ARM64_RELOC_ADDEND) {
fmt << format("0x%0" PRIx64, Val);
return;
} else if (isExtern) {
symbol_iterator SI = O->symbol_begin();
advance(SI, Val);
Expected<StringRef> SOrErr = SI->getName();
if (!SOrErr)
report_error(O->getFileName(), SOrErr.takeError());
S = *SOrErr;
} else {
section_iterator SI = O->section_begin();
// Adjust for the fact that sections are 1-indexed.
advance(SI, Val - 1);
SI->getName(S);
}
fmt << S;
}
static std::error_code getRelocationValueString(const WasmObjectFile *Obj,
const RelocationRef &RelRef,
SmallVectorImpl<char> &Result) {
const wasm::WasmRelocation& Rel = Obj->getWasmRelocation(RelRef);
std::string fmtbuf;
raw_string_ostream fmt(fmtbuf);
fmt << Rel.Index << (Rel.Addend < 0 ? "" : "+") << Rel.Addend;
fmt.flush();
Result.append(fmtbuf.begin(), fmtbuf.end());
return std::error_code();
}
static std::error_code getRelocationValueString(const MachOObjectFile *Obj,
const RelocationRef &RelRef,
SmallVectorImpl<char> &Result) {
DataRefImpl Rel = RelRef.getRawDataRefImpl();
MachO::any_relocation_info RE = Obj->getRelocation(Rel);
unsigned Arch = Obj->getArch();
std::string fmtbuf;
raw_string_ostream fmt(fmtbuf);
unsigned Type = Obj->getAnyRelocationType(RE);
bool IsPCRel = Obj->getAnyRelocationPCRel(RE);
// Determine any addends that should be displayed with the relocation.
// These require decoding the relocation type, which is triple-specific.
// X86_64 has entirely custom relocation types.
if (Arch == Triple::x86_64) {
bool isPCRel = Obj->getAnyRelocationPCRel(RE);
switch (Type) {
case MachO::X86_64_RELOC_GOT_LOAD:
case MachO::X86_64_RELOC_GOT: {
printRelocationTargetName(Obj, RE, fmt);
fmt << "@GOT";
if (isPCRel)
fmt << "PCREL";
break;
}
case MachO::X86_64_RELOC_SUBTRACTOR: {
DataRefImpl RelNext = Rel;
Obj->moveRelocationNext(RelNext);
MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
// X86_64_RELOC_SUBTRACTOR must be followed by a relocation of type
// X86_64_RELOC_UNSIGNED.
// NOTE: Scattered relocations don't exist on x86_64.
unsigned RType = Obj->getAnyRelocationType(RENext);
if (RType != MachO::X86_64_RELOC_UNSIGNED)
report_error(Obj->getFileName(), "Expected X86_64_RELOC_UNSIGNED after "
"X86_64_RELOC_SUBTRACTOR.");
// The X86_64_RELOC_UNSIGNED contains the minuend symbol;
// X86_64_RELOC_SUBTRACTOR contains the subtrahend.
printRelocationTargetName(Obj, RENext, fmt);
fmt << "-";
printRelocationTargetName(Obj, RE, fmt);
break;
}
case MachO::X86_64_RELOC_TLV:
printRelocationTargetName(Obj, RE, fmt);
fmt << "@TLV";
if (isPCRel)
fmt << "P";
break;
case MachO::X86_64_RELOC_SIGNED_1:
printRelocationTargetName(Obj, RE, fmt);
fmt << "-1";
break;
case MachO::X86_64_RELOC_SIGNED_2:
printRelocationTargetName(Obj, RE, fmt);
fmt << "-2";
break;
case MachO::X86_64_RELOC_SIGNED_4:
printRelocationTargetName(Obj, RE, fmt);
fmt << "-4";
break;
default:
printRelocationTargetName(Obj, RE, fmt);
break;
}
// X86 and ARM share some relocation types in common.
} else if (Arch == Triple::x86 || Arch == Triple::arm ||
Arch == Triple::ppc) {
// Generic relocation types...
switch (Type) {
case MachO::GENERIC_RELOC_PAIR: // prints no info
return std::error_code();
case MachO::GENERIC_RELOC_SECTDIFF: {
DataRefImpl RelNext = Rel;
Obj->moveRelocationNext(RelNext);
MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
// X86 sect diff's must be followed by a relocation of type
// GENERIC_RELOC_PAIR.
unsigned RType = Obj->getAnyRelocationType(RENext);
if (RType != MachO::GENERIC_RELOC_PAIR)
report_error(Obj->getFileName(), "Expected GENERIC_RELOC_PAIR after "
"GENERIC_RELOC_SECTDIFF.");
printRelocationTargetName(Obj, RE, fmt);
fmt << "-";
printRelocationTargetName(Obj, RENext, fmt);
break;
}
}
if (Arch == Triple::x86 || Arch == Triple::ppc) {
switch (Type) {
case MachO::GENERIC_RELOC_LOCAL_SECTDIFF: {
DataRefImpl RelNext = Rel;
Obj->moveRelocationNext(RelNext);
MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
// X86 sect diff's must be followed by a relocation of type
// GENERIC_RELOC_PAIR.
unsigned RType = Obj->getAnyRelocationType(RENext);
if (RType != MachO::GENERIC_RELOC_PAIR)
report_error(Obj->getFileName(), "Expected GENERIC_RELOC_PAIR after "
"GENERIC_RELOC_LOCAL_SECTDIFF.");
printRelocationTargetName(Obj, RE, fmt);
fmt << "-";
printRelocationTargetName(Obj, RENext, fmt);
break;
}
case MachO::GENERIC_RELOC_TLV: {
printRelocationTargetName(Obj, RE, fmt);
fmt << "@TLV";
if (IsPCRel)
fmt << "P";
break;
}
default:
printRelocationTargetName(Obj, RE, fmt);
}
} else { // ARM-specific relocations
switch (Type) {
case MachO::ARM_RELOC_HALF:
case MachO::ARM_RELOC_HALF_SECTDIFF: {
// Half relocations steal a bit from the length field to encode
// whether this is an upper16 or a lower16 relocation.
bool isUpper = (Obj->getAnyRelocationLength(RE) & 0x1) == 1;
if (isUpper)
fmt << ":upper16:(";
else
fmt << ":lower16:(";
printRelocationTargetName(Obj, RE, fmt);
DataRefImpl RelNext = Rel;
Obj->moveRelocationNext(RelNext);
MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
// ARM half relocs must be followed by a relocation of type
// ARM_RELOC_PAIR.
unsigned RType = Obj->getAnyRelocationType(RENext);
if (RType != MachO::ARM_RELOC_PAIR)
report_error(Obj->getFileName(), "Expected ARM_RELOC_PAIR after "
"ARM_RELOC_HALF");
// NOTE: The half of the target virtual address is stashed in the
// address field of the secondary relocation, but we can't reverse
// engineer the constant offset from it without decoding the movw/movt
// instruction to find the other half in its immediate field.
// ARM_RELOC_HALF_SECTDIFF encodes the second section in the
// symbol/section pointer of the follow-on relocation.
if (Type == MachO::ARM_RELOC_HALF_SECTDIFF) {
fmt << "-";
printRelocationTargetName(Obj, RENext, fmt);
}
fmt << ")";
break;
}
default: { printRelocationTargetName(Obj, RE, fmt); }
}
}
} else
printRelocationTargetName(Obj, RE, fmt);
fmt.flush();
Result.append(fmtbuf.begin(), fmtbuf.end());
return std::error_code();
}
static std::error_code getRelocationValueString(const RelocationRef &Rel,
SmallVectorImpl<char> &Result) {
const ObjectFile *Obj = Rel.getObject();
if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
return getRelocationValueString(ELF, Rel, Result);
if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
return getRelocationValueString(COFF, Rel, Result);
if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj))
return getRelocationValueString(Wasm, Rel, Result);
if (auto *MachO = dyn_cast<MachOObjectFile>(Obj))
return getRelocationValueString(MachO, Rel, Result);
llvm_unreachable("unknown object file format");
}
/// @brief Indicates whether this relocation should hidden when listing
/// relocations, usually because it is the trailing part of a multipart
/// relocation that will be printed as part of the leading relocation.
static bool getHidden(RelocationRef RelRef) {
const ObjectFile *Obj = RelRef.getObject();
auto *MachO = dyn_cast<MachOObjectFile>(Obj);
if (!MachO)
return false;
unsigned Arch = MachO->getArch();
DataRefImpl Rel = RelRef.getRawDataRefImpl();
uint64_t Type = MachO->getRelocationType(Rel);
// On arches that use the generic relocations, GENERIC_RELOC_PAIR
// is always hidden.
if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc) {
if (Type == MachO::GENERIC_RELOC_PAIR)
return true;
} else if (Arch == Triple::x86_64) {
// On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
// an X86_64_RELOC_SUBTRACTOR.
if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
DataRefImpl RelPrev = Rel;
RelPrev.d.a--;
uint64_t PrevType = MachO->getRelocationType(RelPrev);
if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
return true;
}
}
return false;
}
static uint8_t getElfSymbolType(const ObjectFile *Obj, const SymbolRef &Sym) {
assert(Obj->isELF());
if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
return Elf32LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
return Elf64LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
return Elf32BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
return Elf64BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
llvm_unreachable("Unsupported binary format");
}
template <class ELFT> static void
addDynamicElfSymbols(const ELFObjectFile<ELFT> *Obj,
std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
for (auto Symbol : Obj->getDynamicSymbolIterators()) {
uint8_t SymbolType = Symbol.getELFType();
if (SymbolType != ELF::STT_FUNC || Symbol.getSize() == 0)
continue;
Expected<uint64_t> AddressOrErr = Symbol.getAddress();
if (!AddressOrErr)
report_error(Obj->getFileName(), AddressOrErr.takeError());
uint64_t Address = *AddressOrErr;
Expected<StringRef> Name = Symbol.getName();
if (!Name)
report_error(Obj->getFileName(), Name.takeError());
if (Name->empty())
continue;
Expected<section_iterator> SectionOrErr = Symbol.getSection();
if (!SectionOrErr)
report_error(Obj->getFileName(), SectionOrErr.takeError());
section_iterator SecI = *SectionOrErr;
if (SecI == Obj->section_end())
continue;
AllSymbols[*SecI].emplace_back(Address, *Name, SymbolType);
}
}
static void
addDynamicElfSymbols(const ObjectFile *Obj,
std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
assert(Obj->isELF());
if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
addDynamicElfSymbols(Elf32LEObj, AllSymbols);
else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
addDynamicElfSymbols(Elf64LEObj, AllSymbols);
else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
addDynamicElfSymbols(Elf32BEObj, AllSymbols);
else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
addDynamicElfSymbols(Elf64BEObj, AllSymbols);
else
llvm_unreachable("Unsupported binary format");
}
static void DisassembleObject(const ObjectFile *Obj, bool InlineRelocs) {
if (StartAddress > StopAddress)
error("Start address should be less than stop address");
const Target *TheTarget = getTarget(Obj);
// Package up features to be passed to target/subtarget
SubtargetFeatures Features = Obj->getFeatures();
if (MAttrs.size()) {
for (unsigned i = 0; i != MAttrs.size(); ++i)
Features.AddFeature(MAttrs[i]);
}
std::unique_ptr<const MCRegisterInfo> MRI(
TheTarget->createMCRegInfo(TripleName));
if (!MRI)
report_error(Obj->getFileName(), "no register info for target " +
TripleName);
// Set up disassembler.
std::unique_ptr<const MCAsmInfo> AsmInfo(
TheTarget->createMCAsmInfo(*MRI, TripleName));
if (!AsmInfo)
report_error(Obj->getFileName(), "no assembly info for target " +
TripleName);
std::unique_ptr<const MCSubtargetInfo> STI(
TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
if (!STI)
report_error(Obj->getFileName(), "no subtarget info for target " +
TripleName);
std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo());
if (!MII)
report_error(Obj->getFileName(), "no instruction info for target " +
TripleName);
MCObjectFileInfo MOFI;
MCContext Ctx(AsmInfo.get(), MRI.get(), &MOFI);
// FIXME: for now initialize MCObjectFileInfo with default values
MOFI.InitMCObjectFileInfo(Triple(TripleName), false, Ctx);
std::unique_ptr<MCDisassembler> DisAsm(
TheTarget->createMCDisassembler(*STI, Ctx));
if (!DisAsm)
report_error(Obj->getFileName(), "no disassembler for target " +
TripleName);
std::unique_ptr<const MCInstrAnalysis> MIA(
TheTarget->createMCInstrAnalysis(MII.get()));
int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI));
if (!IP)
report_error(Obj->getFileName(), "no instruction printer for target " +
TripleName);
IP->setPrintImmHex(PrintImmHex);
PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName));
StringRef Fmt = Obj->getBytesInAddress() > 4 ? "\t\t%016" PRIx64 ": " :
"\t\t\t%08" PRIx64 ": ";
SourcePrinter SP(Obj, TheTarget->getName());
// Create a mapping, RelocSecs = SectionRelocMap[S], where sections
// in RelocSecs contain the relocations for section S.
std::error_code EC;
std::map<SectionRef, SmallVector<SectionRef, 1>> SectionRelocMap;
for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
section_iterator Sec2 = Section.getRelocatedSection();
if (Sec2 != Obj->section_end())
SectionRelocMap[*Sec2].push_back(Section);
}
// Create a mapping from virtual address to symbol name. This is used to
// pretty print the symbols while disassembling.
std::map<SectionRef, SectionSymbolsTy> AllSymbols;
for (const SymbolRef &Symbol : Obj->symbols()) {
Expected<uint64_t> AddressOrErr = Symbol.getAddress();
if (!AddressOrErr)
report_error(Obj->getFileName(), AddressOrErr.takeError());
uint64_t Address = *AddressOrErr;
Expected<StringRef> Name = Symbol.getName();
if (!Name)
report_error(Obj->getFileName(), Name.takeError());
if (Name->empty())
continue;
Expected<section_iterator> SectionOrErr = Symbol.getSection();
if (!SectionOrErr)
report_error(Obj->getFileName(), SectionOrErr.takeError());
section_iterator SecI = *SectionOrErr;
if (SecI == Obj->section_end())
continue;
uint8_t SymbolType = ELF::STT_NOTYPE;
if (Obj->isELF())
SymbolType = getElfSymbolType(Obj, Symbol);
AllSymbols[*SecI].emplace_back(Address, *Name, SymbolType);
}
if (AllSymbols.empty() && Obj->isELF())
addDynamicElfSymbols(Obj, AllSymbols);
// Create a mapping from virtual address to section.
std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
for (SectionRef Sec : Obj->sections())
SectionAddresses.emplace_back(Sec.getAddress(), Sec);
array_pod_sort(SectionAddresses.begin(), SectionAddresses.end());
// Linked executables (.exe and .dll files) typically don't include a real
// symbol table but they might contain an export table.
if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) {
for (const auto &ExportEntry : COFFObj->export_directories()) {
StringRef Name;
error(ExportEntry.getSymbolName(Name));
if (Name.empty())
continue;
uint32_t RVA;
error(ExportEntry.getExportRVA(RVA));
uint64_t VA = COFFObj->getImageBase() + RVA;
auto Sec = std::upper_bound(
SectionAddresses.begin(), SectionAddresses.end(), VA,
[](uint64_t LHS, const std::pair<uint64_t, SectionRef> &RHS) {
return LHS < RHS.first;
});
if (Sec != SectionAddresses.begin())
--Sec;
else
Sec = SectionAddresses.end();
if (Sec != SectionAddresses.end())
AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE);
}
}
// Sort all the symbols, this allows us to use a simple binary search to find
// a symbol near an address.
for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
array_pod_sort(SecSyms.second.begin(), SecSyms.second.end());
for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
if (!DisassembleAll && (!Section.isText() || Section.isVirtual()))
continue;
uint64_t SectionAddr = Section.getAddress();
uint64_t SectSize = Section.getSize();
if (!SectSize)
continue;
// Get the list of all the symbols in this section.
SectionSymbolsTy &Symbols = AllSymbols[Section];
std::vector<uint64_t> DataMappingSymsAddr;
std::vector<uint64_t> TextMappingSymsAddr;
if (isArmElf(Obj)) {
for (const auto &Symb : Symbols) {
uint64_t Address = std::get<0>(Symb);
StringRef Name = std::get<1>(Symb);
if (Name.startswith("$d"))
DataMappingSymsAddr.push_back(Address - SectionAddr);
if (Name.startswith("$x"))
TextMappingSymsAddr.push_back(Address - SectionAddr);
if (Name.startswith("$a"))
TextMappingSymsAddr.push_back(Address - SectionAddr);
if (Name.startswith("$t"))
TextMappingSymsAddr.push_back(Address - SectionAddr);
}
}
std::sort(DataMappingSymsAddr.begin(), DataMappingSymsAddr.end());
std::sort(TextMappingSymsAddr.begin(), TextMappingSymsAddr.end());
if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
// AMDGPU disassembler uses symbolizer for printing labels
std::unique_ptr<MCRelocationInfo> RelInfo(
TheTarget->createMCRelocationInfo(TripleName, Ctx));
if (RelInfo) {
std::unique_ptr<MCSymbolizer> Symbolizer(
TheTarget->createMCSymbolizer(
TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
DisAsm->setSymbolizer(std::move(Symbolizer));
}
}
// Make a list of all the relocations for this section.
std::vector<RelocationRef> Rels;
if (InlineRelocs) {
for (const SectionRef &RelocSec : SectionRelocMap[Section]) {
for (const RelocationRef &Reloc : RelocSec.relocations()) {
Rels.push_back(Reloc);
}
}
}
// Sort relocations by address.
std::sort(Rels.begin(), Rels.end(), RelocAddressLess);
StringRef SegmentName = "";
if (const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj)) {
DataRefImpl DR = Section.getRawDataRefImpl();
SegmentName = MachO->getSectionFinalSegmentName(DR);
}
StringRef name;
error(Section.getName(name));
if ((SectionAddr <= StopAddress) &&
(SectionAddr + SectSize) >= StartAddress) {
outs() << "Disassembly of section ";
if (!SegmentName.empty())
outs() << SegmentName << ",";
outs() << name << ':';
}
// If the section has no symbol at the start, just insert a dummy one.
if (Symbols.empty() || std::get<0>(Symbols[0]) != 0) {
Symbols.insert(Symbols.begin(),
std::make_tuple(SectionAddr, name, Section.isText()
? ELF::STT_FUNC
: ELF::STT_OBJECT));
}
SmallString<40> Comments;
raw_svector_ostream CommentStream(Comments);
StringRef BytesStr;
error(Section.getContents(BytesStr));
ArrayRef<uint8_t> Bytes(reinterpret_cast<const uint8_t *>(BytesStr.data()),
BytesStr.size());
uint64_t Size;
uint64_t Index;
std::vector<RelocationRef>::const_iterator rel_cur = Rels.begin();
std::vector<RelocationRef>::const_iterator rel_end = Rels.end();
// Disassemble symbol by symbol.
for (unsigned si = 0, se = Symbols.size(); si != se; ++si) {
uint64_t Start = std::get<0>(Symbols[si]) - SectionAddr;
// The end is either the section end or the beginning of the next
// symbol.
uint64_t End =
(si == se - 1) ? SectSize : std::get<0>(Symbols[si + 1]) - SectionAddr;
// Don't try to disassemble beyond the end of section contents.
if (End > SectSize)
End = SectSize;
// If this symbol has the same address as the next symbol, then skip it.
if (Start >= End)
continue;
// Check if we need to skip symbol
// Skip if the symbol's data is not between StartAddress and StopAddress
if (End + SectionAddr < StartAddress ||
Start + SectionAddr > StopAddress) {
continue;
}
// Stop disassembly at the stop address specified
if (End + SectionAddr > StopAddress)
End = StopAddress - SectionAddr;
if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
// make size 4 bytes folded
End = Start + ((End - Start) & ~0x3ull);
if (std::get<2>(Symbols[si]) == ELF::STT_AMDGPU_HSA_KERNEL) {
// skip amd_kernel_code_t at the begining of kernel symbol (256 bytes)
Start += 256;
}
if (si == se - 1 ||
std::get<2>(Symbols[si + 1]) == ELF::STT_AMDGPU_HSA_KERNEL) {
// cut trailing zeroes at the end of kernel
// cut up to 256 bytes
const uint64_t EndAlign = 256;
const auto Limit = End - (std::min)(EndAlign, End - Start);
while (End > Limit &&
*reinterpret_cast<const support::ulittle32_t*>(&Bytes[End - 4]) == 0)
End -= 4;
}
}
outs() << '\n' << std::get<1>(Symbols[si]) << ":\n";
#ifndef NDEBUG
raw_ostream &DebugOut = DebugFlag ? dbgs() : nulls();
#else
raw_ostream &DebugOut = nulls();
#endif
for (Index = Start; Index < End; Index += Size) {
MCInst Inst;
if (Index + SectionAddr < StartAddress ||
Index + SectionAddr > StopAddress) {
// skip byte by byte till StartAddress is reached
Size = 1;
continue;
}
// AArch64 ELF binaries can interleave data and text in the
// same section. We rely on the markers introduced to
// understand what we need to dump. If the data marker is within a
// function, it is denoted as a word/short etc
if (isArmElf(Obj) && std::get<2>(Symbols[si]) != ELF::STT_OBJECT &&
!DisassembleAll) {
uint64_t Stride = 0;
auto DAI = std::lower_bound(DataMappingSymsAddr.begin(),
DataMappingSymsAddr.end(), Index);
if (DAI != DataMappingSymsAddr.end() && *DAI == Index) {
// Switch to data.
while (Index < End) {
outs() << format("%8" PRIx64 ":", SectionAddr + Index);
outs() << "\t";
if (Index + 4 <= End) {
Stride = 4;
dumpBytes(Bytes.slice(Index, 4), outs());
outs() << "\t.word\t";
uint32_t Data = 0;
if (Obj->isLittleEndian()) {
const auto Word =
reinterpret_cast<const support::ulittle32_t *>(
Bytes.data() + Index);
Data = *Word;
} else {
const auto Word = reinterpret_cast<const support::ubig32_t *>(
Bytes.data() + Index);
Data = *Word;
}
outs() << "0x" << format("%08" PRIx32, Data);
} else if (Index + 2 <= End) {
Stride = 2;
dumpBytes(Bytes.slice(Index, 2), outs());
outs() << "\t\t.short\t";
uint16_t Data = 0;
if (Obj->isLittleEndian()) {
const auto Short =
reinterpret_cast<const support::ulittle16_t *>(
Bytes.data() + Index);
Data = *Short;
} else {
const auto Short =
reinterpret_cast<const support::ubig16_t *>(Bytes.data() +
Index);
Data = *Short;
}
outs() << "0x" << format("%04" PRIx16, Data);
} else {
Stride = 1;
dumpBytes(Bytes.slice(Index, 1), outs());
outs() << "\t\t.byte\t";
outs() << "0x" << format("%02" PRIx8, Bytes.slice(Index, 1)[0]);
}
Index += Stride;
outs() << "\n";
auto TAI = std::lower_bound(TextMappingSymsAddr.begin(),
TextMappingSymsAddr.end(), Index);
if (TAI != TextMappingSymsAddr.end() && *TAI == Index)
break;
}
}
}
// If there is a data symbol inside an ELF text section and we are only
// disassembling text (applicable all architectures),
// we are in a situation where we must print the data and not
// disassemble it.
if (Obj->isELF() && std::get<2>(Symbols[si]) == ELF::STT_OBJECT &&
!DisassembleAll && Section.isText()) {
// print out data up to 8 bytes at a time in hex and ascii
uint8_t AsciiData[9] = {'\0'};
uint8_t Byte;
int NumBytes = 0;
for (Index = Start; Index < End; Index += 1) {
if (((SectionAddr + Index) < StartAddress) ||
((SectionAddr + Index) > StopAddress))
continue;
if (NumBytes == 0) {
outs() << format("%8" PRIx64 ":", SectionAddr + Index);
outs() << "\t";
}
Byte = Bytes.slice(Index)[0];
outs() << format(" %02x", Byte);
AsciiData[NumBytes] = isprint(Byte) ? Byte : '.';
uint8_t IndentOffset = 0;
NumBytes++;
if (Index == End - 1 || NumBytes > 8) {
// Indent the space for less than 8 bytes data.
// 2 spaces for byte and one for space between bytes
IndentOffset = 3 * (8 - NumBytes);
for (int Excess = 8 - NumBytes; Excess < 8; Excess++)
AsciiData[Excess] = '\0';
NumBytes = 8;
}
if (NumBytes == 8) {
AsciiData[8] = '\0';
outs() << std::string(IndentOffset, ' ') << " ";
outs() << reinterpret_cast<char *>(AsciiData);
outs() << '\n';
NumBytes = 0;
}
}
}
if (Index >= End)
break;
// Disassemble a real instruction or a data when disassemble all is
// provided
bool Disassembled = DisAsm->getInstruction(Inst, Size, Bytes.slice(Index),
SectionAddr + Index, DebugOut,
CommentStream);
if (Size == 0)
Size = 1;
PIP.printInst(*IP, Disassembled ? &Inst : nullptr,
Bytes.slice(Index, Size), SectionAddr + Index, outs(), "",
*STI, &SP);
outs() << CommentStream.str();
Comments.clear();
// Try to resolve the target of a call, tail call, etc. to a specific
// symbol.
if (MIA && (MIA->isCall(Inst) || MIA->isUnconditionalBranch(Inst) ||
MIA->isConditionalBranch(Inst))) {
uint64_t Target;
if (MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target)) {
// In a relocatable object, the target's section must reside in
// the same section as the call instruction or it is accessed
// through a relocation.
//
// In a non-relocatable object, the target may be in any section.
//
// N.B. We don't walk the relocations in the relocatable case yet.
auto *TargetSectionSymbols = &Symbols;
if (!Obj->isRelocatableObject()) {
auto SectionAddress = std::upper_bound(
SectionAddresses.begin(), SectionAddresses.end(), Target,
[](uint64_t LHS,
const std::pair<uint64_t, SectionRef> &RHS) {
return LHS < RHS.first;
});
if (SectionAddress != SectionAddresses.begin()) {
--SectionAddress;
TargetSectionSymbols = &AllSymbols[SectionAddress->second];
} else {
TargetSectionSymbols = nullptr;
}
}
// Find the first symbol in the section whose offset is less than
// or equal to the target.
if (TargetSectionSymbols) {
auto TargetSym = std::upper_bound(
TargetSectionSymbols->begin(), TargetSectionSymbols->end(),
Target, [](uint64_t LHS,
const std::tuple<uint64_t, StringRef, uint8_t> &RHS) {
return LHS < std::get<0>(RHS);
});
if (TargetSym != TargetSectionSymbols->begin()) {
--TargetSym;
uint64_t TargetAddress = std::get<0>(*TargetSym);
StringRef TargetName = std::get<1>(*TargetSym);
outs() << " <" << TargetName;
uint64_t Disp = Target - TargetAddress;
if (Disp)
outs() << "+0x" << utohexstr(Disp);
outs() << '>';
}
}
}
}
outs() << "\n";
// Print relocation for instruction.
while (rel_cur != rel_end) {
bool hidden = getHidden(*rel_cur);
uint64_t addr = rel_cur->getOffset();
SmallString<16> name;
SmallString<32> val;
// If this relocation is hidden, skip it.
if (hidden || ((SectionAddr + addr) < StartAddress)) {
++rel_cur;
continue;
}
// Stop when rel_cur's address is past the current instruction.
if (addr >= Index + Size) break;
rel_cur->getTypeName(name);
error(getRelocationValueString(*rel_cur, val));
outs() << format(Fmt.data(), SectionAddr + addr) << name
<< "\t" << val << "\n";
++rel_cur;
}
}
}
}
}
void llvm::PrintRelocations(const ObjectFile *Obj) {
StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 :
"%08" PRIx64;
// Regular objdump doesn't print relocations in non-relocatable object
// files.
if (!Obj->isRelocatableObject())
return;
for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
if (Section.relocation_begin() == Section.relocation_end())
continue;
StringRef secname;
error(Section.getName(secname));
outs() << "RELOCATION RECORDS FOR [" << secname << "]:\n";
for (const RelocationRef &Reloc : Section.relocations()) {
bool hidden = getHidden(Reloc);
uint64_t address = Reloc.getOffset();
SmallString<32> relocname;
SmallString<32> valuestr;
if (address < StartAddress || address > StopAddress || hidden)
continue;
Reloc.getTypeName(relocname);
error(getRelocationValueString(Reloc, valuestr));
outs() << format(Fmt.data(), address) << " " << relocname << " "
<< valuestr << "\n";
}
outs() << "\n";
}
}
void llvm::PrintSectionHeaders(const ObjectFile *Obj) {
outs() << "Sections:\n"
"Idx Name Size Address Type\n";
unsigned i = 0;
for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
StringRef Name;
error(Section.getName(Name));
uint64_t Address = Section.getAddress();
uint64_t Size = Section.getSize();
bool Text = Section.isText();
bool Data = Section.isData();
bool BSS = Section.isBSS();
std::string Type = (std::string(Text ? "TEXT " : "") +
(Data ? "DATA " : "") + (BSS ? "BSS" : ""));
outs() << format("%3d %-13s %08" PRIx64 " %016" PRIx64 " %s\n", i,
Name.str().c_str(), Size, Address, Type.c_str());
++i;
}
}
void llvm::PrintSectionContents(const ObjectFile *Obj) {
std::error_code EC;
for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
StringRef Name;
StringRef Contents;
error(Section.getName(Name));
uint64_t BaseAddr = Section.getAddress();
uint64_t Size = Section.getSize();
if (!Size)
continue;
outs() << "Contents of section " << Name << ":\n";
if (Section.isBSS()) {
outs() << format("<skipping contents of bss section at [%04" PRIx64
", %04" PRIx64 ")>\n",
BaseAddr, BaseAddr + Size);
continue;
}
error(Section.getContents(Contents));
// Dump out the content as hex and printable ascii characters.
for (std::size_t addr = 0, end = Contents.size(); addr < end; addr += 16) {
outs() << format(" %04" PRIx64 " ", BaseAddr + addr);
// Dump line of hex.
for (std::size_t i = 0; i < 16; ++i) {
if (i != 0 && i % 4 == 0)
outs() << ' ';
if (addr + i < end)
outs() << hexdigit((Contents[addr + i] >> 4) & 0xF, true)
<< hexdigit(Contents[addr + i] & 0xF, true);
else
outs() << " ";
}
// Print ascii.
outs() << " ";
for (std::size_t i = 0; i < 16 && addr + i < end; ++i) {
if (std::isprint(static_cast<unsigned char>(Contents[addr + i]) & 0xFF))
outs() << Contents[addr + i];
else
outs() << ".";
}
outs() << "\n";
}
}
}
void llvm::PrintSymbolTable(const ObjectFile *o, StringRef ArchiveName,
StringRef ArchitectureName) {
outs() << "SYMBOL TABLE:\n";
if (const COFFObjectFile *coff = dyn_cast<const COFFObjectFile>(o)) {
printCOFFSymbolTable(coff);
return;
}
for (const SymbolRef &Symbol : o->symbols()) {
Expected<uint64_t> AddressOrError = Symbol.getAddress();
if (!AddressOrError)
report_error(ArchiveName, o->getFileName(), AddressOrError.takeError(),
ArchitectureName);
uint64_t Address = *AddressOrError;
if ((Address < StartAddress) || (Address > StopAddress))
continue;
Expected<SymbolRef::Type> TypeOrError = Symbol.getType();
if (!TypeOrError)
report_error(ArchiveName, o->getFileName(), TypeOrError.takeError(),
ArchitectureName);
SymbolRef::Type Type = *TypeOrError;
uint32_t Flags = Symbol.getFlags();
Expected<section_iterator> SectionOrErr = Symbol.getSection();
if (!SectionOrErr)
report_error(ArchiveName, o->getFileName(), SectionOrErr.takeError(),
ArchitectureName);
section_iterator Section = *SectionOrErr;
StringRef Name;
if (Type == SymbolRef::ST_Debug && Section != o->section_end()) {
Section->getName(Name);
} else {
Expected<StringRef> NameOrErr = Symbol.getName();
if (!NameOrErr)
report_error(ArchiveName, o->getFileName(), NameOrErr.takeError(),
ArchitectureName);
Name = *NameOrErr;
}
bool Global = Flags & SymbolRef::SF_Global;
bool Weak = Flags & SymbolRef::SF_Weak;
bool Absolute = Flags & SymbolRef::SF_Absolute;
bool Common = Flags & SymbolRef::SF_Common;
bool Hidden = Flags & SymbolRef::SF_Hidden;
char GlobLoc = ' ';
if (Type != SymbolRef::ST_Unknown)
GlobLoc = Global ? 'g' : 'l';
char Debug = (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
? 'd' : ' ';
char FileFunc = ' ';
if (Type == SymbolRef::ST_File)
FileFunc = 'f';
else if (Type == SymbolRef::ST_Function)
FileFunc = 'F';
const char *Fmt = o->getBytesInAddress() > 4 ? "%016" PRIx64 :
"%08" PRIx64;
outs() << format(Fmt, Address) << " "
<< GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' '
<< (Weak ? 'w' : ' ') // Weak?
<< ' ' // Constructor. Not supported yet.
<< ' ' // Warning. Not supported yet.
<< ' ' // Indirect reference to another symbol.
<< Debug // Debugging (d) or dynamic (D) symbol.
<< FileFunc // Name of function (F), file (f) or object (O).
<< ' ';
if (Absolute) {
outs() << "*ABS*";
} else if (Common) {
outs() << "*COM*";
} else if (Section == o->section_end()) {
outs() << "*UND*";
} else {
if (const MachOObjectFile *MachO =
dyn_cast<const MachOObjectFile>(o)) {
DataRefImpl DR = Section->getRawDataRefImpl();
StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
outs() << SegmentName << ",";
}
StringRef SectionName;
error(Section->getName(SectionName));
outs() << SectionName;
}
outs() << '\t';
if (Common || isa<ELFObjectFileBase>(o)) {
uint64_t Val =
Common ? Symbol.getAlignment() : ELFSymbolRef(Symbol).getSize();
outs() << format("\t %08" PRIx64 " ", Val);
}
if (Hidden) {
outs() << ".hidden ";
}
outs() << Name
<< '\n';
}
}
static void PrintUnwindInfo(const ObjectFile *o) {
outs() << "Unwind info:\n\n";
if (const COFFObjectFile *coff = dyn_cast<COFFObjectFile>(o)) {
printCOFFUnwindInfo(coff);
} else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
printMachOUnwindInfo(MachO);
else {
// TODO: Extract DWARF dump tool to objdump.
errs() << "This operation is only currently supported "
"for COFF and MachO object files.\n";
return;
}
}
void llvm::printExportsTrie(const ObjectFile *o) {
outs() << "Exports trie:\n";
if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
printMachOExportsTrie(MachO);
else {
errs() << "This operation is only currently supported "
"for Mach-O executable files.\n";
return;
}
}
void llvm::printRebaseTable(ObjectFile *o) {
outs() << "Rebase table:\n";
if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
printMachORebaseTable(MachO);
else {
errs() << "This operation is only currently supported "
"for Mach-O executable files.\n";
return;
}
}
void llvm::printBindTable(ObjectFile *o) {
outs() << "Bind table:\n";
if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
printMachOBindTable(MachO);
else {
errs() << "This operation is only currently supported "
"for Mach-O executable files.\n";
return;
}
}
void llvm::printLazyBindTable(ObjectFile *o) {
outs() << "Lazy bind table:\n";
if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
printMachOLazyBindTable(MachO);
else {
errs() << "This operation is only currently supported "
"for Mach-O executable files.\n";
return;
}
}
void llvm::printWeakBindTable(ObjectFile *o) {
outs() << "Weak bind table:\n";
if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
printMachOWeakBindTable(MachO);
else {
errs() << "This operation is only currently supported "
"for Mach-O executable files.\n";
return;
}
}
/// Dump the raw contents of the __clangast section so the output can be piped
/// into llvm-bcanalyzer.
void llvm::printRawClangAST(const ObjectFile *Obj) {
if (outs().is_displayed()) {
errs() << "The -raw-clang-ast option will dump the raw binary contents of "
"the clang ast section.\n"
"Please redirect the output to a file or another program such as "
"llvm-bcanalyzer.\n";
return;
}
StringRef ClangASTSectionName("__clangast");
if (isa<COFFObjectFile>(Obj)) {
ClangASTSectionName = "clangast";
}
Optional<object::SectionRef> ClangASTSection;
for (auto Sec : ToolSectionFilter(*Obj)) {
StringRef Name;
Sec.getName(Name);
if (Name == ClangASTSectionName) {
ClangASTSection = Sec;
break;
}
}
if (!ClangASTSection)
return;
StringRef ClangASTContents;
error(ClangASTSection.getValue().getContents(ClangASTContents));
outs().write(ClangASTContents.data(), ClangASTContents.size());
}
static void printFaultMaps(const ObjectFile *Obj) {
const char *FaultMapSectionName = nullptr;
if (isa<ELFObjectFileBase>(Obj)) {
FaultMapSectionName = ".llvm_faultmaps";
} else if (isa<MachOObjectFile>(Obj)) {
FaultMapSectionName = "__llvm_faultmaps";
} else {
errs() << "This operation is only currently supported "
"for ELF and Mach-O executable files.\n";
return;
}
Optional<object::SectionRef> FaultMapSection;
for (auto Sec : ToolSectionFilter(*Obj)) {
StringRef Name;
Sec.getName(Name);
if (Name == FaultMapSectionName) {
FaultMapSection = Sec;
break;
}
}
outs() << "FaultMap table:\n";
if (!FaultMapSection.hasValue()) {
outs() << "<not found>\n";
return;
}
StringRef FaultMapContents;
error(FaultMapSection.getValue().getContents(FaultMapContents));
FaultMapParser FMP(FaultMapContents.bytes_begin(),
FaultMapContents.bytes_end());
outs() << FMP;
}
static void printPrivateFileHeaders(const ObjectFile *o, bool onlyFirst) {
if (o->isELF())
return printELFFileHeader(o);
if (o->isCOFF())
return printCOFFFileHeader(o);
if (o->isWasm())
return printWasmFileHeader(o);
if (o->isMachO()) {
printMachOFileHeader(o);
if (!onlyFirst)
printMachOLoadCommands(o);
return;
}
report_error(o->getFileName(), "Invalid/Unsupported object file format");
}
static void DumpObject(ObjectFile *o, const Archive *a = nullptr) {
StringRef ArchiveName = a != nullptr ? a->getFileName() : "";
// Avoid other output when using a raw option.
if (!RawClangAST) {
outs() << '\n';
if (a)
outs() << a->getFileName() << "(" << o->getFileName() << ")";
else
outs() << o->getFileName();
outs() << ":\tfile format " << o->getFileFormatName() << "\n\n";
}
if (Disassemble)
DisassembleObject(o, Relocations);
if (Relocations && !Disassemble)
PrintRelocations(o);
if (SectionHeaders)
PrintSectionHeaders(o);
if (SectionContents)
PrintSectionContents(o);
if (SymbolTable)
PrintSymbolTable(o, ArchiveName);
if (UnwindInfo)
PrintUnwindInfo(o);
if (PrivateHeaders || FirstPrivateHeader)
printPrivateFileHeaders(o, FirstPrivateHeader);
if (ExportsTrie)
printExportsTrie(o);
if (Rebase)
printRebaseTable(o);
if (Bind)
printBindTable(o);
if (LazyBind)
printLazyBindTable(o);
if (WeakBind)
printWeakBindTable(o);
if (RawClangAST)
printRawClangAST(o);
if (PrintFaultMaps)
printFaultMaps(o);
if (DwarfDumpType != DIDT_Null) {
std::unique_ptr<DIContext> DICtx = DWARFContext::create(*o);
// Dump the complete DWARF structure.
DIDumpOptions DumpOpts;
DumpOpts.DumpType = DwarfDumpType;
DumpOpts.DumpEH = true;
DICtx->dump(outs(), DumpOpts);
}
}
static void DumpObject(const COFFImportFile *I, const Archive *A) {
StringRef ArchiveName = A ? A->getFileName() : "";
// Avoid other output when using a raw option.
if (!RawClangAST)
outs() << '\n'
<< ArchiveName << "(" << I->getFileName() << ")"
<< ":\tfile format COFF-import-file"
<< "\n\n";
if (SymbolTable)
printCOFFSymbolTable(I);
}
/// @brief Dump each object file in \a a;
static void DumpArchive(const Archive *a) {
Error Err = Error::success();
for (auto &C : a->children(Err)) {
Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
if (!ChildOrErr) {
if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
report_error(a->getFileName(), C, std::move(E));
continue;
}
if (ObjectFile *o = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
DumpObject(o, a);
else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get()))
DumpObject(I, a);
else
report_error(a->getFileName(), object_error::invalid_file_type);
}
if (Err)
report_error(a->getFileName(), std::move(Err));
}
/// @brief Open file and figure out how to dump it.
static void DumpInput(StringRef file) {
// If we are using the Mach-O specific object file parser, then let it parse
// the file and process the command line options. So the -arch flags can
// be used to select specific slices, etc.
if (MachOOpt) {
ParseInputMachO(file);
return;
}
// Attempt to open the binary.
Expected<OwningBinary<Binary>> BinaryOrErr = createBinary(file);
if (!BinaryOrErr)
report_error(file, BinaryOrErr.takeError());
Binary &Binary = *BinaryOrErr.get().getBinary();
if (Archive *a = dyn_cast<Archive>(&Binary))
DumpArchive(a);
else if (ObjectFile *o = dyn_cast<ObjectFile>(&Binary))
DumpObject(o);
else
report_error(file, object_error::invalid_file_type);
}
int main(int argc, char **argv) {
// Print a stack trace if we signal out.
sys::PrintStackTraceOnErrorSignal(argv[0]);
PrettyStackTraceProgram X(argc, argv);
llvm_shutdown_obj Y; // Call llvm_shutdown() on exit.
// Initialize targets and assembly printers/parsers.
llvm::InitializeAllTargetInfos();
llvm::InitializeAllTargetMCs();
llvm::InitializeAllDisassemblers();
// Register the target printer for --version.
cl::AddExtraVersionPrinter(TargetRegistry::printRegisteredTargetsForVersion);
cl::ParseCommandLineOptions(argc, argv, "llvm object file dumper\n");
TripleName = Triple::normalize(TripleName);
ToolName = argv[0];
// Defaults to a.out if no filenames specified.
if (InputFilenames.size() == 0)
InputFilenames.push_back("a.out");
if (DisassembleAll || PrintSource || PrintLines)
Disassemble = true;
if (!Disassemble
&& !Relocations
&& !SectionHeaders
&& !SectionContents
&& !SymbolTable
&& !UnwindInfo
&& !PrivateHeaders
&& !FirstPrivateHeader
&& !ExportsTrie
&& !Rebase
&& !Bind
&& !LazyBind
&& !WeakBind
&& !RawClangAST
&& !(UniversalHeaders && MachOOpt)
&& !(ArchiveHeaders && MachOOpt)
&& !(IndirectSymbols && MachOOpt)
&& !(DataInCode && MachOOpt)
&& !(LinkOptHints && MachOOpt)
&& !(InfoPlist && MachOOpt)
&& !(DylibsUsed && MachOOpt)
&& !(DylibId && MachOOpt)
&& !(ObjcMetaData && MachOOpt)
&& !(FilterSections.size() != 0 && MachOOpt)
&& !PrintFaultMaps
&& DwarfDumpType == DIDT_Null) {
cl::PrintHelpMessage();
return 2;
}
std::for_each(InputFilenames.begin(), InputFilenames.end(),
DumpInput);
return EXIT_SUCCESS;
}