mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-24 03:33:20 +01:00
b5c890aa13
Many of these uses can get by with forward declarations. Hopefully this speeds up compilation after adding a single intrinsic. llvm-svn: 312759
708 lines
23 KiB
C++
708 lines
23 KiB
C++
//===- CallSite.h - Abstract Call & Invoke instrs ---------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the CallSite class, which is a handy wrapper for code that
|
|
// wants to treat Call and Invoke instructions in a generic way. When in non-
|
|
// mutation context (e.g. an analysis) ImmutableCallSite should be used.
|
|
// Finally, when some degree of customization is necessary between these two
|
|
// extremes, CallSiteBase<> can be supplied with fine-tuned parameters.
|
|
//
|
|
// NOTE: These classes are supposed to have "value semantics". So they should be
|
|
// passed by value, not by reference; they should not be "new"ed or "delete"d.
|
|
// They are efficiently copyable, assignable and constructable, with cost
|
|
// equivalent to copying a pointer (notice that they have only a single data
|
|
// member). The internal representation carries a flag which indicates which of
|
|
// the two variants is enclosed. This allows for cheaper checks when various
|
|
// accessors of CallSite are employed.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_IR_CALLSITE_H
|
|
#define LLVM_IR_CALLSITE_H
|
|
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/PointerIntPair.h"
|
|
#include "llvm/ADT/iterator_range.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/CallingConv.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Use.h"
|
|
#include "llvm/IR/User.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <iterator>
|
|
|
|
namespace llvm {
|
|
|
|
namespace Intrinsic {
|
|
enum ID : unsigned;
|
|
}
|
|
|
|
template <typename FunTy = const Function,
|
|
typename BBTy = const BasicBlock,
|
|
typename ValTy = const Value,
|
|
typename UserTy = const User,
|
|
typename UseTy = const Use,
|
|
typename InstrTy = const Instruction,
|
|
typename CallTy = const CallInst,
|
|
typename InvokeTy = const InvokeInst,
|
|
typename IterTy = User::const_op_iterator>
|
|
class CallSiteBase {
|
|
protected:
|
|
PointerIntPair<InstrTy*, 1, bool> I;
|
|
|
|
CallSiteBase() : I(nullptr, false) {}
|
|
CallSiteBase(CallTy *CI) : I(CI, true) { assert(CI); }
|
|
CallSiteBase(InvokeTy *II) : I(II, false) { assert(II); }
|
|
explicit CallSiteBase(ValTy *II) { *this = get(II); }
|
|
|
|
private:
|
|
/// This static method is like a constructor. It will create an appropriate
|
|
/// call site for a Call or Invoke instruction, but it can also create a null
|
|
/// initialized CallSiteBase object for something which is NOT a call site.
|
|
static CallSiteBase get(ValTy *V) {
|
|
if (InstrTy *II = dyn_cast<InstrTy>(V)) {
|
|
if (II->getOpcode() == Instruction::Call)
|
|
return CallSiteBase(static_cast<CallTy*>(II));
|
|
else if (II->getOpcode() == Instruction::Invoke)
|
|
return CallSiteBase(static_cast<InvokeTy*>(II));
|
|
}
|
|
return CallSiteBase();
|
|
}
|
|
|
|
public:
|
|
/// Return true if a CallInst is enclosed. Note that !isCall() does not mean
|
|
/// an InvokeInst is enclosed. It may also signify a NULL instruction pointer.
|
|
bool isCall() const { return I.getInt(); }
|
|
|
|
/// Return true if a InvokeInst is enclosed.
|
|
bool isInvoke() const { return getInstruction() && !I.getInt(); }
|
|
|
|
InstrTy *getInstruction() const { return I.getPointer(); }
|
|
InstrTy *operator->() const { return I.getPointer(); }
|
|
explicit operator bool() const { return I.getPointer(); }
|
|
|
|
/// Get the basic block containing the call site.
|
|
BBTy* getParent() const { return getInstruction()->getParent(); }
|
|
|
|
/// Return the pointer to function that is being called.
|
|
ValTy *getCalledValue() const {
|
|
assert(getInstruction() && "Not a call or invoke instruction!");
|
|
return *getCallee();
|
|
}
|
|
|
|
/// Return the function being called if this is a direct call, otherwise
|
|
/// return null (if it's an indirect call).
|
|
FunTy *getCalledFunction() const {
|
|
return dyn_cast<FunTy>(getCalledValue());
|
|
}
|
|
|
|
/// Return true if the callsite is an indirect call.
|
|
bool isIndirectCall() const {
|
|
Value *V = getCalledValue();
|
|
if (!V)
|
|
return false;
|
|
if (isa<FunTy>(V) || isa<Constant>(V))
|
|
return false;
|
|
if (CallInst *CI = dyn_cast<CallInst>(getInstruction())) {
|
|
if (CI->isInlineAsm())
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Set the callee to the specified value.
|
|
void setCalledFunction(Value *V) {
|
|
assert(getInstruction() && "Not a call or invoke instruction!");
|
|
*getCallee() = V;
|
|
}
|
|
|
|
/// Return the intrinsic ID of the intrinsic called by this CallSite,
|
|
/// or Intrinsic::not_intrinsic if the called function is not an
|
|
/// intrinsic, or if this CallSite is an indirect call.
|
|
Intrinsic::ID getIntrinsicID() const {
|
|
if (auto *F = getCalledFunction())
|
|
return F->getIntrinsicID();
|
|
// Don't use Intrinsic::not_intrinsic, as it will require pulling
|
|
// Intrinsics.h into every header that uses CallSite.
|
|
return static_cast<Intrinsic::ID>(0);
|
|
}
|
|
|
|
/// Determine whether the passed iterator points to the callee operand's Use.
|
|
bool isCallee(Value::const_user_iterator UI) const {
|
|
return isCallee(&UI.getUse());
|
|
}
|
|
|
|
/// Determine whether this Use is the callee operand's Use.
|
|
bool isCallee(const Use *U) const { return getCallee() == U; }
|
|
|
|
/// Determine whether the passed iterator points to an argument operand.
|
|
bool isArgOperand(Value::const_user_iterator UI) const {
|
|
return isArgOperand(&UI.getUse());
|
|
}
|
|
|
|
/// Determine whether the passed use points to an argument operand.
|
|
bool isArgOperand(const Use *U) const {
|
|
assert(getInstruction() == U->getUser());
|
|
return arg_begin() <= U && U < arg_end();
|
|
}
|
|
|
|
/// Determine whether the passed iterator points to a bundle operand.
|
|
bool isBundleOperand(Value::const_user_iterator UI) const {
|
|
return isBundleOperand(&UI.getUse());
|
|
}
|
|
|
|
/// Determine whether the passed use points to a bundle operand.
|
|
bool isBundleOperand(const Use *U) const {
|
|
assert(getInstruction() == U->getUser());
|
|
if (!hasOperandBundles())
|
|
return false;
|
|
unsigned OperandNo = U - (*this)->op_begin();
|
|
return getBundleOperandsStartIndex() <= OperandNo &&
|
|
OperandNo < getBundleOperandsEndIndex();
|
|
}
|
|
|
|
/// Determine whether the passed iterator points to a data operand.
|
|
bool isDataOperand(Value::const_user_iterator UI) const {
|
|
return isDataOperand(&UI.getUse());
|
|
}
|
|
|
|
/// Determine whether the passed use points to a data operand.
|
|
bool isDataOperand(const Use *U) const {
|
|
return data_operands_begin() <= U && U < data_operands_end();
|
|
}
|
|
|
|
ValTy *getArgument(unsigned ArgNo) const {
|
|
assert(arg_begin() + ArgNo < arg_end() && "Argument # out of range!");
|
|
return *(arg_begin() + ArgNo);
|
|
}
|
|
|
|
void setArgument(unsigned ArgNo, Value* newVal) {
|
|
assert(getInstruction() && "Not a call or invoke instruction!");
|
|
assert(arg_begin() + ArgNo < arg_end() && "Argument # out of range!");
|
|
getInstruction()->setOperand(ArgNo, newVal);
|
|
}
|
|
|
|
/// Given a value use iterator, returns the argument that corresponds to it.
|
|
/// Iterator must actually correspond to an argument.
|
|
unsigned getArgumentNo(Value::const_user_iterator I) const {
|
|
return getArgumentNo(&I.getUse());
|
|
}
|
|
|
|
/// Given a use for an argument, get the argument number that corresponds to
|
|
/// it.
|
|
unsigned getArgumentNo(const Use *U) const {
|
|
assert(getInstruction() && "Not a call or invoke instruction!");
|
|
assert(isArgOperand(U) && "Argument # out of range!");
|
|
return U - arg_begin();
|
|
}
|
|
|
|
/// The type of iterator to use when looping over actual arguments at this
|
|
/// call site.
|
|
using arg_iterator = IterTy;
|
|
|
|
iterator_range<IterTy> args() const {
|
|
return make_range(arg_begin(), arg_end());
|
|
}
|
|
bool arg_empty() const { return arg_end() == arg_begin(); }
|
|
unsigned arg_size() const { return unsigned(arg_end() - arg_begin()); }
|
|
|
|
/// Given a value use iterator, return the data operand corresponding to it.
|
|
/// Iterator must actually correspond to a data operand.
|
|
unsigned getDataOperandNo(Value::const_user_iterator UI) const {
|
|
return getDataOperandNo(&UI.getUse());
|
|
}
|
|
|
|
/// Given a use for a data operand, get the data operand number that
|
|
/// corresponds to it.
|
|
unsigned getDataOperandNo(const Use *U) const {
|
|
assert(getInstruction() && "Not a call or invoke instruction!");
|
|
assert(isDataOperand(U) && "Data operand # out of range!");
|
|
return U - data_operands_begin();
|
|
}
|
|
|
|
/// Type of iterator to use when looping over data operands at this call site
|
|
/// (see below).
|
|
using data_operand_iterator = IterTy;
|
|
|
|
/// data_operands_begin/data_operands_end - Return iterators iterating over
|
|
/// the call / invoke argument list and bundle operands. For invokes, this is
|
|
/// the set of instruction operands except the invoke target and the two
|
|
/// successor blocks; and for calls this is the set of instruction operands
|
|
/// except the call target.
|
|
|
|
IterTy data_operands_begin() const {
|
|
assert(getInstruction() && "Not a call or invoke instruction!");
|
|
return (*this)->op_begin();
|
|
}
|
|
IterTy data_operands_end() const {
|
|
assert(getInstruction() && "Not a call or invoke instruction!");
|
|
return (*this)->op_end() - (isCall() ? 1 : 3);
|
|
}
|
|
iterator_range<IterTy> data_ops() const {
|
|
return make_range(data_operands_begin(), data_operands_end());
|
|
}
|
|
bool data_operands_empty() const {
|
|
return data_operands_end() == data_operands_begin();
|
|
}
|
|
unsigned data_operands_size() const {
|
|
return std::distance(data_operands_begin(), data_operands_end());
|
|
}
|
|
|
|
/// Return the type of the instruction that generated this call site.
|
|
Type *getType() const { return (*this)->getType(); }
|
|
|
|
/// Return the caller function for this call site.
|
|
FunTy *getCaller() const { return (*this)->getParent()->getParent(); }
|
|
|
|
/// Tests if this call site must be tail call optimized. Only a CallInst can
|
|
/// be tail call optimized.
|
|
bool isMustTailCall() const {
|
|
return isCall() && cast<CallInst>(getInstruction())->isMustTailCall();
|
|
}
|
|
|
|
/// Tests if this call site is marked as a tail call.
|
|
bool isTailCall() const {
|
|
return isCall() && cast<CallInst>(getInstruction())->isTailCall();
|
|
}
|
|
|
|
#define CALLSITE_DELEGATE_GETTER(METHOD) \
|
|
InstrTy *II = getInstruction(); \
|
|
return isCall() \
|
|
? cast<CallInst>(II)->METHOD \
|
|
: cast<InvokeInst>(II)->METHOD
|
|
|
|
#define CALLSITE_DELEGATE_SETTER(METHOD) \
|
|
InstrTy *II = getInstruction(); \
|
|
if (isCall()) \
|
|
cast<CallInst>(II)->METHOD; \
|
|
else \
|
|
cast<InvokeInst>(II)->METHOD
|
|
|
|
unsigned getNumArgOperands() const {
|
|
CALLSITE_DELEGATE_GETTER(getNumArgOperands());
|
|
}
|
|
|
|
ValTy *getArgOperand(unsigned i) const {
|
|
CALLSITE_DELEGATE_GETTER(getArgOperand(i));
|
|
}
|
|
|
|
ValTy *getReturnedArgOperand() const {
|
|
CALLSITE_DELEGATE_GETTER(getReturnedArgOperand());
|
|
}
|
|
|
|
bool isInlineAsm() const {
|
|
if (isCall())
|
|
return cast<CallInst>(getInstruction())->isInlineAsm();
|
|
return false;
|
|
}
|
|
|
|
/// Get the calling convention of the call.
|
|
CallingConv::ID getCallingConv() const {
|
|
CALLSITE_DELEGATE_GETTER(getCallingConv());
|
|
}
|
|
/// Set the calling convention of the call.
|
|
void setCallingConv(CallingConv::ID CC) {
|
|
CALLSITE_DELEGATE_SETTER(setCallingConv(CC));
|
|
}
|
|
|
|
FunctionType *getFunctionType() const {
|
|
CALLSITE_DELEGATE_GETTER(getFunctionType());
|
|
}
|
|
|
|
void mutateFunctionType(FunctionType *Ty) const {
|
|
CALLSITE_DELEGATE_SETTER(mutateFunctionType(Ty));
|
|
}
|
|
|
|
/// Get the parameter attributes of the call.
|
|
AttributeList getAttributes() const {
|
|
CALLSITE_DELEGATE_GETTER(getAttributes());
|
|
}
|
|
/// Set the parameter attributes of the call.
|
|
void setAttributes(AttributeList PAL) {
|
|
CALLSITE_DELEGATE_SETTER(setAttributes(PAL));
|
|
}
|
|
|
|
void addAttribute(unsigned i, Attribute::AttrKind Kind) {
|
|
CALLSITE_DELEGATE_SETTER(addAttribute(i, Kind));
|
|
}
|
|
|
|
void addAttribute(unsigned i, Attribute Attr) {
|
|
CALLSITE_DELEGATE_SETTER(addAttribute(i, Attr));
|
|
}
|
|
|
|
void addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
|
|
CALLSITE_DELEGATE_SETTER(addParamAttr(ArgNo, Kind));
|
|
}
|
|
|
|
void removeAttribute(unsigned i, Attribute::AttrKind Kind) {
|
|
CALLSITE_DELEGATE_SETTER(removeAttribute(i, Kind));
|
|
}
|
|
|
|
void removeAttribute(unsigned i, StringRef Kind) {
|
|
CALLSITE_DELEGATE_SETTER(removeAttribute(i, Kind));
|
|
}
|
|
|
|
void removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
|
|
CALLSITE_DELEGATE_SETTER(removeParamAttr(ArgNo, Kind));
|
|
}
|
|
|
|
/// Return true if this function has the given attribute.
|
|
bool hasFnAttr(Attribute::AttrKind Kind) const {
|
|
CALLSITE_DELEGATE_GETTER(hasFnAttr(Kind));
|
|
}
|
|
|
|
/// Return true if this function has the given attribute.
|
|
bool hasFnAttr(StringRef Kind) const {
|
|
CALLSITE_DELEGATE_GETTER(hasFnAttr(Kind));
|
|
}
|
|
|
|
/// Return true if this return value has the given attribute.
|
|
bool hasRetAttr(Attribute::AttrKind Kind) const {
|
|
CALLSITE_DELEGATE_GETTER(hasRetAttr(Kind));
|
|
}
|
|
|
|
/// Return true if the call or the callee has the given attribute.
|
|
bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const {
|
|
CALLSITE_DELEGATE_GETTER(paramHasAttr(ArgNo, Kind));
|
|
}
|
|
|
|
Attribute getAttribute(unsigned i, Attribute::AttrKind Kind) const {
|
|
CALLSITE_DELEGATE_GETTER(getAttribute(i, Kind));
|
|
}
|
|
|
|
Attribute getAttribute(unsigned i, StringRef Kind) const {
|
|
CALLSITE_DELEGATE_GETTER(getAttribute(i, Kind));
|
|
}
|
|
|
|
/// Return true if the data operand at index \p i directly or indirectly has
|
|
/// the attribute \p A.
|
|
///
|
|
/// Normal call or invoke arguments have per operand attributes, as specified
|
|
/// in the attribute set attached to this instruction, while operand bundle
|
|
/// operands may have some attributes implied by the type of its containing
|
|
/// operand bundle.
|
|
bool dataOperandHasImpliedAttr(unsigned i, Attribute::AttrKind Kind) const {
|
|
CALLSITE_DELEGATE_GETTER(dataOperandHasImpliedAttr(i, Kind));
|
|
}
|
|
|
|
/// Extract the alignment of the return value.
|
|
unsigned getRetAlignment() const {
|
|
CALLSITE_DELEGATE_GETTER(getRetAlignment());
|
|
}
|
|
|
|
/// Extract the alignment for a call or parameter (0=unknown).
|
|
unsigned getParamAlignment(unsigned ArgNo) const {
|
|
CALLSITE_DELEGATE_GETTER(getParamAlignment(ArgNo));
|
|
}
|
|
|
|
/// Extract the number of dereferenceable bytes for a call or parameter
|
|
/// (0=unknown).
|
|
uint64_t getDereferenceableBytes(unsigned i) const {
|
|
CALLSITE_DELEGATE_GETTER(getDereferenceableBytes(i));
|
|
}
|
|
|
|
/// Extract the number of dereferenceable_or_null bytes for a call or
|
|
/// parameter (0=unknown).
|
|
uint64_t getDereferenceableOrNullBytes(unsigned i) const {
|
|
CALLSITE_DELEGATE_GETTER(getDereferenceableOrNullBytes(i));
|
|
}
|
|
|
|
/// Determine if the return value is marked with NoAlias attribute.
|
|
bool returnDoesNotAlias() const {
|
|
CALLSITE_DELEGATE_GETTER(returnDoesNotAlias());
|
|
}
|
|
|
|
/// Return true if the call should not be treated as a call to a builtin.
|
|
bool isNoBuiltin() const {
|
|
CALLSITE_DELEGATE_GETTER(isNoBuiltin());
|
|
}
|
|
|
|
/// Return true if the call requires strict floating point semantics.
|
|
bool isStrictFP() const {
|
|
CALLSITE_DELEGATE_GETTER(isStrictFP());
|
|
}
|
|
|
|
/// Return true if the call should not be inlined.
|
|
bool isNoInline() const {
|
|
CALLSITE_DELEGATE_GETTER(isNoInline());
|
|
}
|
|
void setIsNoInline(bool Value = true) {
|
|
CALLSITE_DELEGATE_SETTER(setIsNoInline(Value));
|
|
}
|
|
|
|
/// Determine if the call does not access memory.
|
|
bool doesNotAccessMemory() const {
|
|
CALLSITE_DELEGATE_GETTER(doesNotAccessMemory());
|
|
}
|
|
void setDoesNotAccessMemory() {
|
|
CALLSITE_DELEGATE_SETTER(setDoesNotAccessMemory());
|
|
}
|
|
|
|
/// Determine if the call does not access or only reads memory.
|
|
bool onlyReadsMemory() const {
|
|
CALLSITE_DELEGATE_GETTER(onlyReadsMemory());
|
|
}
|
|
void setOnlyReadsMemory() {
|
|
CALLSITE_DELEGATE_SETTER(setOnlyReadsMemory());
|
|
}
|
|
|
|
/// Determine if the call does not access or only writes memory.
|
|
bool doesNotReadMemory() const {
|
|
CALLSITE_DELEGATE_GETTER(doesNotReadMemory());
|
|
}
|
|
void setDoesNotReadMemory() {
|
|
CALLSITE_DELEGATE_SETTER(setDoesNotReadMemory());
|
|
}
|
|
|
|
/// Determine if the call can access memmory only using pointers based
|
|
/// on its arguments.
|
|
bool onlyAccessesArgMemory() const {
|
|
CALLSITE_DELEGATE_GETTER(onlyAccessesArgMemory());
|
|
}
|
|
void setOnlyAccessesArgMemory() {
|
|
CALLSITE_DELEGATE_SETTER(setOnlyAccessesArgMemory());
|
|
}
|
|
|
|
/// Determine if the call cannot return.
|
|
bool doesNotReturn() const {
|
|
CALLSITE_DELEGATE_GETTER(doesNotReturn());
|
|
}
|
|
void setDoesNotReturn() {
|
|
CALLSITE_DELEGATE_SETTER(setDoesNotReturn());
|
|
}
|
|
|
|
/// Determine if the call cannot unwind.
|
|
bool doesNotThrow() const {
|
|
CALLSITE_DELEGATE_GETTER(doesNotThrow());
|
|
}
|
|
void setDoesNotThrow() {
|
|
CALLSITE_DELEGATE_SETTER(setDoesNotThrow());
|
|
}
|
|
|
|
/// Determine if the call can be duplicated.
|
|
bool cannotDuplicate() const {
|
|
CALLSITE_DELEGATE_GETTER(cannotDuplicate());
|
|
}
|
|
void setCannotDuplicate() {
|
|
CALLSITE_DELEGATE_SETTER(setCannotDuplicate());
|
|
}
|
|
|
|
/// Determine if the call is convergent.
|
|
bool isConvergent() const {
|
|
CALLSITE_DELEGATE_GETTER(isConvergent());
|
|
}
|
|
void setConvergent() {
|
|
CALLSITE_DELEGATE_SETTER(setConvergent());
|
|
}
|
|
void setNotConvergent() {
|
|
CALLSITE_DELEGATE_SETTER(setNotConvergent());
|
|
}
|
|
|
|
unsigned getNumOperandBundles() const {
|
|
CALLSITE_DELEGATE_GETTER(getNumOperandBundles());
|
|
}
|
|
|
|
bool hasOperandBundles() const {
|
|
CALLSITE_DELEGATE_GETTER(hasOperandBundles());
|
|
}
|
|
|
|
unsigned getBundleOperandsStartIndex() const {
|
|
CALLSITE_DELEGATE_GETTER(getBundleOperandsStartIndex());
|
|
}
|
|
|
|
unsigned getBundleOperandsEndIndex() const {
|
|
CALLSITE_DELEGATE_GETTER(getBundleOperandsEndIndex());
|
|
}
|
|
|
|
unsigned getNumTotalBundleOperands() const {
|
|
CALLSITE_DELEGATE_GETTER(getNumTotalBundleOperands());
|
|
}
|
|
|
|
OperandBundleUse getOperandBundleAt(unsigned Index) const {
|
|
CALLSITE_DELEGATE_GETTER(getOperandBundleAt(Index));
|
|
}
|
|
|
|
Optional<OperandBundleUse> getOperandBundle(StringRef Name) const {
|
|
CALLSITE_DELEGATE_GETTER(getOperandBundle(Name));
|
|
}
|
|
|
|
Optional<OperandBundleUse> getOperandBundle(uint32_t ID) const {
|
|
CALLSITE_DELEGATE_GETTER(getOperandBundle(ID));
|
|
}
|
|
|
|
unsigned countOperandBundlesOfType(uint32_t ID) const {
|
|
CALLSITE_DELEGATE_GETTER(countOperandBundlesOfType(ID));
|
|
}
|
|
|
|
bool isBundleOperand(unsigned Idx) const {
|
|
CALLSITE_DELEGATE_GETTER(isBundleOperand(Idx));
|
|
}
|
|
|
|
IterTy arg_begin() const {
|
|
CALLSITE_DELEGATE_GETTER(arg_begin());
|
|
}
|
|
|
|
IterTy arg_end() const {
|
|
CALLSITE_DELEGATE_GETTER(arg_end());
|
|
}
|
|
|
|
#undef CALLSITE_DELEGATE_GETTER
|
|
#undef CALLSITE_DELEGATE_SETTER
|
|
|
|
void getOperandBundlesAsDefs(SmallVectorImpl<OperandBundleDef> &Defs) const {
|
|
const Instruction *II = getInstruction();
|
|
// Since this is actually a getter that "looks like" a setter, don't use the
|
|
// above macros to avoid confusion.
|
|
if (isCall())
|
|
cast<CallInst>(II)->getOperandBundlesAsDefs(Defs);
|
|
else
|
|
cast<InvokeInst>(II)->getOperandBundlesAsDefs(Defs);
|
|
}
|
|
|
|
/// Determine whether this data operand is not captured.
|
|
bool doesNotCapture(unsigned OpNo) const {
|
|
return dataOperandHasImpliedAttr(OpNo + 1, Attribute::NoCapture);
|
|
}
|
|
|
|
/// Determine whether this argument is passed by value.
|
|
bool isByValArgument(unsigned ArgNo) const {
|
|
return paramHasAttr(ArgNo, Attribute::ByVal);
|
|
}
|
|
|
|
/// Determine whether this argument is passed in an alloca.
|
|
bool isInAllocaArgument(unsigned ArgNo) const {
|
|
return paramHasAttr(ArgNo, Attribute::InAlloca);
|
|
}
|
|
|
|
/// Determine whether this argument is passed by value or in an alloca.
|
|
bool isByValOrInAllocaArgument(unsigned ArgNo) const {
|
|
return paramHasAttr(ArgNo, Attribute::ByVal) ||
|
|
paramHasAttr(ArgNo, Attribute::InAlloca);
|
|
}
|
|
|
|
/// Determine if there are is an inalloca argument. Only the last argument can
|
|
/// have the inalloca attribute.
|
|
bool hasInAllocaArgument() const {
|
|
return !arg_empty() && paramHasAttr(arg_size() - 1, Attribute::InAlloca);
|
|
}
|
|
|
|
bool doesNotAccessMemory(unsigned OpNo) const {
|
|
return dataOperandHasImpliedAttr(OpNo + 1, Attribute::ReadNone);
|
|
}
|
|
|
|
bool onlyReadsMemory(unsigned OpNo) const {
|
|
return dataOperandHasImpliedAttr(OpNo + 1, Attribute::ReadOnly) ||
|
|
dataOperandHasImpliedAttr(OpNo + 1, Attribute::ReadNone);
|
|
}
|
|
|
|
bool doesNotReadMemory(unsigned OpNo) const {
|
|
return dataOperandHasImpliedAttr(OpNo + 1, Attribute::WriteOnly) ||
|
|
dataOperandHasImpliedAttr(OpNo + 1, Attribute::ReadNone);
|
|
}
|
|
|
|
/// Return true if the return value is known to be not null.
|
|
/// This may be because it has the nonnull attribute, or because at least
|
|
/// one byte is dereferenceable and the pointer is in addrspace(0).
|
|
bool isReturnNonNull() const {
|
|
if (hasRetAttr(Attribute::NonNull))
|
|
return true;
|
|
else if (getDereferenceableBytes(AttributeList::ReturnIndex) > 0 &&
|
|
getType()->getPointerAddressSpace() == 0)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Returns true if this CallSite passes the given Value* as an argument to
|
|
/// the called function.
|
|
bool hasArgument(const Value *Arg) const {
|
|
for (arg_iterator AI = this->arg_begin(), E = this->arg_end(); AI != E;
|
|
++AI)
|
|
if (AI->get() == Arg)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
private:
|
|
IterTy getCallee() const {
|
|
if (isCall()) // Skip Callee
|
|
return cast<CallInst>(getInstruction())->op_end() - 1;
|
|
else // Skip BB, BB, Callee
|
|
return cast<InvokeInst>(getInstruction())->op_end() - 3;
|
|
}
|
|
};
|
|
|
|
class CallSite : public CallSiteBase<Function, BasicBlock, Value, User, Use,
|
|
Instruction, CallInst, InvokeInst,
|
|
User::op_iterator> {
|
|
public:
|
|
CallSite() = default;
|
|
CallSite(CallSiteBase B) : CallSiteBase(B) {}
|
|
CallSite(CallInst *CI) : CallSiteBase(CI) {}
|
|
CallSite(InvokeInst *II) : CallSiteBase(II) {}
|
|
explicit CallSite(Instruction *II) : CallSiteBase(II) {}
|
|
explicit CallSite(Value *V) : CallSiteBase(V) {}
|
|
|
|
bool operator==(const CallSite &CS) const { return I == CS.I; }
|
|
bool operator!=(const CallSite &CS) const { return I != CS.I; }
|
|
bool operator<(const CallSite &CS) const {
|
|
return getInstruction() < CS.getInstruction();
|
|
}
|
|
|
|
private:
|
|
friend struct DenseMapInfo<CallSite>;
|
|
|
|
User::op_iterator getCallee() const;
|
|
};
|
|
|
|
template <> struct DenseMapInfo<CallSite> {
|
|
using BaseInfo = DenseMapInfo<decltype(CallSite::I)>;
|
|
|
|
static CallSite getEmptyKey() {
|
|
CallSite CS;
|
|
CS.I = BaseInfo::getEmptyKey();
|
|
return CS;
|
|
}
|
|
|
|
static CallSite getTombstoneKey() {
|
|
CallSite CS;
|
|
CS.I = BaseInfo::getTombstoneKey();
|
|
return CS;
|
|
}
|
|
|
|
static unsigned getHashValue(const CallSite &CS) {
|
|
return BaseInfo::getHashValue(CS.I);
|
|
}
|
|
|
|
static bool isEqual(const CallSite &LHS, const CallSite &RHS) {
|
|
return LHS == RHS;
|
|
}
|
|
};
|
|
|
|
/// Establish a view to a call site for examination.
|
|
class ImmutableCallSite : public CallSiteBase<> {
|
|
public:
|
|
ImmutableCallSite() = default;
|
|
ImmutableCallSite(const CallInst *CI) : CallSiteBase(CI) {}
|
|
ImmutableCallSite(const InvokeInst *II) : CallSiteBase(II) {}
|
|
explicit ImmutableCallSite(const Instruction *II) : CallSiteBase(II) {}
|
|
explicit ImmutableCallSite(const Value *V) : CallSiteBase(V) {}
|
|
ImmutableCallSite(CallSite CS) : CallSiteBase(CS.getInstruction()) {}
|
|
};
|
|
|
|
} // end namespace llvm
|
|
|
|
#endif // LLVM_IR_CALLSITE_H
|