mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 04:02:41 +01:00
c146569beb
llvm-svn: 130068
514 lines
19 KiB
C++
514 lines
19 KiB
C++
//===- DAGISelMatcherOpt.cpp - Optimize a DAG Matcher ---------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the DAG Matcher optimizer.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "isel-opt"
|
|
#include "DAGISelMatcher.h"
|
|
#include "CodeGenDAGPatterns.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/StringSet.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
using namespace llvm;
|
|
|
|
/// ContractNodes - Turn multiple matcher node patterns like 'MoveChild+Record'
|
|
/// into single compound nodes like RecordChild.
|
|
static void ContractNodes(OwningPtr<Matcher> &MatcherPtr,
|
|
const CodeGenDAGPatterns &CGP) {
|
|
// If we reached the end of the chain, we're done.
|
|
Matcher *N = MatcherPtr.get();
|
|
if (N == 0) return;
|
|
|
|
// If we have a scope node, walk down all of the children.
|
|
if (ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N)) {
|
|
for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
|
|
OwningPtr<Matcher> Child(Scope->takeChild(i));
|
|
ContractNodes(Child, CGP);
|
|
Scope->resetChild(i, Child.take());
|
|
}
|
|
return;
|
|
}
|
|
|
|
// If we found a movechild node with a node that comes in a 'foochild' form,
|
|
// transform it.
|
|
if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(N)) {
|
|
Matcher *New = 0;
|
|
if (RecordMatcher *RM = dyn_cast<RecordMatcher>(MC->getNext()))
|
|
if (MC->getChildNo() < 8) // Only have RecordChild0...7
|
|
New = new RecordChildMatcher(MC->getChildNo(), RM->getWhatFor(),
|
|
RM->getResultNo());
|
|
|
|
if (CheckTypeMatcher *CT = dyn_cast<CheckTypeMatcher>(MC->getNext()))
|
|
if (MC->getChildNo() < 8 && // Only have CheckChildType0...7
|
|
CT->getResNo() == 0) // CheckChildType checks res #0
|
|
New = new CheckChildTypeMatcher(MC->getChildNo(), CT->getType());
|
|
|
|
if (New) {
|
|
// Insert the new node.
|
|
New->setNext(MatcherPtr.take());
|
|
MatcherPtr.reset(New);
|
|
// Remove the old one.
|
|
MC->setNext(MC->getNext()->takeNext());
|
|
return ContractNodes(MatcherPtr, CGP);
|
|
}
|
|
}
|
|
|
|
// Zap movechild -> moveparent.
|
|
if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(N))
|
|
if (MoveParentMatcher *MP =
|
|
dyn_cast<MoveParentMatcher>(MC->getNext())) {
|
|
MatcherPtr.reset(MP->takeNext());
|
|
return ContractNodes(MatcherPtr, CGP);
|
|
}
|
|
|
|
// Turn EmitNode->MarkFlagResults->CompleteMatch into
|
|
// MarkFlagResults->EmitNode->CompleteMatch when we can to encourage
|
|
// MorphNodeTo formation. This is safe because MarkFlagResults never refers
|
|
// to the root of the pattern.
|
|
if (isa<EmitNodeMatcher>(N) && isa<MarkGlueResultsMatcher>(N->getNext()) &&
|
|
isa<CompleteMatchMatcher>(N->getNext()->getNext())) {
|
|
// Unlink the two nodes from the list.
|
|
Matcher *EmitNode = MatcherPtr.take();
|
|
Matcher *MFR = EmitNode->takeNext();
|
|
Matcher *Tail = MFR->takeNext();
|
|
|
|
// Relink them.
|
|
MatcherPtr.reset(MFR);
|
|
MFR->setNext(EmitNode);
|
|
EmitNode->setNext(Tail);
|
|
return ContractNodes(MatcherPtr, CGP);
|
|
}
|
|
|
|
// Turn EmitNode->CompleteMatch into MorphNodeTo if we can.
|
|
if (EmitNodeMatcher *EN = dyn_cast<EmitNodeMatcher>(N))
|
|
if (CompleteMatchMatcher *CM =
|
|
dyn_cast<CompleteMatchMatcher>(EN->getNext())) {
|
|
// We can only use MorphNodeTo if the result values match up.
|
|
unsigned RootResultFirst = EN->getFirstResultSlot();
|
|
bool ResultsMatch = true;
|
|
for (unsigned i = 0, e = CM->getNumResults(); i != e; ++i)
|
|
if (CM->getResult(i) != RootResultFirst+i)
|
|
ResultsMatch = false;
|
|
|
|
// If the selected node defines a subset of the glue/chain results, we
|
|
// can't use MorphNodeTo. For example, we can't use MorphNodeTo if the
|
|
// matched pattern has a chain but the root node doesn't.
|
|
const PatternToMatch &Pattern = CM->getPattern();
|
|
|
|
if (!EN->hasChain() &&
|
|
Pattern.getSrcPattern()->NodeHasProperty(SDNPHasChain, CGP))
|
|
ResultsMatch = false;
|
|
|
|
// If the matched node has glue and the output root doesn't, we can't
|
|
// use MorphNodeTo.
|
|
//
|
|
// NOTE: Strictly speaking, we don't have to check for glue here
|
|
// because the code in the pattern generator doesn't handle it right. We
|
|
// do it anyway for thoroughness.
|
|
if (!EN->hasOutFlag() &&
|
|
Pattern.getSrcPattern()->NodeHasProperty(SDNPOutGlue, CGP))
|
|
ResultsMatch = false;
|
|
|
|
|
|
// If the root result node defines more results than the source root node
|
|
// *and* has a chain or glue input, then we can't match it because it
|
|
// would end up replacing the extra result with the chain/glue.
|
|
#if 0
|
|
if ((EN->hasGlue() || EN->hasChain()) &&
|
|
EN->getNumNonChainGlueVTs() > ... need to get no results reliably ...)
|
|
ResultMatch = false;
|
|
#endif
|
|
|
|
if (ResultsMatch) {
|
|
const SmallVectorImpl<MVT::SimpleValueType> &VTs = EN->getVTList();
|
|
const SmallVectorImpl<unsigned> &Operands = EN->getOperandList();
|
|
MatcherPtr.reset(new MorphNodeToMatcher(EN->getOpcodeName(),
|
|
VTs.data(), VTs.size(),
|
|
Operands.data(),Operands.size(),
|
|
EN->hasChain(), EN->hasInFlag(),
|
|
EN->hasOutFlag(),
|
|
EN->hasMemRefs(),
|
|
EN->getNumFixedArityOperands(),
|
|
Pattern));
|
|
return;
|
|
}
|
|
|
|
// FIXME2: Kill off all the SelectionDAG::SelectNodeTo and getMachineNode
|
|
// variants.
|
|
}
|
|
|
|
ContractNodes(N->getNextPtr(), CGP);
|
|
|
|
|
|
// If we have a CheckType/CheckChildType/Record node followed by a
|
|
// CheckOpcode, invert the two nodes. We prefer to do structural checks
|
|
// before type checks, as this opens opportunities for factoring on targets
|
|
// like X86 where many operations are valid on multiple types.
|
|
if ((isa<CheckTypeMatcher>(N) || isa<CheckChildTypeMatcher>(N) ||
|
|
isa<RecordMatcher>(N)) &&
|
|
isa<CheckOpcodeMatcher>(N->getNext())) {
|
|
// Unlink the two nodes from the list.
|
|
Matcher *CheckType = MatcherPtr.take();
|
|
Matcher *CheckOpcode = CheckType->takeNext();
|
|
Matcher *Tail = CheckOpcode->takeNext();
|
|
|
|
// Relink them.
|
|
MatcherPtr.reset(CheckOpcode);
|
|
CheckOpcode->setNext(CheckType);
|
|
CheckType->setNext(Tail);
|
|
return ContractNodes(MatcherPtr, CGP);
|
|
}
|
|
}
|
|
|
|
/// SinkPatternPredicates - Pattern predicates can be checked at any level of
|
|
/// the matching tree. The generator dumps them at the top level of the pattern
|
|
/// though, which prevents factoring from being able to see past them. This
|
|
/// optimization sinks them as far down into the pattern as possible.
|
|
///
|
|
/// Conceptually, we'd like to sink these predicates all the way to the last
|
|
/// matcher predicate in the series. However, it turns out that some
|
|
/// ComplexPatterns have side effects on the graph, so we really don't want to
|
|
/// run a the complex pattern if the pattern predicate will fail. For this
|
|
/// reason, we refuse to sink the pattern predicate past a ComplexPattern.
|
|
///
|
|
static void SinkPatternPredicates(OwningPtr<Matcher> &MatcherPtr) {
|
|
// Recursively scan for a PatternPredicate.
|
|
// If we reached the end of the chain, we're done.
|
|
Matcher *N = MatcherPtr.get();
|
|
if (N == 0) return;
|
|
|
|
// Walk down all members of a scope node.
|
|
if (ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N)) {
|
|
for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
|
|
OwningPtr<Matcher> Child(Scope->takeChild(i));
|
|
SinkPatternPredicates(Child);
|
|
Scope->resetChild(i, Child.take());
|
|
}
|
|
return;
|
|
}
|
|
|
|
// If this node isn't a CheckPatternPredicateMatcher we keep scanning until
|
|
// we find one.
|
|
CheckPatternPredicateMatcher *CPPM =dyn_cast<CheckPatternPredicateMatcher>(N);
|
|
if (CPPM == 0)
|
|
return SinkPatternPredicates(N->getNextPtr());
|
|
|
|
// Ok, we found one, lets try to sink it. Check if we can sink it past the
|
|
// next node in the chain. If not, we won't be able to change anything and
|
|
// might as well bail.
|
|
if (!CPPM->getNext()->isSafeToReorderWithPatternPredicate())
|
|
return;
|
|
|
|
// Okay, we know we can sink it past at least one node. Unlink it from the
|
|
// chain and scan for the new insertion point.
|
|
MatcherPtr.take(); // Don't delete CPPM.
|
|
MatcherPtr.reset(CPPM->takeNext());
|
|
|
|
N = MatcherPtr.get();
|
|
while (N->getNext()->isSafeToReorderWithPatternPredicate())
|
|
N = N->getNext();
|
|
|
|
// At this point, we want to insert CPPM after N.
|
|
CPPM->setNext(N->takeNext());
|
|
N->setNext(CPPM);
|
|
}
|
|
|
|
/// FindNodeWithKind - Scan a series of matchers looking for a matcher with a
|
|
/// specified kind. Return null if we didn't find one otherwise return the
|
|
/// matcher.
|
|
static Matcher *FindNodeWithKind(Matcher *M, Matcher::KindTy Kind) {
|
|
for (; M; M = M->getNext())
|
|
if (M->getKind() == Kind)
|
|
return M;
|
|
return 0;
|
|
}
|
|
|
|
|
|
/// FactorNodes - Turn matches like this:
|
|
/// Scope
|
|
/// OPC_CheckType i32
|
|
/// ABC
|
|
/// OPC_CheckType i32
|
|
/// XYZ
|
|
/// into:
|
|
/// OPC_CheckType i32
|
|
/// Scope
|
|
/// ABC
|
|
/// XYZ
|
|
///
|
|
static void FactorNodes(OwningPtr<Matcher> &MatcherPtr) {
|
|
// If we reached the end of the chain, we're done.
|
|
Matcher *N = MatcherPtr.get();
|
|
if (N == 0) return;
|
|
|
|
// If this is not a push node, just scan for one.
|
|
ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N);
|
|
if (Scope == 0)
|
|
return FactorNodes(N->getNextPtr());
|
|
|
|
// Okay, pull together the children of the scope node into a vector so we can
|
|
// inspect it more easily. While we're at it, bucket them up by the hash
|
|
// code of their first predicate.
|
|
SmallVector<Matcher*, 32> OptionsToMatch;
|
|
|
|
for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
|
|
// Factor the subexpression.
|
|
OwningPtr<Matcher> Child(Scope->takeChild(i));
|
|
FactorNodes(Child);
|
|
|
|
if (Matcher *N = Child.take())
|
|
OptionsToMatch.push_back(N);
|
|
}
|
|
|
|
SmallVector<Matcher*, 32> NewOptionsToMatch;
|
|
|
|
// Loop over options to match, merging neighboring patterns with identical
|
|
// starting nodes into a shared matcher.
|
|
for (unsigned OptionIdx = 0, e = OptionsToMatch.size(); OptionIdx != e;) {
|
|
// Find the set of matchers that start with this node.
|
|
Matcher *Optn = OptionsToMatch[OptionIdx++];
|
|
|
|
if (OptionIdx == e) {
|
|
NewOptionsToMatch.push_back(Optn);
|
|
continue;
|
|
}
|
|
|
|
// See if the next option starts with the same matcher. If the two
|
|
// neighbors *do* start with the same matcher, we can factor the matcher out
|
|
// of at least these two patterns. See what the maximal set we can merge
|
|
// together is.
|
|
SmallVector<Matcher*, 8> EqualMatchers;
|
|
EqualMatchers.push_back(Optn);
|
|
|
|
// Factor all of the known-equal matchers after this one into the same
|
|
// group.
|
|
while (OptionIdx != e && OptionsToMatch[OptionIdx]->isEqual(Optn))
|
|
EqualMatchers.push_back(OptionsToMatch[OptionIdx++]);
|
|
|
|
// If we found a non-equal matcher, see if it is contradictory with the
|
|
// current node. If so, we know that the ordering relation between the
|
|
// current sets of nodes and this node don't matter. Look past it to see if
|
|
// we can merge anything else into this matching group.
|
|
unsigned Scan = OptionIdx;
|
|
while (1) {
|
|
// If we ran out of stuff to scan, we're done.
|
|
if (Scan == e) break;
|
|
|
|
Matcher *ScanMatcher = OptionsToMatch[Scan];
|
|
|
|
// If we found an entry that matches out matcher, merge it into the set to
|
|
// handle.
|
|
if (Optn->isEqual(ScanMatcher)) {
|
|
// If is equal after all, add the option to EqualMatchers and remove it
|
|
// from OptionsToMatch.
|
|
EqualMatchers.push_back(ScanMatcher);
|
|
OptionsToMatch.erase(OptionsToMatch.begin()+Scan);
|
|
--e;
|
|
continue;
|
|
}
|
|
|
|
// If the option we're checking for contradicts the start of the list,
|
|
// skip over it.
|
|
if (Optn->isContradictory(ScanMatcher)) {
|
|
++Scan;
|
|
continue;
|
|
}
|
|
|
|
// If we're scanning for a simple node, see if it occurs later in the
|
|
// sequence. If so, and if we can move it up, it might be contradictory
|
|
// or the same as what we're looking for. If so, reorder it.
|
|
if (Optn->isSimplePredicateOrRecordNode()) {
|
|
Matcher *M2 = FindNodeWithKind(ScanMatcher, Optn->getKind());
|
|
if (M2 != 0 && M2 != ScanMatcher &&
|
|
M2->canMoveBefore(ScanMatcher) &&
|
|
(M2->isEqual(Optn) || M2->isContradictory(Optn))) {
|
|
Matcher *MatcherWithoutM2 = ScanMatcher->unlinkNode(M2);
|
|
M2->setNext(MatcherWithoutM2);
|
|
OptionsToMatch[Scan] = M2;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Otherwise, we don't know how to handle this entry, we have to bail.
|
|
break;
|
|
}
|
|
|
|
if (Scan != e &&
|
|
// Don't print it's obvious nothing extra could be merged anyway.
|
|
Scan+1 != e) {
|
|
DEBUG(errs() << "Couldn't merge this:\n";
|
|
Optn->print(errs(), 4);
|
|
errs() << "into this:\n";
|
|
OptionsToMatch[Scan]->print(errs(), 4);
|
|
if (Scan+1 != e)
|
|
OptionsToMatch[Scan+1]->printOne(errs());
|
|
if (Scan+2 < e)
|
|
OptionsToMatch[Scan+2]->printOne(errs());
|
|
errs() << "\n");
|
|
}
|
|
|
|
// If we only found one option starting with this matcher, no factoring is
|
|
// possible.
|
|
if (EqualMatchers.size() == 1) {
|
|
NewOptionsToMatch.push_back(EqualMatchers[0]);
|
|
continue;
|
|
}
|
|
|
|
// Factor these checks by pulling the first node off each entry and
|
|
// discarding it. Take the first one off the first entry to reuse.
|
|
Matcher *Shared = Optn;
|
|
Optn = Optn->takeNext();
|
|
EqualMatchers[0] = Optn;
|
|
|
|
// Remove and delete the first node from the other matchers we're factoring.
|
|
for (unsigned i = 1, e = EqualMatchers.size(); i != e; ++i) {
|
|
Matcher *Tmp = EqualMatchers[i]->takeNext();
|
|
delete EqualMatchers[i];
|
|
EqualMatchers[i] = Tmp;
|
|
}
|
|
|
|
Shared->setNext(new ScopeMatcher(&EqualMatchers[0], EqualMatchers.size()));
|
|
|
|
// Recursively factor the newly created node.
|
|
FactorNodes(Shared->getNextPtr());
|
|
|
|
NewOptionsToMatch.push_back(Shared);
|
|
}
|
|
|
|
// If we're down to a single pattern to match, then we don't need this scope
|
|
// anymore.
|
|
if (NewOptionsToMatch.size() == 1) {
|
|
MatcherPtr.reset(NewOptionsToMatch[0]);
|
|
return;
|
|
}
|
|
|
|
if (NewOptionsToMatch.empty()) {
|
|
MatcherPtr.reset(0);
|
|
return;
|
|
}
|
|
|
|
// If our factoring failed (didn't achieve anything) see if we can simplify in
|
|
// other ways.
|
|
|
|
// Check to see if all of the leading entries are now opcode checks. If so,
|
|
// we can convert this Scope to be a OpcodeSwitch instead.
|
|
bool AllOpcodeChecks = true, AllTypeChecks = true;
|
|
for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) {
|
|
// Check to see if this breaks a series of CheckOpcodeMatchers.
|
|
if (AllOpcodeChecks &&
|
|
!isa<CheckOpcodeMatcher>(NewOptionsToMatch[i])) {
|
|
#if 0
|
|
if (i > 3) {
|
|
errs() << "FAILING OPC #" << i << "\n";
|
|
NewOptionsToMatch[i]->dump();
|
|
}
|
|
#endif
|
|
AllOpcodeChecks = false;
|
|
}
|
|
|
|
// Check to see if this breaks a series of CheckTypeMatcher's.
|
|
if (AllTypeChecks) {
|
|
CheckTypeMatcher *CTM =
|
|
cast_or_null<CheckTypeMatcher>(FindNodeWithKind(NewOptionsToMatch[i],
|
|
Matcher::CheckType));
|
|
if (CTM == 0 ||
|
|
// iPTR checks could alias any other case without us knowing, don't
|
|
// bother with them.
|
|
CTM->getType() == MVT::iPTR ||
|
|
// SwitchType only works for result #0.
|
|
CTM->getResNo() != 0 ||
|
|
// If the CheckType isn't at the start of the list, see if we can move
|
|
// it there.
|
|
!CTM->canMoveBefore(NewOptionsToMatch[i])) {
|
|
#if 0
|
|
if (i > 3 && AllTypeChecks) {
|
|
errs() << "FAILING TYPE #" << i << "\n";
|
|
NewOptionsToMatch[i]->dump();
|
|
}
|
|
#endif
|
|
AllTypeChecks = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If all the options are CheckOpcode's, we can form the SwitchOpcode, woot.
|
|
if (AllOpcodeChecks) {
|
|
StringSet<> Opcodes;
|
|
SmallVector<std::pair<const SDNodeInfo*, Matcher*>, 8> Cases;
|
|
for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) {
|
|
CheckOpcodeMatcher *COM = cast<CheckOpcodeMatcher>(NewOptionsToMatch[i]);
|
|
assert(Opcodes.insert(COM->getOpcode().getEnumName()) &&
|
|
"Duplicate opcodes not factored?");
|
|
Cases.push_back(std::make_pair(&COM->getOpcode(), COM->getNext()));
|
|
}
|
|
|
|
MatcherPtr.reset(new SwitchOpcodeMatcher(&Cases[0], Cases.size()));
|
|
return;
|
|
}
|
|
|
|
// If all the options are CheckType's, we can form the SwitchType, woot.
|
|
if (AllTypeChecks) {
|
|
DenseMap<unsigned, unsigned> TypeEntry;
|
|
SmallVector<std::pair<MVT::SimpleValueType, Matcher*>, 8> Cases;
|
|
for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) {
|
|
CheckTypeMatcher *CTM =
|
|
cast_or_null<CheckTypeMatcher>(FindNodeWithKind(NewOptionsToMatch[i],
|
|
Matcher::CheckType));
|
|
Matcher *MatcherWithoutCTM = NewOptionsToMatch[i]->unlinkNode(CTM);
|
|
MVT::SimpleValueType CTMTy = CTM->getType();
|
|
delete CTM;
|
|
|
|
unsigned &Entry = TypeEntry[CTMTy];
|
|
if (Entry != 0) {
|
|
// If we have unfactored duplicate types, then we should factor them.
|
|
Matcher *PrevMatcher = Cases[Entry-1].second;
|
|
if (ScopeMatcher *SM = dyn_cast<ScopeMatcher>(PrevMatcher)) {
|
|
SM->setNumChildren(SM->getNumChildren()+1);
|
|
SM->resetChild(SM->getNumChildren()-1, MatcherWithoutCTM);
|
|
continue;
|
|
}
|
|
|
|
Matcher *Entries[2] = { PrevMatcher, MatcherWithoutCTM };
|
|
Cases[Entry-1].second = new ScopeMatcher(Entries, 2);
|
|
continue;
|
|
}
|
|
|
|
Entry = Cases.size()+1;
|
|
Cases.push_back(std::make_pair(CTMTy, MatcherWithoutCTM));
|
|
}
|
|
|
|
if (Cases.size() != 1) {
|
|
MatcherPtr.reset(new SwitchTypeMatcher(&Cases[0], Cases.size()));
|
|
} else {
|
|
// If we factored and ended up with one case, create it now.
|
|
MatcherPtr.reset(new CheckTypeMatcher(Cases[0].first, 0));
|
|
MatcherPtr->setNext(Cases[0].second);
|
|
}
|
|
return;
|
|
}
|
|
|
|
|
|
// Reassemble the Scope node with the adjusted children.
|
|
Scope->setNumChildren(NewOptionsToMatch.size());
|
|
for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i)
|
|
Scope->resetChild(i, NewOptionsToMatch[i]);
|
|
}
|
|
|
|
Matcher *llvm::OptimizeMatcher(Matcher *TheMatcher,
|
|
const CodeGenDAGPatterns &CGP) {
|
|
OwningPtr<Matcher> MatcherPtr(TheMatcher);
|
|
ContractNodes(MatcherPtr, CGP);
|
|
SinkPatternPredicates(MatcherPtr);
|
|
FactorNodes(MatcherPtr);
|
|
return MatcherPtr.take();
|
|
}
|