1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 03:02:36 +01:00
llvm-mirror/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp
Nikita Popov 01133bb6c1 [InstCombine] Improve simplify demanded bits worklist management
This fixes a small mistake from D72944: The worklist add should
happen before assigning the new operand, not after.

In case an actual replacement happens, the old operand needs to
be added for DCE. If no actual replacement happens, then old/new
are the same, so it doesn't matter.

This drops one iteration from the annotated test case.
2020-02-21 18:51:41 +01:00

1834 lines
70 KiB
C++

//===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains logic for simplifying instructions based on information
// about how they are used.
//
//===----------------------------------------------------------------------===//
#include "InstCombineInternal.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/IntrinsicsAMDGPU.h"
#include "llvm/IR/IntrinsicsX86.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Support/KnownBits.h"
using namespace llvm;
using namespace llvm::PatternMatch;
#define DEBUG_TYPE "instcombine"
namespace {
struct AMDGPUImageDMaskIntrinsic {
unsigned Intr;
};
#define GET_AMDGPUImageDMaskIntrinsicTable_IMPL
#include "InstCombineTables.inc"
} // end anonymous namespace
/// Check to see if the specified operand of the specified instruction is a
/// constant integer. If so, check to see if there are any bits set in the
/// constant that are not demanded. If so, shrink the constant and return true.
static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
const APInt &Demanded) {
assert(I && "No instruction?");
assert(OpNo < I->getNumOperands() && "Operand index too large");
// The operand must be a constant integer or splat integer.
Value *Op = I->getOperand(OpNo);
const APInt *C;
if (!match(Op, m_APInt(C)))
return false;
// If there are no bits set that aren't demanded, nothing to do.
if (C->isSubsetOf(Demanded))
return false;
// This instruction is producing bits that are not demanded. Shrink the RHS.
I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded));
return true;
}
/// Inst is an integer instruction that SimplifyDemandedBits knows about. See if
/// the instruction has any properties that allow us to simplify its operands.
bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) {
unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
KnownBits Known(BitWidth);
APInt DemandedMask(APInt::getAllOnesValue(BitWidth));
Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known,
0, &Inst);
if (!V) return false;
if (V == &Inst) return true;
replaceInstUsesWith(Inst, V);
return true;
}
/// This form of SimplifyDemandedBits simplifies the specified instruction
/// operand if possible, updating it in place. It returns true if it made any
/// change and false otherwise.
bool InstCombiner::SimplifyDemandedBits(Instruction *I, unsigned OpNo,
const APInt &DemandedMask,
KnownBits &Known,
unsigned Depth) {
Use &U = I->getOperandUse(OpNo);
Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known,
Depth, I);
if (!NewVal) return false;
// Add the old operand back to the worklist.
Worklist.addValue(U.get());
U = NewVal;
return true;
}
/// This function attempts to replace V with a simpler value based on the
/// demanded bits. When this function is called, it is known that only the bits
/// set in DemandedMask of the result of V are ever used downstream.
/// Consequently, depending on the mask and V, it may be possible to replace V
/// with a constant or one of its operands. In such cases, this function does
/// the replacement and returns true. In all other cases, it returns false after
/// analyzing the expression and setting KnownOne and known to be one in the
/// expression. Known.Zero contains all the bits that are known to be zero in
/// the expression. These are provided to potentially allow the caller (which
/// might recursively be SimplifyDemandedBits itself) to simplify the
/// expression.
/// Known.One and Known.Zero always follow the invariant that:
/// Known.One & Known.Zero == 0.
/// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and
/// Known.Zero may only be accurate for those bits set in DemandedMask. Note
/// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all
/// be the same.
///
/// This returns null if it did not change anything and it permits no
/// simplification. This returns V itself if it did some simplification of V's
/// operands based on the information about what bits are demanded. This returns
/// some other non-null value if it found out that V is equal to another value
/// in the context where the specified bits are demanded, but not for all users.
Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
KnownBits &Known, unsigned Depth,
Instruction *CxtI) {
assert(V != nullptr && "Null pointer of Value???");
assert(Depth <= 6 && "Limit Search Depth");
uint32_t BitWidth = DemandedMask.getBitWidth();
Type *VTy = V->getType();
assert(
(!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) &&
Known.getBitWidth() == BitWidth &&
"Value *V, DemandedMask and Known must have same BitWidth");
if (isa<Constant>(V)) {
computeKnownBits(V, Known, Depth, CxtI);
return nullptr;
}
Known.resetAll();
if (DemandedMask.isNullValue()) // Not demanding any bits from V.
return UndefValue::get(VTy);
if (Depth == 6) // Limit search depth.
return nullptr;
Instruction *I = dyn_cast<Instruction>(V);
if (!I) {
computeKnownBits(V, Known, Depth, CxtI);
return nullptr; // Only analyze instructions.
}
// If there are multiple uses of this value and we aren't at the root, then
// we can't do any simplifications of the operands, because DemandedMask
// only reflects the bits demanded by *one* of the users.
if (Depth != 0 && !I->hasOneUse())
return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI);
KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth);
// If this is the root being simplified, allow it to have multiple uses,
// just set the DemandedMask to all bits so that we can try to simplify the
// operands. This allows visitTruncInst (for example) to simplify the
// operand of a trunc without duplicating all the logic below.
if (Depth == 0 && !V->hasOneUse())
DemandedMask.setAllBits();
switch (I->getOpcode()) {
default:
computeKnownBits(I, Known, Depth, CxtI);
break;
case Instruction::And: {
// If either the LHS or the RHS are Zero, the result is zero.
if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown,
Depth + 1))
return I;
assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
// Output known-0 are known to be clear if zero in either the LHS | RHS.
APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero;
// Output known-1 bits are only known if set in both the LHS & RHS.
APInt IKnownOne = RHSKnown.One & LHSKnown.One;
// If the client is only demanding bits that we know, return the known
// constant.
if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
return Constant::getIntegerValue(VTy, IKnownOne);
// If all of the demanded bits are known 1 on one side, return the other.
// These bits cannot contribute to the result of the 'and'.
if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
return I->getOperand(0);
if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
return I->getOperand(1);
// If the RHS is a constant, see if we can simplify it.
if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero))
return I;
Known.Zero = std::move(IKnownZero);
Known.One = std::move(IKnownOne);
break;
}
case Instruction::Or: {
// If either the LHS or the RHS are One, the result is One.
if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown,
Depth + 1))
return I;
assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
// Output known-0 bits are only known if clear in both the LHS & RHS.
APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero;
// Output known-1 are known. to be set if s.et in either the LHS | RHS.
APInt IKnownOne = RHSKnown.One | LHSKnown.One;
// If the client is only demanding bits that we know, return the known
// constant.
if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
return Constant::getIntegerValue(VTy, IKnownOne);
// If all of the demanded bits are known zero on one side, return the other.
// These bits cannot contribute to the result of the 'or'.
if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
return I->getOperand(0);
if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
return I->getOperand(1);
// If the RHS is a constant, see if we can simplify it.
if (ShrinkDemandedConstant(I, 1, DemandedMask))
return I;
Known.Zero = std::move(IKnownZero);
Known.One = std::move(IKnownOne);
break;
}
case Instruction::Xor: {
if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1))
return I;
assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
// Output known-0 bits are known if clear or set in both the LHS & RHS.
APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) |
(RHSKnown.One & LHSKnown.One);
// Output known-1 are known to be set if set in only one of the LHS, RHS.
APInt IKnownOne = (RHSKnown.Zero & LHSKnown.One) |
(RHSKnown.One & LHSKnown.Zero);
// If the client is only demanding bits that we know, return the known
// constant.
if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
return Constant::getIntegerValue(VTy, IKnownOne);
// If all of the demanded bits are known zero on one side, return the other.
// These bits cannot contribute to the result of the 'xor'.
if (DemandedMask.isSubsetOf(RHSKnown.Zero))
return I->getOperand(0);
if (DemandedMask.isSubsetOf(LHSKnown.Zero))
return I->getOperand(1);
// If all of the demanded bits are known to be zero on one side or the
// other, turn this into an *inclusive* or.
// e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) {
Instruction *Or =
BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
I->getName());
return InsertNewInstWith(Or, *I);
}
// If all of the demanded bits on one side are known, and all of the set
// bits on that side are also known to be set on the other side, turn this
// into an AND, as we know the bits will be cleared.
// e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) &&
RHSKnown.One.isSubsetOf(LHSKnown.One)) {
Constant *AndC = Constant::getIntegerValue(VTy,
~RHSKnown.One & DemandedMask);
Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
return InsertNewInstWith(And, *I);
}
// If the RHS is a constant, see if we can simplify it.
// FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
if (ShrinkDemandedConstant(I, 1, DemandedMask))
return I;
// If our LHS is an 'and' and if it has one use, and if any of the bits we
// are flipping are known to be set, then the xor is just resetting those
// bits to zero. We can just knock out bits from the 'and' and the 'xor',
// simplifying both of them.
if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0)))
if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
isa<ConstantInt>(I->getOperand(1)) &&
isa<ConstantInt>(LHSInst->getOperand(1)) &&
(LHSKnown.One & RHSKnown.One & DemandedMask) != 0) {
ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1));
ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1));
APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask);
Constant *AndC =
ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
InsertNewInstWith(NewAnd, *I);
Constant *XorC =
ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC);
return InsertNewInstWith(NewXor, *I);
}
// Output known-0 bits are known if clear or set in both the LHS & RHS.
Known.Zero = std::move(IKnownZero);
// Output known-1 are known to be set if set in only one of the LHS, RHS.
Known.One = std::move(IKnownOne);
break;
}
case Instruction::Select: {
Value *LHS, *RHS;
SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
if (SPF == SPF_UMAX) {
// UMax(A, C) == A if ...
// The lowest non-zero bit of DemandMask is higher than the highest
// non-zero bit of C.
const APInt *C;
unsigned CTZ = DemandedMask.countTrailingZeros();
if (match(RHS, m_APInt(C)) && CTZ >= C->getActiveBits())
return LHS;
} else if (SPF == SPF_UMIN) {
// UMin(A, C) == A if ...
// The lowest non-zero bit of DemandMask is higher than the highest
// non-one bit of C.
// This comes from using DeMorgans on the above umax example.
const APInt *C;
unsigned CTZ = DemandedMask.countTrailingZeros();
if (match(RHS, m_APInt(C)) &&
CTZ >= C->getBitWidth() - C->countLeadingOnes())
return LHS;
}
// If this is a select as part of any other min/max pattern, don't simplify
// any further in case we break the structure.
if (SPF != SPF_UNKNOWN)
return nullptr;
if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) ||
SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1))
return I;
assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
// If the operands are constants, see if we can simplify them.
// This is similar to ShrinkDemandedConstant, but for a select we want to
// try to keep the selected constants the same as icmp value constants, if
// we can. This helps not break apart (or helps put back together)
// canonical patterns like min and max.
auto CanonicalizeSelectConstant = [](Instruction *I, unsigned OpNo,
APInt DemandedMask) {
const APInt *SelC;
if (!match(I->getOperand(OpNo), m_APInt(SelC)))
return false;
// Get the constant out of the ICmp, if there is one.
const APInt *CmpC;
ICmpInst::Predicate Pred;
if (!match(I->getOperand(0), m_c_ICmp(Pred, m_APInt(CmpC), m_Value())) ||
CmpC->getBitWidth() != SelC->getBitWidth())
return ShrinkDemandedConstant(I, OpNo, DemandedMask);
// If the constant is already the same as the ICmp, leave it as-is.
if (*CmpC == *SelC)
return false;
// If the constants are not already the same, but can be with the demand
// mask, use the constant value from the ICmp.
if ((*CmpC & DemandedMask) == (*SelC & DemandedMask)) {
I->setOperand(OpNo, ConstantInt::get(I->getType(), *CmpC));
return true;
}
return ShrinkDemandedConstant(I, OpNo, DemandedMask);
};
if (CanonicalizeSelectConstant(I, 1, DemandedMask) ||
CanonicalizeSelectConstant(I, 2, DemandedMask))
return I;
// Only known if known in both the LHS and RHS.
Known.One = RHSKnown.One & LHSKnown.One;
Known.Zero = RHSKnown.Zero & LHSKnown.Zero;
break;
}
case Instruction::ZExt:
case Instruction::Trunc: {
unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth);
KnownBits InputKnown(SrcBitWidth);
if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1))
return I;
assert(InputKnown.getBitWidth() == SrcBitWidth && "Src width changed?");
Known = InputKnown.zextOrTrunc(BitWidth);
assert(!Known.hasConflict() && "Bits known to be one AND zero?");
break;
}
case Instruction::BitCast:
if (!I->getOperand(0)->getType()->isIntOrIntVectorTy())
return nullptr; // vector->int or fp->int?
if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) {
if (VectorType *SrcVTy =
dyn_cast<VectorType>(I->getOperand(0)->getType())) {
if (DstVTy->getNumElements() != SrcVTy->getNumElements())
// Don't touch a bitcast between vectors of different element counts.
return nullptr;
} else
// Don't touch a scalar-to-vector bitcast.
return nullptr;
} else if (I->getOperand(0)->getType()->isVectorTy())
// Don't touch a vector-to-scalar bitcast.
return nullptr;
if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1))
return I;
assert(!Known.hasConflict() && "Bits known to be one AND zero?");
break;
case Instruction::SExt: {
// Compute the bits in the result that are not present in the input.
unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth);
// If any of the sign extended bits are demanded, we know that the sign
// bit is demanded.
if (DemandedMask.getActiveBits() > SrcBitWidth)
InputDemandedBits.setBit(SrcBitWidth-1);
KnownBits InputKnown(SrcBitWidth);
if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1))
return I;
// If the input sign bit is known zero, or if the NewBits are not demanded
// convert this into a zero extension.
if (InputKnown.isNonNegative() ||
DemandedMask.getActiveBits() <= SrcBitWidth) {
// Convert to ZExt cast.
CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
return InsertNewInstWith(NewCast, *I);
}
// If the sign bit of the input is known set or clear, then we know the
// top bits of the result.
Known = InputKnown.sext(BitWidth);
assert(!Known.hasConflict() && "Bits known to be one AND zero?");
break;
}
case Instruction::Add:
case Instruction::Sub: {
/// If the high-bits of an ADD/SUB are not demanded, then we do not care
/// about the high bits of the operands.
unsigned NLZ = DemandedMask.countLeadingZeros();
// Right fill the mask of bits for this ADD/SUB to demand the most
// significant bit and all those below it.
APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
if (ShrinkDemandedConstant(I, 0, DemandedFromOps) ||
SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) ||
ShrinkDemandedConstant(I, 1, DemandedFromOps) ||
SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) {
if (NLZ > 0) {
// Disable the nsw and nuw flags here: We can no longer guarantee that
// we won't wrap after simplification. Removing the nsw/nuw flags is
// legal here because the top bit is not demanded.
BinaryOperator &BinOP = *cast<BinaryOperator>(I);
BinOP.setHasNoSignedWrap(false);
BinOP.setHasNoUnsignedWrap(false);
}
return I;
}
// If we are known to be adding/subtracting zeros to every bit below
// the highest demanded bit, we just return the other side.
if (DemandedFromOps.isSubsetOf(RHSKnown.Zero))
return I->getOperand(0);
// We can't do this with the LHS for subtraction, unless we are only
// demanding the LSB.
if ((I->getOpcode() == Instruction::Add ||
DemandedFromOps.isOneValue()) &&
DemandedFromOps.isSubsetOf(LHSKnown.Zero))
return I->getOperand(1);
// Otherwise just compute the known bits of the result.
bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Known = KnownBits::computeForAddSub(I->getOpcode() == Instruction::Add,
NSW, LHSKnown, RHSKnown);
break;
}
case Instruction::Shl: {
const APInt *SA;
if (match(I->getOperand(1), m_APInt(SA))) {
const APInt *ShrAmt;
if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt))))
if (Instruction *Shr = dyn_cast<Instruction>(I->getOperand(0)))
if (Value *R = simplifyShrShlDemandedBits(Shr, *ShrAmt, I, *SA,
DemandedMask, Known))
return R;
uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
// If the shift is NUW/NSW, then it does demand the high bits.
ShlOperator *IOp = cast<ShlOperator>(I);
if (IOp->hasNoSignedWrap())
DemandedMaskIn.setHighBits(ShiftAmt+1);
else if (IOp->hasNoUnsignedWrap())
DemandedMaskIn.setHighBits(ShiftAmt);
if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
return I;
assert(!Known.hasConflict() && "Bits known to be one AND zero?");
Known.Zero <<= ShiftAmt;
Known.One <<= ShiftAmt;
// low bits known zero.
if (ShiftAmt)
Known.Zero.setLowBits(ShiftAmt);
}
break;
}
case Instruction::LShr: {
const APInt *SA;
if (match(I->getOperand(1), m_APInt(SA))) {
uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
// Unsigned shift right.
APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
// If the shift is exact, then it does demand the low bits (and knows that
// they are zero).
if (cast<LShrOperator>(I)->isExact())
DemandedMaskIn.setLowBits(ShiftAmt);
if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
return I;
assert(!Known.hasConflict() && "Bits known to be one AND zero?");
Known.Zero.lshrInPlace(ShiftAmt);
Known.One.lshrInPlace(ShiftAmt);
if (ShiftAmt)
Known.Zero.setHighBits(ShiftAmt); // high bits known zero.
}
break;
}
case Instruction::AShr: {
// If this is an arithmetic shift right and only the low-bit is set, we can
// always convert this into a logical shr, even if the shift amount is
// variable. The low bit of the shift cannot be an input sign bit unless
// the shift amount is >= the size of the datatype, which is undefined.
if (DemandedMask.isOneValue()) {
// Perform the logical shift right.
Instruction *NewVal = BinaryOperator::CreateLShr(
I->getOperand(0), I->getOperand(1), I->getName());
return InsertNewInstWith(NewVal, *I);
}
// If the sign bit is the only bit demanded by this ashr, then there is no
// need to do it, the shift doesn't change the high bit.
if (DemandedMask.isSignMask())
return I->getOperand(0);
const APInt *SA;
if (match(I->getOperand(1), m_APInt(SA))) {
uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
// Signed shift right.
APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
// If any of the high bits are demanded, we should set the sign bit as
// demanded.
if (DemandedMask.countLeadingZeros() <= ShiftAmt)
DemandedMaskIn.setSignBit();
// If the shift is exact, then it does demand the low bits (and knows that
// they are zero).
if (cast<AShrOperator>(I)->isExact())
DemandedMaskIn.setLowBits(ShiftAmt);
if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
return I;
unsigned SignBits = ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI);
assert(!Known.hasConflict() && "Bits known to be one AND zero?");
// Compute the new bits that are at the top now plus sign bits.
APInt HighBits(APInt::getHighBitsSet(
BitWidth, std::min(SignBits + ShiftAmt - 1, BitWidth)));
Known.Zero.lshrInPlace(ShiftAmt);
Known.One.lshrInPlace(ShiftAmt);
// If the input sign bit is known to be zero, or if none of the top bits
// are demanded, turn this into an unsigned shift right.
assert(BitWidth > ShiftAmt && "Shift amount not saturated?");
if (Known.Zero[BitWidth-ShiftAmt-1] ||
!DemandedMask.intersects(HighBits)) {
BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0),
I->getOperand(1));
LShr->setIsExact(cast<BinaryOperator>(I)->isExact());
return InsertNewInstWith(LShr, *I);
} else if (Known.One[BitWidth-ShiftAmt-1]) { // New bits are known one.
Known.One |= HighBits;
}
}
break;
}
case Instruction::UDiv: {
// UDiv doesn't demand low bits that are zero in the divisor.
const APInt *SA;
if (match(I->getOperand(1), m_APInt(SA))) {
// If the shift is exact, then it does demand the low bits.
if (cast<UDivOperator>(I)->isExact())
break;
// FIXME: Take the demanded mask of the result into account.
unsigned RHSTrailingZeros = SA->countTrailingZeros();
APInt DemandedMaskIn =
APInt::getHighBitsSet(BitWidth, BitWidth - RHSTrailingZeros);
if (SimplifyDemandedBits(I, 0, DemandedMaskIn, LHSKnown, Depth + 1))
return I;
// Propagate zero bits from the input.
Known.Zero.setHighBits(std::min(
BitWidth, LHSKnown.Zero.countLeadingOnes() + RHSTrailingZeros));
}
break;
}
case Instruction::SRem:
if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
// X % -1 demands all the bits because we don't want to introduce
// INT_MIN % -1 (== undef) by accident.
if (Rem->isMinusOne())
break;
APInt RA = Rem->getValue().abs();
if (RA.isPowerOf2()) {
if (DemandedMask.ult(RA)) // srem won't affect demanded bits
return I->getOperand(0);
APInt LowBits = RA - 1;
APInt Mask2 = LowBits | APInt::getSignMask(BitWidth);
if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1))
return I;
// The low bits of LHS are unchanged by the srem.
Known.Zero = LHSKnown.Zero & LowBits;
Known.One = LHSKnown.One & LowBits;
// If LHS is non-negative or has all low bits zero, then the upper bits
// are all zero.
if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero))
Known.Zero |= ~LowBits;
// If LHS is negative and not all low bits are zero, then the upper bits
// are all one.
if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One))
Known.One |= ~LowBits;
assert(!Known.hasConflict() && "Bits known to be one AND zero?");
break;
}
}
// The sign bit is the LHS's sign bit, except when the result of the
// remainder is zero.
if (DemandedMask.isSignBitSet()) {
computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI);
// If it's known zero, our sign bit is also zero.
if (LHSKnown.isNonNegative())
Known.makeNonNegative();
}
break;
case Instruction::URem: {
KnownBits Known2(BitWidth);
APInt AllOnes = APInt::getAllOnesValue(BitWidth);
if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) ||
SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1))
return I;
unsigned Leaders = Known2.countMinLeadingZeros();
Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
break;
}
case Instruction::Call:
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
switch (II->getIntrinsicID()) {
default: break;
case Intrinsic::bswap: {
// If the only bits demanded come from one byte of the bswap result,
// just shift the input byte into position to eliminate the bswap.
unsigned NLZ = DemandedMask.countLeadingZeros();
unsigned NTZ = DemandedMask.countTrailingZeros();
// Round NTZ down to the next byte. If we have 11 trailing zeros, then
// we need all the bits down to bit 8. Likewise, round NLZ. If we
// have 14 leading zeros, round to 8.
NLZ &= ~7;
NTZ &= ~7;
// If we need exactly one byte, we can do this transformation.
if (BitWidth-NLZ-NTZ == 8) {
unsigned ResultBit = NTZ;
unsigned InputBit = BitWidth-NTZ-8;
// Replace this with either a left or right shift to get the byte into
// the right place.
Instruction *NewVal;
if (InputBit > ResultBit)
NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0),
ConstantInt::get(I->getType(), InputBit-ResultBit));
else
NewVal = BinaryOperator::CreateShl(II->getArgOperand(0),
ConstantInt::get(I->getType(), ResultBit-InputBit));
NewVal->takeName(I);
return InsertNewInstWith(NewVal, *I);
}
// TODO: Could compute known zero/one bits based on the input.
break;
}
case Intrinsic::fshr:
case Intrinsic::fshl: {
const APInt *SA;
if (!match(I->getOperand(2), m_APInt(SA)))
break;
// Normalize to funnel shift left. APInt shifts of BitWidth are well-
// defined, so no need to special-case zero shifts here.
uint64_t ShiftAmt = SA->urem(BitWidth);
if (II->getIntrinsicID() == Intrinsic::fshr)
ShiftAmt = BitWidth - ShiftAmt;
APInt DemandedMaskLHS(DemandedMask.lshr(ShiftAmt));
APInt DemandedMaskRHS(DemandedMask.shl(BitWidth - ShiftAmt));
if (SimplifyDemandedBits(I, 0, DemandedMaskLHS, LHSKnown, Depth + 1) ||
SimplifyDemandedBits(I, 1, DemandedMaskRHS, RHSKnown, Depth + 1))
return I;
Known.Zero = LHSKnown.Zero.shl(ShiftAmt) |
RHSKnown.Zero.lshr(BitWidth - ShiftAmt);
Known.One = LHSKnown.One.shl(ShiftAmt) |
RHSKnown.One.lshr(BitWidth - ShiftAmt);
break;
}
case Intrinsic::x86_mmx_pmovmskb:
case Intrinsic::x86_sse_movmsk_ps:
case Intrinsic::x86_sse2_movmsk_pd:
case Intrinsic::x86_sse2_pmovmskb_128:
case Intrinsic::x86_avx_movmsk_ps_256:
case Intrinsic::x86_avx_movmsk_pd_256:
case Intrinsic::x86_avx2_pmovmskb: {
// MOVMSK copies the vector elements' sign bits to the low bits
// and zeros the high bits.
unsigned ArgWidth;
if (II->getIntrinsicID() == Intrinsic::x86_mmx_pmovmskb) {
ArgWidth = 8; // Arg is x86_mmx, but treated as <8 x i8>.
} else {
auto Arg = II->getArgOperand(0);
auto ArgType = cast<VectorType>(Arg->getType());
ArgWidth = ArgType->getNumElements();
}
// If we don't need any of low bits then return zero,
// we know that DemandedMask is non-zero already.
APInt DemandedElts = DemandedMask.zextOrTrunc(ArgWidth);
if (DemandedElts.isNullValue())
return ConstantInt::getNullValue(VTy);
// We know that the upper bits are set to zero.
Known.Zero.setBitsFrom(ArgWidth);
return nullptr;
}
case Intrinsic::x86_sse42_crc32_64_64:
Known.Zero.setBitsFrom(32);
return nullptr;
}
}
computeKnownBits(V, Known, Depth, CxtI);
break;
}
// If the client is only demanding bits that we know, return the known
// constant.
if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
return Constant::getIntegerValue(VTy, Known.One);
return nullptr;
}
/// Helper routine of SimplifyDemandedUseBits. It computes Known
/// bits. It also tries to handle simplifications that can be done based on
/// DemandedMask, but without modifying the Instruction.
Value *InstCombiner::SimplifyMultipleUseDemandedBits(Instruction *I,
const APInt &DemandedMask,
KnownBits &Known,
unsigned Depth,
Instruction *CxtI) {
unsigned BitWidth = DemandedMask.getBitWidth();
Type *ITy = I->getType();
KnownBits LHSKnown(BitWidth);
KnownBits RHSKnown(BitWidth);
// Despite the fact that we can't simplify this instruction in all User's
// context, we can at least compute the known bits, and we can
// do simplifications that apply to *just* the one user if we know that
// this instruction has a simpler value in that context.
switch (I->getOpcode()) {
case Instruction::And: {
// If either the LHS or the RHS are Zero, the result is zero.
computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
CxtI);
// Output known-0 are known to be clear if zero in either the LHS | RHS.
APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero;
// Output known-1 bits are only known if set in both the LHS & RHS.
APInt IKnownOne = RHSKnown.One & LHSKnown.One;
// If the client is only demanding bits that we know, return the known
// constant.
if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
return Constant::getIntegerValue(ITy, IKnownOne);
// If all of the demanded bits are known 1 on one side, return the other.
// These bits cannot contribute to the result of the 'and' in this
// context.
if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
return I->getOperand(0);
if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
return I->getOperand(1);
Known.Zero = std::move(IKnownZero);
Known.One = std::move(IKnownOne);
break;
}
case Instruction::Or: {
// We can simplify (X|Y) -> X or Y in the user's context if we know that
// only bits from X or Y are demanded.
// If either the LHS or the RHS are One, the result is One.
computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
CxtI);
// Output known-0 bits are only known if clear in both the LHS & RHS.
APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero;
// Output known-1 are known to be set if set in either the LHS | RHS.
APInt IKnownOne = RHSKnown.One | LHSKnown.One;
// If the client is only demanding bits that we know, return the known
// constant.
if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
return Constant::getIntegerValue(ITy, IKnownOne);
// If all of the demanded bits are known zero on one side, return the
// other. These bits cannot contribute to the result of the 'or' in this
// context.
if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
return I->getOperand(0);
if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
return I->getOperand(1);
Known.Zero = std::move(IKnownZero);
Known.One = std::move(IKnownOne);
break;
}
case Instruction::Xor: {
// We can simplify (X^Y) -> X or Y in the user's context if we know that
// only bits from X or Y are demanded.
computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
CxtI);
// Output known-0 bits are known if clear or set in both the LHS & RHS.
APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) |
(RHSKnown.One & LHSKnown.One);
// Output known-1 are known to be set if set in only one of the LHS, RHS.
APInt IKnownOne = (RHSKnown.Zero & LHSKnown.One) |
(RHSKnown.One & LHSKnown.Zero);
// If the client is only demanding bits that we know, return the known
// constant.
if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
return Constant::getIntegerValue(ITy, IKnownOne);
// If all of the demanded bits are known zero on one side, return the
// other.
if (DemandedMask.isSubsetOf(RHSKnown.Zero))
return I->getOperand(0);
if (DemandedMask.isSubsetOf(LHSKnown.Zero))
return I->getOperand(1);
// Output known-0 bits are known if clear or set in both the LHS & RHS.
Known.Zero = std::move(IKnownZero);
// Output known-1 are known to be set if set in only one of the LHS, RHS.
Known.One = std::move(IKnownOne);
break;
}
default:
// Compute the Known bits to simplify things downstream.
computeKnownBits(I, Known, Depth, CxtI);
// If this user is only demanding bits that we know, return the known
// constant.
if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
return Constant::getIntegerValue(ITy, Known.One);
break;
}
return nullptr;
}
/// Helper routine of SimplifyDemandedUseBits. It tries to simplify
/// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into
/// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign
/// of "C2-C1".
///
/// Suppose E1 and E2 are generally different in bits S={bm, bm+1,
/// ..., bn}, without considering the specific value X is holding.
/// This transformation is legal iff one of following conditions is hold:
/// 1) All the bit in S are 0, in this case E1 == E2.
/// 2) We don't care those bits in S, per the input DemandedMask.
/// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the
/// rest bits.
///
/// Currently we only test condition 2).
///
/// As with SimplifyDemandedUseBits, it returns NULL if the simplification was
/// not successful.
Value *
InstCombiner::simplifyShrShlDemandedBits(Instruction *Shr, const APInt &ShrOp1,
Instruction *Shl, const APInt &ShlOp1,
const APInt &DemandedMask,
KnownBits &Known) {
if (!ShlOp1 || !ShrOp1)
return nullptr; // No-op.
Value *VarX = Shr->getOperand(0);
Type *Ty = VarX->getType();
unsigned BitWidth = Ty->getScalarSizeInBits();
if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth))
return nullptr; // Undef.
unsigned ShlAmt = ShlOp1.getZExtValue();
unsigned ShrAmt = ShrOp1.getZExtValue();
Known.One.clearAllBits();
Known.Zero.setLowBits(ShlAmt - 1);
Known.Zero &= DemandedMask;
APInt BitMask1(APInt::getAllOnesValue(BitWidth));
APInt BitMask2(APInt::getAllOnesValue(BitWidth));
bool isLshr = (Shr->getOpcode() == Instruction::LShr);
BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) :
(BitMask1.ashr(ShrAmt) << ShlAmt);
if (ShrAmt <= ShlAmt) {
BitMask2 <<= (ShlAmt - ShrAmt);
} else {
BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt):
BitMask2.ashr(ShrAmt - ShlAmt);
}
// Check if condition-2 (see the comment to this function) is satified.
if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) {
if (ShrAmt == ShlAmt)
return VarX;
if (!Shr->hasOneUse())
return nullptr;
BinaryOperator *New;
if (ShrAmt < ShlAmt) {
Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt);
New = BinaryOperator::CreateShl(VarX, Amt);
BinaryOperator *Orig = cast<BinaryOperator>(Shl);
New->setHasNoSignedWrap(Orig->hasNoSignedWrap());
New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap());
} else {
Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt);
New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) :
BinaryOperator::CreateAShr(VarX, Amt);
if (cast<BinaryOperator>(Shr)->isExact())
New->setIsExact(true);
}
return InsertNewInstWith(New, *Shl);
}
return nullptr;
}
/// Implement SimplifyDemandedVectorElts for amdgcn buffer and image intrinsics.
///
/// Note: This only supports non-TFE/LWE image intrinsic calls; those have
/// struct returns.
Value *InstCombiner::simplifyAMDGCNMemoryIntrinsicDemanded(IntrinsicInst *II,
APInt DemandedElts,
int DMaskIdx) {
// FIXME: Allow v3i16/v3f16 in buffer intrinsics when the types are fully supported.
if (DMaskIdx < 0 &&
II->getType()->getScalarSizeInBits() != 32 &&
DemandedElts.getActiveBits() == 3)
return nullptr;
unsigned VWidth = II->getType()->getVectorNumElements();
if (VWidth == 1)
return nullptr;
IRBuilderBase::InsertPointGuard Guard(Builder);
Builder.SetInsertPoint(II);
// Assume the arguments are unchanged and later override them, if needed.
SmallVector<Value *, 16> Args(II->arg_begin(), II->arg_end());
if (DMaskIdx < 0) {
// Buffer case.
const unsigned ActiveBits = DemandedElts.getActiveBits();
const unsigned UnusedComponentsAtFront = DemandedElts.countTrailingZeros();
// Start assuming the prefix of elements is demanded, but possibly clear
// some other bits if there are trailing zeros (unused components at front)
// and update offset.
DemandedElts = (1 << ActiveBits) - 1;
if (UnusedComponentsAtFront > 0) {
static const unsigned InvalidOffsetIdx = 0xf;
unsigned OffsetIdx;
switch (II->getIntrinsicID()) {
case Intrinsic::amdgcn_raw_buffer_load:
OffsetIdx = 1;
break;
case Intrinsic::amdgcn_s_buffer_load:
// If resulting type is vec3, there is no point in trimming the
// load with updated offset, as the vec3 would most likely be widened to
// vec4 anyway during lowering.
if (ActiveBits == 4 && UnusedComponentsAtFront == 1)
OffsetIdx = InvalidOffsetIdx;
else
OffsetIdx = 1;
break;
case Intrinsic::amdgcn_struct_buffer_load:
OffsetIdx = 2;
break;
default:
// TODO: handle tbuffer* intrinsics.
OffsetIdx = InvalidOffsetIdx;
break;
}
if (OffsetIdx != InvalidOffsetIdx) {
// Clear demanded bits and update the offset.
DemandedElts &= ~((1 << UnusedComponentsAtFront) - 1);
auto *Offset = II->getArgOperand(OffsetIdx);
unsigned SingleComponentSizeInBits =
getDataLayout().getTypeSizeInBits(II->getType()->getScalarType());
unsigned OffsetAdd =
UnusedComponentsAtFront * SingleComponentSizeInBits / 8;
auto *OffsetAddVal = ConstantInt::get(Offset->getType(), OffsetAdd);
Args[OffsetIdx] = Builder.CreateAdd(Offset, OffsetAddVal);
}
}
} else {
// Image case.
ConstantInt *DMask = cast<ConstantInt>(II->getArgOperand(DMaskIdx));
unsigned DMaskVal = DMask->getZExtValue() & 0xf;
// Mask off values that are undefined because the dmask doesn't cover them
DemandedElts &= (1 << countPopulation(DMaskVal)) - 1;
unsigned NewDMaskVal = 0;
unsigned OrigLoadIdx = 0;
for (unsigned SrcIdx = 0; SrcIdx < 4; ++SrcIdx) {
const unsigned Bit = 1 << SrcIdx;
if (!!(DMaskVal & Bit)) {
if (!!DemandedElts[OrigLoadIdx])
NewDMaskVal |= Bit;
OrigLoadIdx++;
}
}
if (DMaskVal != NewDMaskVal)
Args[DMaskIdx] = ConstantInt::get(DMask->getType(), NewDMaskVal);
}
unsigned NewNumElts = DemandedElts.countPopulation();
if (!NewNumElts)
return UndefValue::get(II->getType());
if (NewNumElts >= VWidth && DemandedElts.isMask()) {
if (DMaskIdx >= 0)
II->setArgOperand(DMaskIdx, Args[DMaskIdx]);
return nullptr;
}
// Determine the overload types of the original intrinsic.
auto IID = II->getIntrinsicID();
SmallVector<Intrinsic::IITDescriptor, 16> Table;
getIntrinsicInfoTableEntries(IID, Table);
ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
// Validate function argument and return types, extracting overloaded types
// along the way.
FunctionType *FTy = II->getCalledFunction()->getFunctionType();
SmallVector<Type *, 6> OverloadTys;
Intrinsic::matchIntrinsicSignature(FTy, TableRef, OverloadTys);
Module *M = II->getParent()->getParent()->getParent();
Type *EltTy = II->getType()->getVectorElementType();
Type *NewTy = (NewNumElts == 1) ? EltTy : VectorType::get(EltTy, NewNumElts);
OverloadTys[0] = NewTy;
Function *NewIntrin = Intrinsic::getDeclaration(M, IID, OverloadTys);
CallInst *NewCall = Builder.CreateCall(NewIntrin, Args);
NewCall->takeName(II);
NewCall->copyMetadata(*II);
if (NewNumElts == 1) {
return Builder.CreateInsertElement(UndefValue::get(II->getType()), NewCall,
DemandedElts.countTrailingZeros());
}
SmallVector<uint32_t, 8> EltMask;
unsigned NewLoadIdx = 0;
for (unsigned OrigLoadIdx = 0; OrigLoadIdx < VWidth; ++OrigLoadIdx) {
if (!!DemandedElts[OrigLoadIdx])
EltMask.push_back(NewLoadIdx++);
else
EltMask.push_back(NewNumElts);
}
Value *Shuffle =
Builder.CreateShuffleVector(NewCall, UndefValue::get(NewTy), EltMask);
return Shuffle;
}
/// The specified value produces a vector with any number of elements.
/// This method analyzes which elements of the operand are undef and returns
/// that information in UndefElts.
///
/// DemandedElts contains the set of elements that are actually used by the
/// caller, and by default (AllowMultipleUsers equals false) the value is
/// simplified only if it has a single caller. If AllowMultipleUsers is set
/// to true, DemandedElts refers to the union of sets of elements that are
/// used by all callers.
///
/// If the information about demanded elements can be used to simplify the
/// operation, the operation is simplified, then the resultant value is
/// returned. This returns null if no change was made.
Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
APInt &UndefElts,
unsigned Depth,
bool AllowMultipleUsers) {
unsigned VWidth = V->getType()->getVectorNumElements();
APInt EltMask(APInt::getAllOnesValue(VWidth));
assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
if (isa<UndefValue>(V)) {
// If the entire vector is undefined, just return this info.
UndefElts = EltMask;
return nullptr;
}
if (DemandedElts.isNullValue()) { // If nothing is demanded, provide undef.
UndefElts = EltMask;
return UndefValue::get(V->getType());
}
UndefElts = 0;
if (auto *C = dyn_cast<Constant>(V)) {
// Check if this is identity. If so, return 0 since we are not simplifying
// anything.
if (DemandedElts.isAllOnesValue())
return nullptr;
Type *EltTy = cast<VectorType>(V->getType())->getElementType();
Constant *Undef = UndefValue::get(EltTy);
SmallVector<Constant*, 16> Elts;
for (unsigned i = 0; i != VWidth; ++i) {
if (!DemandedElts[i]) { // If not demanded, set to undef.
Elts.push_back(Undef);
UndefElts.setBit(i);
continue;
}
Constant *Elt = C->getAggregateElement(i);
if (!Elt) return nullptr;
if (isa<UndefValue>(Elt)) { // Already undef.
Elts.push_back(Undef);
UndefElts.setBit(i);
} else { // Otherwise, defined.
Elts.push_back(Elt);
}
}
// If we changed the constant, return it.
Constant *NewCV = ConstantVector::get(Elts);
return NewCV != C ? NewCV : nullptr;
}
// Limit search depth.
if (Depth == 10)
return nullptr;
if (!AllowMultipleUsers) {
// If multiple users are using the root value, proceed with
// simplification conservatively assuming that all elements
// are needed.
if (!V->hasOneUse()) {
// Quit if we find multiple users of a non-root value though.
// They'll be handled when it's their turn to be visited by
// the main instcombine process.
if (Depth != 0)
// TODO: Just compute the UndefElts information recursively.
return nullptr;
// Conservatively assume that all elements are needed.
DemandedElts = EltMask;
}
}
Instruction *I = dyn_cast<Instruction>(V);
if (!I) return nullptr; // Only analyze instructions.
bool MadeChange = false;
auto simplifyAndSetOp = [&](Instruction *Inst, unsigned OpNum,
APInt Demanded, APInt &Undef) {
auto *II = dyn_cast<IntrinsicInst>(Inst);
Value *Op = II ? II->getArgOperand(OpNum) : Inst->getOperand(OpNum);
if (Value *V = SimplifyDemandedVectorElts(Op, Demanded, Undef, Depth + 1)) {
if (II)
II->setArgOperand(OpNum, V);
else
Inst->setOperand(OpNum, V);
MadeChange = true;
}
};
APInt UndefElts2(VWidth, 0);
APInt UndefElts3(VWidth, 0);
switch (I->getOpcode()) {
default: break;
case Instruction::GetElementPtr: {
// The LangRef requires that struct geps have all constant indices. As
// such, we can't convert any operand to partial undef.
auto mayIndexStructType = [](GetElementPtrInst &GEP) {
for (auto I = gep_type_begin(GEP), E = gep_type_end(GEP);
I != E; I++)
if (I.isStruct())
return true;;
return false;
};
if (mayIndexStructType(cast<GetElementPtrInst>(*I)))
break;
// Conservatively track the demanded elements back through any vector
// operands we may have. We know there must be at least one, or we
// wouldn't have a vector result to get here. Note that we intentionally
// merge the undef bits here since gepping with either an undef base or
// index results in undef.
for (unsigned i = 0; i < I->getNumOperands(); i++) {
if (isa<UndefValue>(I->getOperand(i))) {
// If the entire vector is undefined, just return this info.
UndefElts = EltMask;
return nullptr;
}
if (I->getOperand(i)->getType()->isVectorTy()) {
APInt UndefEltsOp(VWidth, 0);
simplifyAndSetOp(I, i, DemandedElts, UndefEltsOp);
UndefElts |= UndefEltsOp;
}
}
break;
}
case Instruction::InsertElement: {
// If this is a variable index, we don't know which element it overwrites.
// demand exactly the same input as we produce.
ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
if (!Idx) {
// Note that we can't propagate undef elt info, because we don't know
// which elt is getting updated.
simplifyAndSetOp(I, 0, DemandedElts, UndefElts2);
break;
}
// The element inserted overwrites whatever was there, so the input demanded
// set is simpler than the output set.
unsigned IdxNo = Idx->getZExtValue();
APInt PreInsertDemandedElts = DemandedElts;
if (IdxNo < VWidth)
PreInsertDemandedElts.clearBit(IdxNo);
simplifyAndSetOp(I, 0, PreInsertDemandedElts, UndefElts);
// If this is inserting an element that isn't demanded, remove this
// insertelement.
if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
Worklist.push(I);
return I->getOperand(0);
}
// The inserted element is defined.
UndefElts.clearBit(IdxNo);
break;
}
case Instruction::ShuffleVector: {
auto *Shuffle = cast<ShuffleVectorInst>(I);
assert(Shuffle->getOperand(0)->getType() ==
Shuffle->getOperand(1)->getType() &&
"Expected shuffle operands to have same type");
unsigned OpWidth =
Shuffle->getOperand(0)->getType()->getVectorNumElements();
APInt LeftDemanded(OpWidth, 0), RightDemanded(OpWidth, 0);
for (unsigned i = 0; i < VWidth; i++) {
if (DemandedElts[i]) {
unsigned MaskVal = Shuffle->getMaskValue(i);
if (MaskVal != -1u) {
assert(MaskVal < OpWidth * 2 &&
"shufflevector mask index out of range!");
if (MaskVal < OpWidth)
LeftDemanded.setBit(MaskVal);
else
RightDemanded.setBit(MaskVal - OpWidth);
}
}
}
APInt LHSUndefElts(OpWidth, 0);
simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts);
APInt RHSUndefElts(OpWidth, 0);
simplifyAndSetOp(I, 1, RightDemanded, RHSUndefElts);
// If this shuffle does not change the vector length and the elements
// demanded by this shuffle are an identity mask, then this shuffle is
// unnecessary.
//
// We are assuming canonical form for the mask, so the source vector is
// operand 0 and operand 1 is not used.
//
// Note that if an element is demanded and this shuffle mask is undefined
// for that element, then the shuffle is not considered an identity
// operation. The shuffle prevents poison from the operand vector from
// leaking to the result by replacing poison with an undefined value.
if (VWidth == OpWidth) {
bool IsIdentityShuffle = true;
for (unsigned i = 0; i < VWidth; i++) {
unsigned MaskVal = Shuffle->getMaskValue(i);
if (DemandedElts[i] && i != MaskVal) {
IsIdentityShuffle = false;
break;
}
}
if (IsIdentityShuffle)
return Shuffle->getOperand(0);
}
bool NewUndefElts = false;
unsigned LHSIdx = -1u, LHSValIdx = -1u;
unsigned RHSIdx = -1u, RHSValIdx = -1u;
bool LHSUniform = true;
bool RHSUniform = true;
for (unsigned i = 0; i < VWidth; i++) {
unsigned MaskVal = Shuffle->getMaskValue(i);
if (MaskVal == -1u) {
UndefElts.setBit(i);
} else if (!DemandedElts[i]) {
NewUndefElts = true;
UndefElts.setBit(i);
} else if (MaskVal < OpWidth) {
if (LHSUndefElts[MaskVal]) {
NewUndefElts = true;
UndefElts.setBit(i);
} else {
LHSIdx = LHSIdx == -1u ? i : OpWidth;
LHSValIdx = LHSValIdx == -1u ? MaskVal : OpWidth;
LHSUniform = LHSUniform && (MaskVal == i);
}
} else {
if (RHSUndefElts[MaskVal - OpWidth]) {
NewUndefElts = true;
UndefElts.setBit(i);
} else {
RHSIdx = RHSIdx == -1u ? i : OpWidth;
RHSValIdx = RHSValIdx == -1u ? MaskVal - OpWidth : OpWidth;
RHSUniform = RHSUniform && (MaskVal - OpWidth == i);
}
}
}
// Try to transform shuffle with constant vector and single element from
// this constant vector to single insertelement instruction.
// shufflevector V, C, <v1, v2, .., ci, .., vm> ->
// insertelement V, C[ci], ci-n
if (OpWidth == Shuffle->getType()->getNumElements()) {
Value *Op = nullptr;
Constant *Value = nullptr;
unsigned Idx = -1u;
// Find constant vector with the single element in shuffle (LHS or RHS).
if (LHSIdx < OpWidth && RHSUniform) {
if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) {
Op = Shuffle->getOperand(1);
Value = CV->getOperand(LHSValIdx);
Idx = LHSIdx;
}
}
if (RHSIdx < OpWidth && LHSUniform) {
if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) {
Op = Shuffle->getOperand(0);
Value = CV->getOperand(RHSValIdx);
Idx = RHSIdx;
}
}
// Found constant vector with single element - convert to insertelement.
if (Op && Value) {
Instruction *New = InsertElementInst::Create(
Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx),
Shuffle->getName());
InsertNewInstWith(New, *Shuffle);
return New;
}
}
if (NewUndefElts) {
// Add additional discovered undefs.
SmallVector<Constant*, 16> Elts;
for (unsigned i = 0; i < VWidth; ++i) {
if (UndefElts[i])
Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext())));
else
Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()),
Shuffle->getMaskValue(i)));
}
I->setOperand(2, ConstantVector::get(Elts));
MadeChange = true;
}
break;
}
case Instruction::Select: {
// If this is a vector select, try to transform the select condition based
// on the current demanded elements.
SelectInst *Sel = cast<SelectInst>(I);
if (Sel->getCondition()->getType()->isVectorTy()) {
// TODO: We are not doing anything with UndefElts based on this call.
// It is overwritten below based on the other select operands. If an
// element of the select condition is known undef, then we are free to
// choose the output value from either arm of the select. If we know that
// one of those values is undef, then the output can be undef.
simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
}
// Next, see if we can transform the arms of the select.
APInt DemandedLHS(DemandedElts), DemandedRHS(DemandedElts);
if (auto *CV = dyn_cast<ConstantVector>(Sel->getCondition())) {
for (unsigned i = 0; i < VWidth; i++) {
// isNullValue() always returns false when called on a ConstantExpr.
// Skip constant expressions to avoid propagating incorrect information.
Constant *CElt = CV->getAggregateElement(i);
if (isa<ConstantExpr>(CElt))
continue;
// TODO: If a select condition element is undef, we can demand from
// either side. If one side is known undef, choosing that side would
// propagate undef.
if (CElt->isNullValue())
DemandedLHS.clearBit(i);
else
DemandedRHS.clearBit(i);
}
}
simplifyAndSetOp(I, 1, DemandedLHS, UndefElts2);
simplifyAndSetOp(I, 2, DemandedRHS, UndefElts3);
// Output elements are undefined if the element from each arm is undefined.
// TODO: This can be improved. See comment in select condition handling.
UndefElts = UndefElts2 & UndefElts3;
break;
}
case Instruction::BitCast: {
// Vector->vector casts only.
VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
if (!VTy) break;
unsigned InVWidth = VTy->getNumElements();
APInt InputDemandedElts(InVWidth, 0);
UndefElts2 = APInt(InVWidth, 0);
unsigned Ratio;
if (VWidth == InVWidth) {
// If we are converting from <4 x i32> -> <4 x f32>, we demand the same
// elements as are demanded of us.
Ratio = 1;
InputDemandedElts = DemandedElts;
} else if ((VWidth % InVWidth) == 0) {
// If the number of elements in the output is a multiple of the number of
// elements in the input then an input element is live if any of the
// corresponding output elements are live.
Ratio = VWidth / InVWidth;
for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
if (DemandedElts[OutIdx])
InputDemandedElts.setBit(OutIdx / Ratio);
} else if ((InVWidth % VWidth) == 0) {
// If the number of elements in the input is a multiple of the number of
// elements in the output then an input element is live if the
// corresponding output element is live.
Ratio = InVWidth / VWidth;
for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
if (DemandedElts[InIdx / Ratio])
InputDemandedElts.setBit(InIdx);
} else {
// Unsupported so far.
break;
}
simplifyAndSetOp(I, 0, InputDemandedElts, UndefElts2);
if (VWidth == InVWidth) {
UndefElts = UndefElts2;
} else if ((VWidth % InVWidth) == 0) {
// If the number of elements in the output is a multiple of the number of
// elements in the input then an output element is undef if the
// corresponding input element is undef.
for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
if (UndefElts2[OutIdx / Ratio])
UndefElts.setBit(OutIdx);
} else if ((InVWidth % VWidth) == 0) {
// If the number of elements in the input is a multiple of the number of
// elements in the output then an output element is undef if all of the
// corresponding input elements are undef.
for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio);
if (SubUndef.countPopulation() == Ratio)
UndefElts.setBit(OutIdx);
}
} else {
llvm_unreachable("Unimp");
}
break;
}
case Instruction::FPTrunc:
case Instruction::FPExt:
simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
break;
case Instruction::Call: {
IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
if (!II) break;
switch (II->getIntrinsicID()) {
case Intrinsic::masked_gather: // fallthrough
case Intrinsic::masked_load: {
// Subtlety: If we load from a pointer, the pointer must be valid
// regardless of whether the element is demanded. Doing otherwise risks
// segfaults which didn't exist in the original program.
APInt DemandedPtrs(APInt::getAllOnesValue(VWidth)),
DemandedPassThrough(DemandedElts);
if (auto *CV = dyn_cast<ConstantVector>(II->getOperand(2)))
for (unsigned i = 0; i < VWidth; i++) {
Constant *CElt = CV->getAggregateElement(i);
if (CElt->isNullValue())
DemandedPtrs.clearBit(i);
else if (CElt->isAllOnesValue())
DemandedPassThrough.clearBit(i);
}
if (II->getIntrinsicID() == Intrinsic::masked_gather)
simplifyAndSetOp(II, 0, DemandedPtrs, UndefElts2);
simplifyAndSetOp(II, 3, DemandedPassThrough, UndefElts3);
// Output elements are undefined if the element from both sources are.
// TODO: can strengthen via mask as well.
UndefElts = UndefElts2 & UndefElts3;
break;
}
case Intrinsic::x86_xop_vfrcz_ss:
case Intrinsic::x86_xop_vfrcz_sd:
// The instructions for these intrinsics are speced to zero upper bits not
// pass them through like other scalar intrinsics. So we shouldn't just
// use Arg0 if DemandedElts[0] is clear like we do for other intrinsics.
// Instead we should return a zero vector.
if (!DemandedElts[0]) {
Worklist.push(II);
return ConstantAggregateZero::get(II->getType());
}
// Only the lower element is used.
DemandedElts = 1;
simplifyAndSetOp(II, 0, DemandedElts, UndefElts);
// Only the lower element is undefined. The high elements are zero.
UndefElts = UndefElts[0];
break;
// Unary scalar-as-vector operations that work column-wise.
case Intrinsic::x86_sse_rcp_ss:
case Intrinsic::x86_sse_rsqrt_ss:
simplifyAndSetOp(II, 0, DemandedElts, UndefElts);
// If lowest element of a scalar op isn't used then use Arg0.
if (!DemandedElts[0]) {
Worklist.push(II);
return II->getArgOperand(0);
}
// TODO: If only low elt lower SQRT to FSQRT (with rounding/exceptions
// checks).
break;
// Binary scalar-as-vector operations that work column-wise. The high
// elements come from operand 0. The low element is a function of both
// operands.
case Intrinsic::x86_sse_min_ss:
case Intrinsic::x86_sse_max_ss:
case Intrinsic::x86_sse_cmp_ss:
case Intrinsic::x86_sse2_min_sd:
case Intrinsic::x86_sse2_max_sd:
case Intrinsic::x86_sse2_cmp_sd: {
simplifyAndSetOp(II, 0, DemandedElts, UndefElts);
// If lowest element of a scalar op isn't used then use Arg0.
if (!DemandedElts[0]) {
Worklist.push(II);
return II->getArgOperand(0);
}
// Only lower element is used for operand 1.
DemandedElts = 1;
simplifyAndSetOp(II, 1, DemandedElts, UndefElts2);
// Lower element is undefined if both lower elements are undefined.
// Consider things like undef&0. The result is known zero, not undef.
if (!UndefElts2[0])
UndefElts.clearBit(0);
break;
}
// Binary scalar-as-vector operations that work column-wise. The high
// elements come from operand 0 and the low element comes from operand 1.
case Intrinsic::x86_sse41_round_ss:
case Intrinsic::x86_sse41_round_sd: {
// Don't use the low element of operand 0.
APInt DemandedElts2 = DemandedElts;
DemandedElts2.clearBit(0);
simplifyAndSetOp(II, 0, DemandedElts2, UndefElts);
// If lowest element of a scalar op isn't used then use Arg0.
if (!DemandedElts[0]) {
Worklist.push(II);
return II->getArgOperand(0);
}
// Only lower element is used for operand 1.
DemandedElts = 1;
simplifyAndSetOp(II, 1, DemandedElts, UndefElts2);
// Take the high undef elements from operand 0 and take the lower element
// from operand 1.
UndefElts.clearBit(0);
UndefElts |= UndefElts2[0];
break;
}
// Three input scalar-as-vector operations that work column-wise. The high
// elements come from operand 0 and the low element is a function of all
// three inputs.
case Intrinsic::x86_avx512_mask_add_ss_round:
case Intrinsic::x86_avx512_mask_div_ss_round:
case Intrinsic::x86_avx512_mask_mul_ss_round:
case Intrinsic::x86_avx512_mask_sub_ss_round:
case Intrinsic::x86_avx512_mask_max_ss_round:
case Intrinsic::x86_avx512_mask_min_ss_round:
case Intrinsic::x86_avx512_mask_add_sd_round:
case Intrinsic::x86_avx512_mask_div_sd_round:
case Intrinsic::x86_avx512_mask_mul_sd_round:
case Intrinsic::x86_avx512_mask_sub_sd_round:
case Intrinsic::x86_avx512_mask_max_sd_round:
case Intrinsic::x86_avx512_mask_min_sd_round:
simplifyAndSetOp(II, 0, DemandedElts, UndefElts);
// If lowest element of a scalar op isn't used then use Arg0.
if (!DemandedElts[0]) {
Worklist.push(II);
return II->getArgOperand(0);
}
// Only lower element is used for operand 1 and 2.
DemandedElts = 1;
simplifyAndSetOp(II, 1, DemandedElts, UndefElts2);
simplifyAndSetOp(II, 2, DemandedElts, UndefElts3);
// Lower element is undefined if all three lower elements are undefined.
// Consider things like undef&0. The result is known zero, not undef.
if (!UndefElts2[0] || !UndefElts3[0])
UndefElts.clearBit(0);
break;
case Intrinsic::x86_sse2_packssdw_128:
case Intrinsic::x86_sse2_packsswb_128:
case Intrinsic::x86_sse2_packuswb_128:
case Intrinsic::x86_sse41_packusdw:
case Intrinsic::x86_avx2_packssdw:
case Intrinsic::x86_avx2_packsswb:
case Intrinsic::x86_avx2_packusdw:
case Intrinsic::x86_avx2_packuswb:
case Intrinsic::x86_avx512_packssdw_512:
case Intrinsic::x86_avx512_packsswb_512:
case Intrinsic::x86_avx512_packusdw_512:
case Intrinsic::x86_avx512_packuswb_512: {
auto *Ty0 = II->getArgOperand(0)->getType();
unsigned InnerVWidth = Ty0->getVectorNumElements();
assert(VWidth == (InnerVWidth * 2) && "Unexpected input size");
unsigned NumLanes = Ty0->getPrimitiveSizeInBits() / 128;
unsigned VWidthPerLane = VWidth / NumLanes;
unsigned InnerVWidthPerLane = InnerVWidth / NumLanes;
// Per lane, pack the elements of the first input and then the second.
// e.g.
// v8i16 PACK(v4i32 X, v4i32 Y) - (X[0..3],Y[0..3])
// v32i8 PACK(v16i16 X, v16i16 Y) - (X[0..7],Y[0..7]),(X[8..15],Y[8..15])
for (int OpNum = 0; OpNum != 2; ++OpNum) {
APInt OpDemandedElts(InnerVWidth, 0);
for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
unsigned LaneIdx = Lane * VWidthPerLane;
for (unsigned Elt = 0; Elt != InnerVWidthPerLane; ++Elt) {
unsigned Idx = LaneIdx + Elt + InnerVWidthPerLane * OpNum;
if (DemandedElts[Idx])
OpDemandedElts.setBit((Lane * InnerVWidthPerLane) + Elt);
}
}
// Demand elements from the operand.
APInt OpUndefElts(InnerVWidth, 0);
simplifyAndSetOp(II, OpNum, OpDemandedElts, OpUndefElts);
// Pack the operand's UNDEF elements, one lane at a time.
OpUndefElts = OpUndefElts.zext(VWidth);
for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
APInt LaneElts = OpUndefElts.lshr(InnerVWidthPerLane * Lane);
LaneElts = LaneElts.getLoBits(InnerVWidthPerLane);
LaneElts <<= InnerVWidthPerLane * (2 * Lane + OpNum);
UndefElts |= LaneElts;
}
}
break;
}
// PSHUFB
case Intrinsic::x86_ssse3_pshuf_b_128:
case Intrinsic::x86_avx2_pshuf_b:
case Intrinsic::x86_avx512_pshuf_b_512:
// PERMILVAR
case Intrinsic::x86_avx_vpermilvar_ps:
case Intrinsic::x86_avx_vpermilvar_ps_256:
case Intrinsic::x86_avx512_vpermilvar_ps_512:
case Intrinsic::x86_avx_vpermilvar_pd:
case Intrinsic::x86_avx_vpermilvar_pd_256:
case Intrinsic::x86_avx512_vpermilvar_pd_512:
// PERMV
case Intrinsic::x86_avx2_permd:
case Intrinsic::x86_avx2_permps: {
simplifyAndSetOp(II, 1, DemandedElts, UndefElts);
break;
}
// SSE4A instructions leave the upper 64-bits of the 128-bit result
// in an undefined state.
case Intrinsic::x86_sse4a_extrq:
case Intrinsic::x86_sse4a_extrqi:
case Intrinsic::x86_sse4a_insertq:
case Intrinsic::x86_sse4a_insertqi:
UndefElts.setHighBits(VWidth / 2);
break;
case Intrinsic::amdgcn_buffer_load:
case Intrinsic::amdgcn_buffer_load_format:
case Intrinsic::amdgcn_raw_buffer_load:
case Intrinsic::amdgcn_raw_buffer_load_format:
case Intrinsic::amdgcn_raw_tbuffer_load:
case Intrinsic::amdgcn_s_buffer_load:
case Intrinsic::amdgcn_struct_buffer_load:
case Intrinsic::amdgcn_struct_buffer_load_format:
case Intrinsic::amdgcn_struct_tbuffer_load:
case Intrinsic::amdgcn_tbuffer_load:
return simplifyAMDGCNMemoryIntrinsicDemanded(II, DemandedElts);
default: {
if (getAMDGPUImageDMaskIntrinsic(II->getIntrinsicID()))
return simplifyAMDGCNMemoryIntrinsicDemanded(II, DemandedElts, 0);
break;
}
} // switch on IntrinsicID
break;
} // case Call
} // switch on Opcode
// TODO: We bail completely on integer div/rem and shifts because they have
// UB/poison potential, but that should be refined.
BinaryOperator *BO;
if (match(I, m_BinOp(BO)) && !BO->isIntDivRem() && !BO->isShift()) {
simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
simplifyAndSetOp(I, 1, DemandedElts, UndefElts2);
// Any change to an instruction with potential poison must clear those flags
// because we can not guarantee those constraints now. Other analysis may
// determine that it is safe to re-apply the flags.
if (MadeChange)
BO->dropPoisonGeneratingFlags();
// Output elements are undefined if both are undefined. Consider things
// like undef & 0. The result is known zero, not undef.
UndefElts &= UndefElts2;
}
// If we've proven all of the lanes undef, return an undef value.
// TODO: Intersect w/demanded lanes
if (UndefElts.isAllOnesValue())
return UndefValue::get(I->getType());;
return MadeChange ? I : nullptr;
}