1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-19 02:52:53 +02:00
llvm-mirror/lib/Target/AArch64/AArch64Subtarget.cpp
Oliver Stannard 55e6d9804d [AArch64] Add subtarget features for ARMv8.2-A
This adds subtarget features for ARMv8.2-A, which builds on (and
requires the features from) ARMv8.1-A. Most assembler-visible features
of ARMv8.2-A are system instructions, and are all required parts of the
architecture, so just depend on the HasV8_2aOps subtarget feature. There
is also one large, optional feature, which adds 16-bit floating point
versions of all existing floating-point instructions (VFP and SIMD),
this is represented by the FeatureFullFP16 subtarget feature.

Differential Revision: http://reviews.llvm.org/D15013

llvm-svn: 254154
2015-11-26 15:23:32 +00:00

154 lines
5.7 KiB
C++

//===-- AArch64Subtarget.cpp - AArch64 Subtarget Information ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the AArch64 specific subclass of TargetSubtarget.
//
//===----------------------------------------------------------------------===//
#include "AArch64InstrInfo.h"
#include "AArch64PBQPRegAlloc.h"
#include "AArch64Subtarget.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/MachineScheduler.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/Support/TargetRegistry.h"
using namespace llvm;
#define DEBUG_TYPE "aarch64-subtarget"
#define GET_SUBTARGETINFO_CTOR
#define GET_SUBTARGETINFO_TARGET_DESC
#include "AArch64GenSubtargetInfo.inc"
static cl::opt<bool>
EnableEarlyIfConvert("aarch64-early-ifcvt", cl::desc("Enable the early if "
"converter pass"), cl::init(true), cl::Hidden);
// If OS supports TBI, use this flag to enable it.
static cl::opt<bool>
UseAddressTopByteIgnored("aarch64-use-tbi", cl::desc("Assume that top byte of "
"an address is ignored"), cl::init(false), cl::Hidden);
AArch64Subtarget &
AArch64Subtarget::initializeSubtargetDependencies(StringRef FS) {
// Determine default and user-specified characteristics
if (CPUString.empty())
CPUString = "generic";
ParseSubtargetFeatures(CPUString, FS);
return *this;
}
AArch64Subtarget::AArch64Subtarget(const Triple &TT, const std::string &CPU,
const std::string &FS,
const TargetMachine &TM, bool LittleEndian)
: AArch64GenSubtargetInfo(TT, CPU, FS), ARMProcFamily(Others),
HasV8_1aOps(false), HasV8_2aOps(false), HasFPARMv8(false), HasNEON(false),
HasCrypto(false), HasCRC(false), HasPerfMon(false), HasFullFP16(false),
HasZeroCycleRegMove(false), HasZeroCycleZeroing(false),
StrictAlign(false), ReserveX18(TT.isOSDarwin()), IsLittle(LittleEndian),
CPUString(CPU), TargetTriple(TT), FrameLowering(),
InstrInfo(initializeSubtargetDependencies(FS)), TSInfo(),
TLInfo(TM, *this) {}
/// ClassifyGlobalReference - Find the target operand flags that describe
/// how a global value should be referenced for the current subtarget.
unsigned char
AArch64Subtarget::ClassifyGlobalReference(const GlobalValue *GV,
const TargetMachine &TM) const {
bool isDef = GV->isStrongDefinitionForLinker();
// MachO large model always goes via a GOT, simply to get a single 8-byte
// absolute relocation on all global addresses.
if (TM.getCodeModel() == CodeModel::Large && isTargetMachO())
return AArch64II::MO_GOT;
// The small code mode's direct accesses use ADRP, which cannot necessarily
// produce the value 0 (if the code is above 4GB).
if (TM.getCodeModel() == CodeModel::Small && GV->hasExternalWeakLinkage()) {
// In PIC mode use the GOT, but in absolute mode use a constant pool load.
if (TM.getRelocationModel() == Reloc::Static)
return AArch64II::MO_CONSTPOOL;
else
return AArch64II::MO_GOT;
}
// If symbol visibility is hidden, the extra load is not needed if
// the symbol is definitely defined in the current translation unit.
// The handling of non-hidden symbols in PIC mode is rather target-dependent:
// + On MachO, if the symbol is defined in this module the GOT can be
// skipped.
// + On ELF, the R_AARCH64_COPY relocation means that even symbols actually
// defined could end up in unexpected places. Use a GOT.
if (TM.getRelocationModel() != Reloc::Static && GV->hasDefaultVisibility()) {
if (isTargetMachO())
return isDef ? AArch64II::MO_NO_FLAG : AArch64II::MO_GOT;
else
// No need to go through the GOT for local symbols on ELF.
return GV->hasLocalLinkage() ? AArch64II::MO_NO_FLAG : AArch64II::MO_GOT;
}
return AArch64II::MO_NO_FLAG;
}
/// This function returns the name of a function which has an interface
/// like the non-standard bzero function, if such a function exists on
/// the current subtarget and it is considered prefereable over
/// memset with zero passed as the second argument. Otherwise it
/// returns null.
const char *AArch64Subtarget::getBZeroEntry() const {
// Prefer bzero on Darwin only.
if(isTargetDarwin())
return "bzero";
return nullptr;
}
void AArch64Subtarget::overrideSchedPolicy(MachineSchedPolicy &Policy,
MachineInstr *begin, MachineInstr *end,
unsigned NumRegionInstrs) const {
// LNT run (at least on Cyclone) showed reasonably significant gains for
// bi-directional scheduling. 253.perlbmk.
Policy.OnlyTopDown = false;
Policy.OnlyBottomUp = false;
// Enabling or Disabling the latency heuristic is a close call: It seems to
// help nearly no benchmark on out-of-order architectures, on the other hand
// it regresses register pressure on a few benchmarking.
if (isCyclone())
Policy.DisableLatencyHeuristic = true;
}
bool AArch64Subtarget::enableEarlyIfConversion() const {
return EnableEarlyIfConvert;
}
bool AArch64Subtarget::supportsAddressTopByteIgnored() const {
if (!UseAddressTopByteIgnored)
return false;
if (TargetTriple.isiOS()) {
unsigned Major, Minor, Micro;
TargetTriple.getiOSVersion(Major, Minor, Micro);
return Major >= 8;
}
return false;
}
std::unique_ptr<PBQPRAConstraint>
AArch64Subtarget::getCustomPBQPConstraints() const {
if (!isCortexA57())
return nullptr;
return llvm::make_unique<A57ChainingConstraint>();
}