1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 03:02:36 +01:00
llvm-mirror/lib/Transforms/InstCombine/InstCombineInternal.h
Nikita Popov 730509657a [InstCombine] DCE instructions earlier
When InstCombine initially populates the worklist, it already
performs constant folding and DCE. However, as the instructions
are initially visited in program order, this DCE can pick up only
the last instruction of a dead chain, the rest would only get
picked up in the main InstCombine run.

To avoid this, we instead perform the DCE in separate pass over the
collected instructions in reverse order, which will allow us to
pick up full dead instruction chains. We already need to do this
reverse iteration anyway to populate the worklist, so this
shouldn't add extra cost.

This by itself only fixes a small part of the problem though:
The same basic issue also applies during the main InstCombine loop.
We generally always want DCE to occur as early as possible,
because it will allow one-use folds to happen. Address this by also
performing DCE while adding deferred instructions to the main worklist.

This drops the number of tests that perform more than 2 InstCombine
iterations from ~80 to ~40. There's some spurious test changes due
to operand order / icmp toggling.

Differential Revision: https://reviews.llvm.org/D75008
2020-02-27 18:45:59 +01:00

1019 lines
42 KiB
C++

//===- InstCombineInternal.h - InstCombine pass internals -------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
///
/// This file provides internal interfaces used to implement the InstCombine.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
#define LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/TargetFolder.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
#include "llvm/Transforms/Utils/Local.h"
#include <cassert>
#include <cstdint>
#define DEBUG_TYPE "instcombine"
using namespace llvm::PatternMatch;
namespace llvm {
class APInt;
class AssumptionCache;
class BlockFrequencyInfo;
class DataLayout;
class DominatorTree;
class GEPOperator;
class GlobalVariable;
class LoopInfo;
class OptimizationRemarkEmitter;
class ProfileSummaryInfo;
class TargetLibraryInfo;
class User;
/// Assign a complexity or rank value to LLVM Values. This is used to reduce
/// the amount of pattern matching needed for compares and commutative
/// instructions. For example, if we have:
/// icmp ugt X, Constant
/// or
/// xor (add X, Constant), cast Z
///
/// We do not have to consider the commuted variants of these patterns because
/// canonicalization based on complexity guarantees the above ordering.
///
/// This routine maps IR values to various complexity ranks:
/// 0 -> undef
/// 1 -> Constants
/// 2 -> Other non-instructions
/// 3 -> Arguments
/// 4 -> Cast and (f)neg/not instructions
/// 5 -> Other instructions
static inline unsigned getComplexity(Value *V) {
if (isa<Instruction>(V)) {
if (isa<CastInst>(V) || match(V, m_Neg(m_Value())) ||
match(V, m_Not(m_Value())) || match(V, m_FNeg(m_Value())))
return 4;
return 5;
}
if (isa<Argument>(V))
return 3;
return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
}
/// Predicate canonicalization reduces the number of patterns that need to be
/// matched by other transforms. For example, we may swap the operands of a
/// conditional branch or select to create a compare with a canonical (inverted)
/// predicate which is then more likely to be matched with other values.
static inline bool isCanonicalPredicate(CmpInst::Predicate Pred) {
switch (Pred) {
case CmpInst::ICMP_NE:
case CmpInst::ICMP_ULE:
case CmpInst::ICMP_SLE:
case CmpInst::ICMP_UGE:
case CmpInst::ICMP_SGE:
// TODO: There are 16 FCMP predicates. Should others be (not) canonical?
case CmpInst::FCMP_ONE:
case CmpInst::FCMP_OLE:
case CmpInst::FCMP_OGE:
return false;
default:
return true;
}
}
/// Given an exploded icmp instruction, return true if the comparison only
/// checks the sign bit. If it only checks the sign bit, set TrueIfSigned if the
/// result of the comparison is true when the input value is signed.
inline bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS,
bool &TrueIfSigned) {
switch (Pred) {
case ICmpInst::ICMP_SLT: // True if LHS s< 0
TrueIfSigned = true;
return RHS.isNullValue();
case ICmpInst::ICMP_SLE: // True if LHS s<= -1
TrueIfSigned = true;
return RHS.isAllOnesValue();
case ICmpInst::ICMP_SGT: // True if LHS s> -1
TrueIfSigned = false;
return RHS.isAllOnesValue();
case ICmpInst::ICMP_SGE: // True if LHS s>= 0
TrueIfSigned = false;
return RHS.isNullValue();
case ICmpInst::ICMP_UGT:
// True if LHS u> RHS and RHS == sign-bit-mask - 1
TrueIfSigned = true;
return RHS.isMaxSignedValue();
case ICmpInst::ICMP_UGE:
// True if LHS u>= RHS and RHS == sign-bit-mask (2^7, 2^15, 2^31, etc)
TrueIfSigned = true;
return RHS.isMinSignedValue();
case ICmpInst::ICMP_ULT:
// True if LHS u< RHS and RHS == sign-bit-mask (2^7, 2^15, 2^31, etc)
TrueIfSigned = false;
return RHS.isMinSignedValue();
case ICmpInst::ICMP_ULE:
// True if LHS u<= RHS and RHS == sign-bit-mask - 1
TrueIfSigned = false;
return RHS.isMaxSignedValue();
default:
return false;
}
}
llvm::Optional<std::pair<CmpInst::Predicate, Constant *>>
getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred, Constant *C);
/// Return the source operand of a potentially bitcasted value while optionally
/// checking if it has one use. If there is no bitcast or the one use check is
/// not met, return the input value itself.
static inline Value *peekThroughBitcast(Value *V, bool OneUseOnly = false) {
if (auto *BitCast = dyn_cast<BitCastInst>(V))
if (!OneUseOnly || BitCast->hasOneUse())
return BitCast->getOperand(0);
// V is not a bitcast or V has more than one use and OneUseOnly is true.
return V;
}
/// Add one to a Constant
static inline Constant *AddOne(Constant *C) {
return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
}
/// Subtract one from a Constant
static inline Constant *SubOne(Constant *C) {
return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1));
}
/// Return true if the specified value is free to invert (apply ~ to).
/// This happens in cases where the ~ can be eliminated. If WillInvertAllUses
/// is true, work under the assumption that the caller intends to remove all
/// uses of V and only keep uses of ~V.
///
/// See also: canFreelyInvertAllUsersOf()
static inline bool isFreeToInvert(Value *V, bool WillInvertAllUses) {
// ~(~(X)) -> X.
if (match(V, m_Not(m_Value())))
return true;
// Constants can be considered to be not'ed values.
if (match(V, m_AnyIntegralConstant()))
return true;
// Compares can be inverted if all of their uses are being modified to use the
// ~V.
if (isa<CmpInst>(V))
return WillInvertAllUses;
// If `V` is of the form `A + Constant` then `-1 - V` can be folded into `(-1
// - Constant) - A` if we are willing to invert all of the uses.
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V))
if (BO->getOpcode() == Instruction::Add ||
BO->getOpcode() == Instruction::Sub)
if (isa<Constant>(BO->getOperand(0)) || isa<Constant>(BO->getOperand(1)))
return WillInvertAllUses;
// Selects with invertible operands are freely invertible
if (match(V, m_Select(m_Value(), m_Not(m_Value()), m_Not(m_Value()))))
return WillInvertAllUses;
return false;
}
/// Given i1 V, can every user of V be freely adapted if V is changed to !V ?
///
/// See also: isFreeToInvert()
static inline bool canFreelyInvertAllUsersOf(Value *V, Value *IgnoredUser) {
// Look at every user of V.
for (User *U : V->users()) {
if (U == IgnoredUser)
continue; // Don't consider this user.
auto *I = cast<Instruction>(U);
switch (I->getOpcode()) {
case Instruction::Select:
case Instruction::Br:
break; // Free to invert by swapping true/false values/destinations.
case Instruction::Xor: // Can invert 'xor' if it's a 'not', by ignoring it.
if (!match(I, m_Not(m_Value())))
return false; // Not a 'not'.
break;
default:
return false; // Don't know, likely not freely invertible.
}
// So far all users were free to invert...
}
return true; // Can freely invert all users!
}
/// Some binary operators require special handling to avoid poison and undefined
/// behavior. If a constant vector has undef elements, replace those undefs with
/// identity constants if possible because those are always safe to execute.
/// If no identity constant exists, replace undef with some other safe constant.
static inline Constant *getSafeVectorConstantForBinop(
BinaryOperator::BinaryOps Opcode, Constant *In, bool IsRHSConstant) {
assert(In->getType()->isVectorTy() && "Not expecting scalars here");
Type *EltTy = In->getType()->getVectorElementType();
auto *SafeC = ConstantExpr::getBinOpIdentity(Opcode, EltTy, IsRHSConstant);
if (!SafeC) {
// TODO: Should this be available as a constant utility function? It is
// similar to getBinOpAbsorber().
if (IsRHSConstant) {
switch (Opcode) {
case Instruction::SRem: // X % 1 = 0
case Instruction::URem: // X %u 1 = 0
SafeC = ConstantInt::get(EltTy, 1);
break;
case Instruction::FRem: // X % 1.0 (doesn't simplify, but it is safe)
SafeC = ConstantFP::get(EltTy, 1.0);
break;
default:
llvm_unreachable("Only rem opcodes have no identity constant for RHS");
}
} else {
switch (Opcode) {
case Instruction::Shl: // 0 << X = 0
case Instruction::LShr: // 0 >>u X = 0
case Instruction::AShr: // 0 >> X = 0
case Instruction::SDiv: // 0 / X = 0
case Instruction::UDiv: // 0 /u X = 0
case Instruction::SRem: // 0 % X = 0
case Instruction::URem: // 0 %u X = 0
case Instruction::Sub: // 0 - X (doesn't simplify, but it is safe)
case Instruction::FSub: // 0.0 - X (doesn't simplify, but it is safe)
case Instruction::FDiv: // 0.0 / X (doesn't simplify, but it is safe)
case Instruction::FRem: // 0.0 % X = 0
SafeC = Constant::getNullValue(EltTy);
break;
default:
llvm_unreachable("Expected to find identity constant for opcode");
}
}
}
assert(SafeC && "Must have safe constant for binop");
unsigned NumElts = In->getType()->getVectorNumElements();
SmallVector<Constant *, 16> Out(NumElts);
for (unsigned i = 0; i != NumElts; ++i) {
Constant *C = In->getAggregateElement(i);
Out[i] = isa<UndefValue>(C) ? SafeC : C;
}
return ConstantVector::get(Out);
}
/// The core instruction combiner logic.
///
/// This class provides both the logic to recursively visit instructions and
/// combine them.
class LLVM_LIBRARY_VISIBILITY InstCombiner
: public InstVisitor<InstCombiner, Instruction *> {
// FIXME: These members shouldn't be public.
public:
/// A worklist of the instructions that need to be simplified.
InstCombineWorklist &Worklist;
/// An IRBuilder that automatically inserts new instructions into the
/// worklist.
using BuilderTy = IRBuilder<TargetFolder, IRBuilderCallbackInserter>;
BuilderTy &Builder;
private:
// Mode in which we are running the combiner.
const bool MinimizeSize;
/// Enable combines that trigger rarely but are costly in compiletime.
const bool ExpensiveCombines;
AliasAnalysis *AA;
// Required analyses.
AssumptionCache &AC;
TargetLibraryInfo &TLI;
DominatorTree &DT;
const DataLayout &DL;
const SimplifyQuery SQ;
OptimizationRemarkEmitter &ORE;
BlockFrequencyInfo *BFI;
ProfileSummaryInfo *PSI;
// Optional analyses. When non-null, these can both be used to do better
// combining and will be updated to reflect any changes.
LoopInfo *LI;
bool MadeIRChange = false;
public:
InstCombiner(InstCombineWorklist &Worklist, BuilderTy &Builder,
bool MinimizeSize, bool ExpensiveCombines, AliasAnalysis *AA,
AssumptionCache &AC, TargetLibraryInfo &TLI, DominatorTree &DT,
OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
ProfileSummaryInfo *PSI, const DataLayout &DL, LoopInfo *LI)
: Worklist(Worklist), Builder(Builder), MinimizeSize(MinimizeSize),
ExpensiveCombines(ExpensiveCombines), AA(AA), AC(AC), TLI(TLI), DT(DT),
DL(DL), SQ(DL, &TLI, &DT, &AC), ORE(ORE), BFI(BFI), PSI(PSI), LI(LI) {}
/// Run the combiner over the entire worklist until it is empty.
///
/// \returns true if the IR is changed.
bool run();
AssumptionCache &getAssumptionCache() const { return AC; }
const DataLayout &getDataLayout() const { return DL; }
DominatorTree &getDominatorTree() const { return DT; }
LoopInfo *getLoopInfo() const { return LI; }
TargetLibraryInfo &getTargetLibraryInfo() const { return TLI; }
// Visitation implementation - Implement instruction combining for different
// instruction types. The semantics are as follows:
// Return Value:
// null - No change was made
// I - Change was made, I is still valid, I may be dead though
// otherwise - Change was made, replace I with returned instruction
//
Instruction *visitFNeg(UnaryOperator &I);
Instruction *visitAdd(BinaryOperator &I);
Instruction *visitFAdd(BinaryOperator &I);
Value *OptimizePointerDifference(
Value *LHS, Value *RHS, Type *Ty, bool isNUW);
Instruction *visitSub(BinaryOperator &I);
Instruction *visitFSub(BinaryOperator &I);
Instruction *visitMul(BinaryOperator &I);
Instruction *visitFMul(BinaryOperator &I);
Instruction *visitURem(BinaryOperator &I);
Instruction *visitSRem(BinaryOperator &I);
Instruction *visitFRem(BinaryOperator &I);
bool simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I);
Instruction *commonRemTransforms(BinaryOperator &I);
Instruction *commonIRemTransforms(BinaryOperator &I);
Instruction *commonDivTransforms(BinaryOperator &I);
Instruction *commonIDivTransforms(BinaryOperator &I);
Instruction *visitUDiv(BinaryOperator &I);
Instruction *visitSDiv(BinaryOperator &I);
Instruction *visitFDiv(BinaryOperator &I);
Value *simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1, bool Inverted);
Instruction *visitAnd(BinaryOperator &I);
Instruction *visitOr(BinaryOperator &I);
Instruction *visitXor(BinaryOperator &I);
Instruction *visitShl(BinaryOperator &I);
Value *reassociateShiftAmtsOfTwoSameDirectionShifts(
BinaryOperator *Sh0, const SimplifyQuery &SQ,
bool AnalyzeForSignBitExtraction = false);
Instruction *canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(
BinaryOperator &I);
Instruction *foldVariableSignZeroExtensionOfVariableHighBitExtract(
BinaryOperator &OldAShr);
Instruction *visitAShr(BinaryOperator &I);
Instruction *visitLShr(BinaryOperator &I);
Instruction *commonShiftTransforms(BinaryOperator &I);
Instruction *visitFCmpInst(FCmpInst &I);
Instruction *visitICmpInst(ICmpInst &I);
Instruction *FoldShiftByConstant(Value *Op0, Constant *Op1,
BinaryOperator &I);
Instruction *commonCastTransforms(CastInst &CI);
Instruction *commonPointerCastTransforms(CastInst &CI);
Instruction *visitTrunc(TruncInst &CI);
Instruction *visitZExt(ZExtInst &CI);
Instruction *visitSExt(SExtInst &CI);
Instruction *visitFPTrunc(FPTruncInst &CI);
Instruction *visitFPExt(CastInst &CI);
Instruction *visitFPToUI(FPToUIInst &FI);
Instruction *visitFPToSI(FPToSIInst &FI);
Instruction *visitUIToFP(CastInst &CI);
Instruction *visitSIToFP(CastInst &CI);
Instruction *visitPtrToInt(PtrToIntInst &CI);
Instruction *visitIntToPtr(IntToPtrInst &CI);
Instruction *visitBitCast(BitCastInst &CI);
Instruction *visitAddrSpaceCast(AddrSpaceCastInst &CI);
Instruction *FoldItoFPtoI(Instruction &FI);
Instruction *visitSelectInst(SelectInst &SI);
Instruction *visitCallInst(CallInst &CI);
Instruction *visitInvokeInst(InvokeInst &II);
Instruction *visitCallBrInst(CallBrInst &CBI);
Instruction *SliceUpIllegalIntegerPHI(PHINode &PN);
Instruction *visitPHINode(PHINode &PN);
Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
Instruction *visitAllocaInst(AllocaInst &AI);
Instruction *visitAllocSite(Instruction &FI);
Instruction *visitFree(CallInst &FI);
Instruction *visitLoadInst(LoadInst &LI);
Instruction *visitStoreInst(StoreInst &SI);
Instruction *visitAtomicRMWInst(AtomicRMWInst &SI);
Instruction *visitBranchInst(BranchInst &BI);
Instruction *visitFenceInst(FenceInst &FI);
Instruction *visitSwitchInst(SwitchInst &SI);
Instruction *visitReturnInst(ReturnInst &RI);
Instruction *visitInsertValueInst(InsertValueInst &IV);
Instruction *visitInsertElementInst(InsertElementInst &IE);
Instruction *visitExtractElementInst(ExtractElementInst &EI);
Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
Instruction *visitExtractValueInst(ExtractValueInst &EV);
Instruction *visitLandingPadInst(LandingPadInst &LI);
Instruction *visitVAEndInst(VAEndInst &I);
Instruction *visitFreeze(FreezeInst &I);
/// Specify what to return for unhandled instructions.
Instruction *visitInstruction(Instruction &I) { return nullptr; }
/// True when DB dominates all uses of DI except UI.
/// UI must be in the same block as DI.
/// The routine checks that the DI parent and DB are different.
bool dominatesAllUses(const Instruction *DI, const Instruction *UI,
const BasicBlock *DB) const;
/// Try to replace select with select operand SIOpd in SI-ICmp sequence.
bool replacedSelectWithOperand(SelectInst *SI, const ICmpInst *Icmp,
const unsigned SIOpd);
/// Try to replace instruction \p I with value \p V which are pointers
/// in different address space.
/// \return true if successful.
bool replacePointer(Instruction &I, Value *V);
LoadInst *combineLoadToNewType(LoadInst &LI, Type *NewTy,
const Twine &Suffix = "");
private:
bool shouldChangeType(unsigned FromBitWidth, unsigned ToBitWidth) const;
bool shouldChangeType(Type *From, Type *To) const;
Value *dyn_castNegVal(Value *V) const;
Value *freelyNegateValue(Value *V);
Type *FindElementAtOffset(PointerType *PtrTy, int64_t Offset,
SmallVectorImpl<Value *> &NewIndices);
/// Classify whether a cast is worth optimizing.
///
/// This is a helper to decide whether the simplification of
/// logic(cast(A), cast(B)) to cast(logic(A, B)) should be performed.
///
/// \param CI The cast we are interested in.
///
/// \return true if this cast actually results in any code being generated and
/// if it cannot already be eliminated by some other transformation.
bool shouldOptimizeCast(CastInst *CI);
/// Try to optimize a sequence of instructions checking if an operation
/// on LHS and RHS overflows.
///
/// If this overflow check is done via one of the overflow check intrinsics,
/// then CtxI has to be the call instruction calling that intrinsic. If this
/// overflow check is done by arithmetic followed by a compare, then CtxI has
/// to be the arithmetic instruction.
///
/// If a simplification is possible, stores the simplified result of the
/// operation in OperationResult and result of the overflow check in
/// OverflowResult, and return true. If no simplification is possible,
/// returns false.
bool OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp, bool IsSigned,
Value *LHS, Value *RHS,
Instruction &CtxI, Value *&OperationResult,
Constant *&OverflowResult);
Instruction *visitCallBase(CallBase &Call);
Instruction *tryOptimizeCall(CallInst *CI);
bool transformConstExprCastCall(CallBase &Call);
Instruction *transformCallThroughTrampoline(CallBase &Call,
IntrinsicInst &Tramp);
Value *simplifyMaskedLoad(IntrinsicInst &II);
Instruction *simplifyMaskedStore(IntrinsicInst &II);
Instruction *simplifyMaskedGather(IntrinsicInst &II);
Instruction *simplifyMaskedScatter(IntrinsicInst &II);
/// Transform (zext icmp) to bitwise / integer operations in order to
/// eliminate it.
///
/// \param ICI The icmp of the (zext icmp) pair we are interested in.
/// \parem CI The zext of the (zext icmp) pair we are interested in.
/// \param DoTransform Pass false to just test whether the given (zext icmp)
/// would be transformed. Pass true to actually perform the transformation.
///
/// \return null if the transformation cannot be performed. If the
/// transformation can be performed the new instruction that replaces the
/// (zext icmp) pair will be returned (if \p DoTransform is false the
/// unmodified \p ICI will be returned in this case).
Instruction *transformZExtICmp(ICmpInst *ICI, ZExtInst &CI,
bool DoTransform = true);
Instruction *transformSExtICmp(ICmpInst *ICI, Instruction &CI);
bool willNotOverflowSignedAdd(const Value *LHS, const Value *RHS,
const Instruction &CxtI) const {
return computeOverflowForSignedAdd(LHS, RHS, &CxtI) ==
OverflowResult::NeverOverflows;
}
bool willNotOverflowUnsignedAdd(const Value *LHS, const Value *RHS,
const Instruction &CxtI) const {
return computeOverflowForUnsignedAdd(LHS, RHS, &CxtI) ==
OverflowResult::NeverOverflows;
}
bool willNotOverflowAdd(const Value *LHS, const Value *RHS,
const Instruction &CxtI, bool IsSigned) const {
return IsSigned ? willNotOverflowSignedAdd(LHS, RHS, CxtI)
: willNotOverflowUnsignedAdd(LHS, RHS, CxtI);
}
bool willNotOverflowSignedSub(const Value *LHS, const Value *RHS,
const Instruction &CxtI) const {
return computeOverflowForSignedSub(LHS, RHS, &CxtI) ==
OverflowResult::NeverOverflows;
}
bool willNotOverflowUnsignedSub(const Value *LHS, const Value *RHS,
const Instruction &CxtI) const {
return computeOverflowForUnsignedSub(LHS, RHS, &CxtI) ==
OverflowResult::NeverOverflows;
}
bool willNotOverflowSub(const Value *LHS, const Value *RHS,
const Instruction &CxtI, bool IsSigned) const {
return IsSigned ? willNotOverflowSignedSub(LHS, RHS, CxtI)
: willNotOverflowUnsignedSub(LHS, RHS, CxtI);
}
bool willNotOverflowSignedMul(const Value *LHS, const Value *RHS,
const Instruction &CxtI) const {
return computeOverflowForSignedMul(LHS, RHS, &CxtI) ==
OverflowResult::NeverOverflows;
}
bool willNotOverflowUnsignedMul(const Value *LHS, const Value *RHS,
const Instruction &CxtI) const {
return computeOverflowForUnsignedMul(LHS, RHS, &CxtI) ==
OverflowResult::NeverOverflows;
}
bool willNotOverflowMul(const Value *LHS, const Value *RHS,
const Instruction &CxtI, bool IsSigned) const {
return IsSigned ? willNotOverflowSignedMul(LHS, RHS, CxtI)
: willNotOverflowUnsignedMul(LHS, RHS, CxtI);
}
bool willNotOverflow(BinaryOperator::BinaryOps Opcode, const Value *LHS,
const Value *RHS, const Instruction &CxtI,
bool IsSigned) const {
switch (Opcode) {
case Instruction::Add: return willNotOverflowAdd(LHS, RHS, CxtI, IsSigned);
case Instruction::Sub: return willNotOverflowSub(LHS, RHS, CxtI, IsSigned);
case Instruction::Mul: return willNotOverflowMul(LHS, RHS, CxtI, IsSigned);
default: llvm_unreachable("Unexpected opcode for overflow query");
}
}
Value *EmitGEPOffset(User *GEP);
Instruction *scalarizePHI(ExtractElementInst &EI, PHINode *PN);
Instruction *foldCastedBitwiseLogic(BinaryOperator &I);
Instruction *narrowBinOp(TruncInst &Trunc);
Instruction *narrowMaskedBinOp(BinaryOperator &And);
Instruction *narrowMathIfNoOverflow(BinaryOperator &I);
Instruction *narrowRotate(TruncInst &Trunc);
Instruction *optimizeBitCastFromPhi(CastInst &CI, PHINode *PN);
Instruction *matchSAddSubSat(SelectInst &MinMax1);
/// Determine if a pair of casts can be replaced by a single cast.
///
/// \param CI1 The first of a pair of casts.
/// \param CI2 The second of a pair of casts.
///
/// \return 0 if the cast pair cannot be eliminated, otherwise returns an
/// Instruction::CastOps value for a cast that can replace the pair, casting
/// CI1->getSrcTy() to CI2->getDstTy().
///
/// \see CastInst::isEliminableCastPair
Instruction::CastOps isEliminableCastPair(const CastInst *CI1,
const CastInst *CI2);
Value *foldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS, Instruction &CxtI);
Value *foldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS, Instruction &CxtI);
Value *foldXorOfICmps(ICmpInst *LHS, ICmpInst *RHS, BinaryOperator &I);
/// Optimize (fcmp)&(fcmp) or (fcmp)|(fcmp).
/// NOTE: Unlike most of instcombine, this returns a Value which should
/// already be inserted into the function.
Value *foldLogicOfFCmps(FCmpInst *LHS, FCmpInst *RHS, bool IsAnd);
Value *foldAndOrOfICmpsOfAndWithPow2(ICmpInst *LHS, ICmpInst *RHS,
bool JoinedByAnd, Instruction &CxtI);
Value *matchSelectFromAndOr(Value *A, Value *B, Value *C, Value *D);
Value *getSelectCondition(Value *A, Value *B);
Instruction *foldIntrinsicWithOverflowCommon(IntrinsicInst *II);
public:
/// Inserts an instruction \p New before instruction \p Old
///
/// Also adds the new instruction to the worklist and returns \p New so that
/// it is suitable for use as the return from the visitation patterns.
Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
assert(New && !New->getParent() &&
"New instruction already inserted into a basic block!");
BasicBlock *BB = Old.getParent();
BB->getInstList().insert(Old.getIterator(), New); // Insert inst
Worklist.push(New);
return New;
}
/// Same as InsertNewInstBefore, but also sets the debug loc.
Instruction *InsertNewInstWith(Instruction *New, Instruction &Old) {
New->setDebugLoc(Old.getDebugLoc());
return InsertNewInstBefore(New, Old);
}
/// A combiner-aware RAUW-like routine.
///
/// This method is to be used when an instruction is found to be dead,
/// replaceable with another preexisting expression. Here we add all uses of
/// I to the worklist, replace all uses of I with the new value, then return
/// I, so that the inst combiner will know that I was modified.
Instruction *replaceInstUsesWith(Instruction &I, Value *V) {
// If there are no uses to replace, then we return nullptr to indicate that
// no changes were made to the program.
if (I.use_empty()) return nullptr;
Worklist.pushUsersToWorkList(I); // Add all modified instrs to worklist.
// If we are replacing the instruction with itself, this must be in a
// segment of unreachable code, so just clobber the instruction.
if (&I == V)
V = UndefValue::get(I.getType());
LLVM_DEBUG(dbgs() << "IC: Replacing " << I << "\n"
<< " with " << *V << '\n');
I.replaceAllUsesWith(V);
return &I;
}
/// Replace operand of instruction and add old operand to the worklist.
Instruction *replaceOperand(Instruction &I, unsigned OpNum, Value *V) {
Worklist.addValue(I.getOperand(OpNum));
I.setOperand(OpNum, V);
return &I;
}
/// Creates a result tuple for an overflow intrinsic \p II with a given
/// \p Result and a constant \p Overflow value.
Instruction *CreateOverflowTuple(IntrinsicInst *II, Value *Result,
Constant *Overflow) {
Constant *V[] = {UndefValue::get(Result->getType()), Overflow};
StructType *ST = cast<StructType>(II->getType());
Constant *Struct = ConstantStruct::get(ST, V);
return InsertValueInst::Create(Struct, Result, 0);
}
/// Create and insert the idiom we use to indicate a block is unreachable
/// without having to rewrite the CFG from within InstCombine.
void CreateNonTerminatorUnreachable(Instruction *InsertAt) {
auto &Ctx = InsertAt->getContext();
new StoreInst(ConstantInt::getTrue(Ctx),
UndefValue::get(Type::getInt1PtrTy(Ctx)),
InsertAt);
}
/// Combiner aware instruction erasure.
///
/// When dealing with an instruction that has side effects or produces a void
/// value, we can't rely on DCE to delete the instruction. Instead, visit
/// methods should return the value returned by this function.
Instruction *eraseInstFromFunction(Instruction &I) {
LLVM_DEBUG(dbgs() << "IC: ERASE " << I << '\n');
assert(I.use_empty() && "Cannot erase instruction that is used!");
salvageDebugInfoOrMarkUndef(I);
// Make sure that we reprocess all operands now that we reduced their
// use counts.
if (I.getNumOperands() < 8) {
for (Use &Operand : I.operands())
if (auto *Inst = dyn_cast<Instruction>(Operand))
Worklist.add(Inst);
}
Worklist.remove(&I);
I.eraseFromParent();
MadeIRChange = true;
return nullptr; // Don't do anything with FI
}
void computeKnownBits(const Value *V, KnownBits &Known,
unsigned Depth, const Instruction *CxtI) const {
llvm::computeKnownBits(V, Known, DL, Depth, &AC, CxtI, &DT);
}
KnownBits computeKnownBits(const Value *V, unsigned Depth,
const Instruction *CxtI) const {
return llvm::computeKnownBits(V, DL, Depth, &AC, CxtI, &DT);
}
bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero = false,
unsigned Depth = 0,
const Instruction *CxtI = nullptr) {
return llvm::isKnownToBeAPowerOfTwo(V, DL, OrZero, Depth, &AC, CxtI, &DT);
}
bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth = 0,
const Instruction *CxtI = nullptr) const {
return llvm::MaskedValueIsZero(V, Mask, DL, Depth, &AC, CxtI, &DT);
}
unsigned ComputeNumSignBits(const Value *Op, unsigned Depth = 0,
const Instruction *CxtI = nullptr) const {
return llvm::ComputeNumSignBits(Op, DL, Depth, &AC, CxtI, &DT);
}
OverflowResult computeOverflowForUnsignedMul(const Value *LHS,
const Value *RHS,
const Instruction *CxtI) const {
return llvm::computeOverflowForUnsignedMul(LHS, RHS, DL, &AC, CxtI, &DT);
}
OverflowResult computeOverflowForSignedMul(const Value *LHS,
const Value *RHS,
const Instruction *CxtI) const {
return llvm::computeOverflowForSignedMul(LHS, RHS, DL, &AC, CxtI, &DT);
}
OverflowResult computeOverflowForUnsignedAdd(const Value *LHS,
const Value *RHS,
const Instruction *CxtI) const {
return llvm::computeOverflowForUnsignedAdd(LHS, RHS, DL, &AC, CxtI, &DT);
}
OverflowResult computeOverflowForSignedAdd(const Value *LHS,
const Value *RHS,
const Instruction *CxtI) const {
return llvm::computeOverflowForSignedAdd(LHS, RHS, DL, &AC, CxtI, &DT);
}
OverflowResult computeOverflowForUnsignedSub(const Value *LHS,
const Value *RHS,
const Instruction *CxtI) const {
return llvm::computeOverflowForUnsignedSub(LHS, RHS, DL, &AC, CxtI, &DT);
}
OverflowResult computeOverflowForSignedSub(const Value *LHS, const Value *RHS,
const Instruction *CxtI) const {
return llvm::computeOverflowForSignedSub(LHS, RHS, DL, &AC, CxtI, &DT);
}
OverflowResult computeOverflow(
Instruction::BinaryOps BinaryOp, bool IsSigned,
Value *LHS, Value *RHS, Instruction *CxtI) const;
/// Maximum size of array considered when transforming.
uint64_t MaxArraySizeForCombine = 0;
private:
/// Performs a few simplifications for operators which are associative
/// or commutative.
bool SimplifyAssociativeOrCommutative(BinaryOperator &I);
/// Tries to simplify binary operations which some other binary
/// operation distributes over.
///
/// It does this by either by factorizing out common terms (eg "(A*B)+(A*C)"
/// -> "A*(B+C)") or expanding out if this results in simplifications (eg: "A
/// & (B | C) -> (A&B) | (A&C)" if this is a win). Returns the simplified
/// value, or null if it didn't simplify.
Value *SimplifyUsingDistributiveLaws(BinaryOperator &I);
/// Tries to simplify add operations using the definition of remainder.
///
/// The definition of remainder is X % C = X - (X / C ) * C. The add
/// expression X % C0 + (( X / C0 ) % C1) * C0 can be simplified to
/// X % (C0 * C1)
Value *SimplifyAddWithRemainder(BinaryOperator &I);
// Binary Op helper for select operations where the expression can be
// efficiently reorganized.
Value *SimplifySelectsFeedingBinaryOp(BinaryOperator &I, Value *LHS,
Value *RHS);
/// This tries to simplify binary operations by factorizing out common terms
/// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
Value *tryFactorization(BinaryOperator &, Instruction::BinaryOps, Value *,
Value *, Value *, Value *);
/// Match a select chain which produces one of three values based on whether
/// the LHS is less than, equal to, or greater than RHS respectively.
/// Return true if we matched a three way compare idiom. The LHS, RHS, Less,
/// Equal and Greater values are saved in the matching process and returned to
/// the caller.
bool matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, Value *&RHS,
ConstantInt *&Less, ConstantInt *&Equal,
ConstantInt *&Greater);
/// Attempts to replace V with a simpler value based on the demanded
/// bits.
Value *SimplifyDemandedUseBits(Value *V, APInt DemandedMask, KnownBits &Known,
unsigned Depth, Instruction *CxtI);
bool SimplifyDemandedBits(Instruction *I, unsigned Op,
const APInt &DemandedMask, KnownBits &Known,
unsigned Depth = 0);
/// Helper routine of SimplifyDemandedUseBits. It computes KnownZero/KnownOne
/// bits. It also tries to handle simplifications that can be done based on
/// DemandedMask, but without modifying the Instruction.
Value *SimplifyMultipleUseDemandedBits(Instruction *I,
const APInt &DemandedMask,
KnownBits &Known,
unsigned Depth, Instruction *CxtI);
/// Helper routine of SimplifyDemandedUseBits. It tries to simplify demanded
/// bit for "r1 = shr x, c1; r2 = shl r1, c2" instruction sequence.
Value *simplifyShrShlDemandedBits(
Instruction *Shr, const APInt &ShrOp1, Instruction *Shl,
const APInt &ShlOp1, const APInt &DemandedMask, KnownBits &Known);
/// Tries to simplify operands to an integer instruction based on its
/// demanded bits.
bool SimplifyDemandedInstructionBits(Instruction &Inst);
Value *simplifyAMDGCNMemoryIntrinsicDemanded(IntrinsicInst *II,
APInt DemandedElts,
int DmaskIdx = -1);
Value *SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
APInt &UndefElts, unsigned Depth = 0,
bool AllowMultipleUsers = false);
/// Canonicalize the position of binops relative to shufflevector.
Instruction *foldVectorBinop(BinaryOperator &Inst);
/// Given a binary operator, cast instruction, or select which has a PHI node
/// as operand #0, see if we can fold the instruction into the PHI (which is
/// only possible if all operands to the PHI are constants).
Instruction *foldOpIntoPhi(Instruction &I, PHINode *PN);
/// Given an instruction with a select as one operand and a constant as the
/// other operand, try to fold the binary operator into the select arguments.
/// This also works for Cast instructions, which obviously do not have a
/// second operand.
Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI);
/// This is a convenience wrapper function for the above two functions.
Instruction *foldBinOpIntoSelectOrPhi(BinaryOperator &I);
Instruction *foldAddWithConstant(BinaryOperator &Add);
/// Try to rotate an operation below a PHI node, using PHI nodes for
/// its operands.
Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN);
Instruction *FoldPHIArgGEPIntoPHI(PHINode &PN);
Instruction *FoldPHIArgLoadIntoPHI(PHINode &PN);
Instruction *FoldPHIArgZextsIntoPHI(PHINode &PN);
/// If an integer typed PHI has only one use which is an IntToPtr operation,
/// replace the PHI with an existing pointer typed PHI if it exists. Otherwise
/// insert a new pointer typed PHI and replace the original one.
Instruction *FoldIntegerTypedPHI(PHINode &PN);
/// Helper function for FoldPHIArgXIntoPHI() to set debug location for the
/// folded operation.
void PHIArgMergedDebugLoc(Instruction *Inst, PHINode &PN);
Instruction *foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
ICmpInst::Predicate Cond, Instruction &I);
Instruction *foldAllocaCmp(ICmpInst &ICI, const AllocaInst *Alloca,
const Value *Other);
Instruction *foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
GlobalVariable *GV, CmpInst &ICI,
ConstantInt *AndCst = nullptr);
Instruction *foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI,
Constant *RHSC);
Instruction *foldICmpAddOpConst(Value *X, const APInt &C,
ICmpInst::Predicate Pred);
Instruction *foldICmpWithCastOp(ICmpInst &ICI);
Instruction *foldICmpUsingKnownBits(ICmpInst &Cmp);
Instruction *foldICmpWithDominatingICmp(ICmpInst &Cmp);
Instruction *foldICmpWithConstant(ICmpInst &Cmp);
Instruction *foldICmpInstWithConstant(ICmpInst &Cmp);
Instruction *foldICmpInstWithConstantNotInt(ICmpInst &Cmp);
Instruction *foldICmpBinOp(ICmpInst &Cmp, const SimplifyQuery &SQ);
Instruction *foldICmpEquality(ICmpInst &Cmp);
Instruction *foldIRemByPowerOfTwoToBitTest(ICmpInst &I);
Instruction *foldSignBitTest(ICmpInst &I);
Instruction *foldICmpWithZero(ICmpInst &Cmp);
Value *foldUnsignedMultiplicationOverflowCheck(ICmpInst &Cmp);
Instruction *foldICmpSelectConstant(ICmpInst &Cmp, SelectInst *Select,
ConstantInt *C);
Instruction *foldICmpTruncConstant(ICmpInst &Cmp, TruncInst *Trunc,
const APInt &C);
Instruction *foldICmpAndConstant(ICmpInst &Cmp, BinaryOperator *And,
const APInt &C);
Instruction *foldICmpXorConstant(ICmpInst &Cmp, BinaryOperator *Xor,
const APInt &C);
Instruction *foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or,
const APInt &C);
Instruction *foldICmpMulConstant(ICmpInst &Cmp, BinaryOperator *Mul,
const APInt &C);
Instruction *foldICmpShlConstant(ICmpInst &Cmp, BinaryOperator *Shl,
const APInt &C);
Instruction *foldICmpShrConstant(ICmpInst &Cmp, BinaryOperator *Shr,
const APInt &C);
Instruction *foldICmpSRemConstant(ICmpInst &Cmp, BinaryOperator *UDiv,
const APInt &C);
Instruction *foldICmpUDivConstant(ICmpInst &Cmp, BinaryOperator *UDiv,
const APInt &C);
Instruction *foldICmpDivConstant(ICmpInst &Cmp, BinaryOperator *Div,
const APInt &C);
Instruction *foldICmpSubConstant(ICmpInst &Cmp, BinaryOperator *Sub,
const APInt &C);
Instruction *foldICmpAddConstant(ICmpInst &Cmp, BinaryOperator *Add,
const APInt &C);
Instruction *foldICmpAndConstConst(ICmpInst &Cmp, BinaryOperator *And,
const APInt &C1);
Instruction *foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And,
const APInt &C1, const APInt &C2);
Instruction *foldICmpShrConstConst(ICmpInst &I, Value *ShAmt, const APInt &C1,
const APInt &C2);
Instruction *foldICmpShlConstConst(ICmpInst &I, Value *ShAmt, const APInt &C1,
const APInt &C2);
Instruction *foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp,
BinaryOperator *BO,
const APInt &C);
Instruction *foldICmpIntrinsicWithConstant(ICmpInst &ICI, IntrinsicInst *II,
const APInt &C);
Instruction *foldICmpEqIntrinsicWithConstant(ICmpInst &ICI, IntrinsicInst *II,
const APInt &C);
// Helpers of visitSelectInst().
Instruction *foldSelectExtConst(SelectInst &Sel);
Instruction *foldSelectOpOp(SelectInst &SI, Instruction *TI, Instruction *FI);
Instruction *foldSelectIntoOp(SelectInst &SI, Value *, Value *);
Instruction *foldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1,
Value *A, Value *B, Instruction &Outer,
SelectPatternFlavor SPF2, Value *C);
Instruction *foldSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI);
Instruction *OptAndOp(BinaryOperator *Op, ConstantInt *OpRHS,
ConstantInt *AndRHS, BinaryOperator &TheAnd);
Value *insertRangeTest(Value *V, const APInt &Lo, const APInt &Hi,
bool isSigned, bool Inside);
Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocaInst &AI);
bool mergeStoreIntoSuccessor(StoreInst &SI);
/// Given an 'or' instruction, check to see if it is part of a bswap idiom.
/// If so, return the equivalent bswap intrinsic.
Instruction *matchBSwap(BinaryOperator &Or);
Instruction *SimplifyAnyMemTransfer(AnyMemTransferInst *MI);
Instruction *SimplifyAnyMemSet(AnyMemSetInst *MI);
Value *EvaluateInDifferentType(Value *V, Type *Ty, bool isSigned);
/// Returns a value X such that Val = X * Scale, or null if none.
///
/// If the multiplication is known not to overflow then NoSignedWrap is set.
Value *Descale(Value *Val, APInt Scale, bool &NoSignedWrap);
};
} // end namespace llvm
#undef DEBUG_TYPE
#endif // LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H