1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-25 14:02:52 +02:00
llvm-mirror/lib/CodeGen/AsmPrinter/DIEHash.cpp
Greg Clayton 34f25a2606 Make a DWARF generator so we can unit test DWARF APIs with gtest.
The only tests we have for the DWARF parser are the tests that use llvm-dwarfdump and expect output from textual dumps.

More DWARF parser modification are coming in the next few weeks and I wanted to add tests that can verify that we can encode and decode all form types, as well as test some other basic DWARF APIs where we ask DIE objects for their children and siblings.

DwarfGenerator.cpp was added in the lib/CodeGen directory. This file contains the code necessary to easily create DWARF for tests:

dwarfgen::Generator DG;
Triple Triple("x86_64--");
bool success = DG.init(Triple, Version);
if (!success)
  return;
dwarfgen::CompileUnit &CU = DG.addCompileUnit();
dwarfgen::DIE CUDie = CU.getUnitDIE();

CUDie.addAttribute(DW_AT_name, DW_FORM_strp, "/tmp/main.c");
CUDie.addAttribute(DW_AT_language, DW_FORM_data2, DW_LANG_C);

dwarfgen::DIE SubprogramDie = CUDie.addChild(DW_TAG_subprogram);
SubprogramDie.addAttribute(DW_AT_name, DW_FORM_strp, "main");
SubprogramDie.addAttribute(DW_AT_low_pc, DW_FORM_addr, 0x1000U);
SubprogramDie.addAttribute(DW_AT_high_pc, DW_FORM_addr, 0x2000U);

dwarfgen::DIE IntDie = CUDie.addChild(DW_TAG_base_type);
IntDie.addAttribute(DW_AT_name, DW_FORM_strp, "int");
IntDie.addAttribute(DW_AT_encoding, DW_FORM_data1, DW_ATE_signed);
IntDie.addAttribute(DW_AT_byte_size, DW_FORM_data1, 4);

dwarfgen::DIE ArgcDie = SubprogramDie.addChild(DW_TAG_formal_parameter);
ArgcDie.addAttribute(DW_AT_name, DW_FORM_strp, "argc");
// ArgcDie.addAttribute(DW_AT_type, DW_FORM_ref4, IntDie);
ArgcDie.addAttribute(DW_AT_type, DW_FORM_ref_addr, IntDie);

StringRef FileBytes = DG.generate();
MemoryBufferRef FileBuffer(FileBytes, "dwarf");
auto Obj = object::ObjectFile::createObjectFile(FileBuffer);
EXPECT_TRUE((bool)Obj);
DWARFContextInMemory DwarfContext(*Obj.get());
This code is backed by the AsmPrinter code that emits DWARF for the actual compiler.

While adding unit tests it was discovered that DIEValue that used DIEEntry as their values had bugs where DW_FORM_ref1, DW_FORM_ref2, DW_FORM_ref8, and DW_FORM_ref_udata forms were not supported. These are all now supported. Added support for DW_FORM_string so we can emit inlined C strings.

Centralized the code to unique abbreviations into a new DIEAbbrevSet class and made both the dwarfgen::Generator and the llvm::DwarfFile classes use the new class.

Fixed comments in the llvm::DIE class so that the Offset is known to be the compile/type unit offset.

DIEInteger now supports more DW_FORM values.

There are also unit tests that cover:

Encoding and decoding all form types and values
Encoding and decoding all reference types (DW_FORM_ref1, DW_FORM_ref2, DW_FORM_ref4, DW_FORM_ref8, DW_FORM_ref_udata, DW_FORM_ref_addr) including cross compile unit references with that go forward one compile unit and backward on compile unit.

Differential Revision: https://reviews.llvm.org/D27326

llvm-svn: 289010
2016-12-08 01:03:48 +00:00

521 lines
18 KiB
C++

//===-- llvm/CodeGen/DIEHash.cpp - Dwarf Hashing Framework ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains support for DWARF4 hashing of DIEs.
//
//===----------------------------------------------------------------------===//
#include "ByteStreamer.h"
#include "DIEHash.h"
#include "DwarfDebug.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/DIE.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Dwarf.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/MD5.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
#define DEBUG_TYPE "dwarfdebug"
/// \brief Grabs the string in whichever attribute is passed in and returns
/// a reference to it.
static StringRef getDIEStringAttr(const DIE &Die, uint16_t Attr) {
// Iterate through all the attributes until we find the one we're
// looking for, if we can't find it return an empty string.
for (const auto &V : Die.values())
if (V.getAttribute() == Attr)
return V.getDIEString().getString();
return StringRef("");
}
/// \brief Adds the string in \p Str to the hash. This also hashes
/// a trailing NULL with the string.
void DIEHash::addString(StringRef Str) {
DEBUG(dbgs() << "Adding string " << Str << " to hash.\n");
Hash.update(Str);
Hash.update(makeArrayRef((uint8_t)'\0'));
}
// FIXME: The LEB128 routines are copied and only slightly modified out of
// LEB128.h.
/// \brief Adds the unsigned in \p Value to the hash encoded as a ULEB128.
void DIEHash::addULEB128(uint64_t Value) {
DEBUG(dbgs() << "Adding ULEB128 " << Value << " to hash.\n");
do {
uint8_t Byte = Value & 0x7f;
Value >>= 7;
if (Value != 0)
Byte |= 0x80; // Mark this byte to show that more bytes will follow.
Hash.update(Byte);
} while (Value != 0);
}
void DIEHash::addSLEB128(int64_t Value) {
DEBUG(dbgs() << "Adding ULEB128 " << Value << " to hash.\n");
bool More;
do {
uint8_t Byte = Value & 0x7f;
Value >>= 7;
More = !((((Value == 0) && ((Byte & 0x40) == 0)) ||
((Value == -1) && ((Byte & 0x40) != 0))));
if (More)
Byte |= 0x80; // Mark this byte to show that more bytes will follow.
Hash.update(Byte);
} while (More);
}
/// \brief Including \p Parent adds the context of Parent to the hash..
void DIEHash::addParentContext(const DIE &Parent) {
DEBUG(dbgs() << "Adding parent context to hash...\n");
// [7.27.2] For each surrounding type or namespace beginning with the
// outermost such construct...
SmallVector<const DIE *, 1> Parents;
const DIE *Cur = &Parent;
while (Cur->getParent()) {
Parents.push_back(Cur);
Cur = Cur->getParent();
}
assert(Cur->getTag() == dwarf::DW_TAG_compile_unit ||
Cur->getTag() == dwarf::DW_TAG_type_unit);
// Reverse iterate over our list to go from the outermost construct to the
// innermost.
for (SmallVectorImpl<const DIE *>::reverse_iterator I = Parents.rbegin(),
E = Parents.rend();
I != E; ++I) {
const DIE &Die = **I;
// ... Append the letter "C" to the sequence...
addULEB128('C');
// ... Followed by the DWARF tag of the construct...
addULEB128(Die.getTag());
// ... Then the name, taken from the DW_AT_name attribute.
StringRef Name = getDIEStringAttr(Die, dwarf::DW_AT_name);
DEBUG(dbgs() << "... adding context: " << Name << "\n");
if (!Name.empty())
addString(Name);
}
}
// Collect all of the attributes for a particular DIE in single structure.
void DIEHash::collectAttributes(const DIE &Die, DIEAttrs &Attrs) {
#define COLLECT_ATTR(NAME) \
case dwarf::NAME: \
Attrs.NAME = V; \
break
for (const auto &V : Die.values()) {
DEBUG(dbgs() << "Attribute: "
<< dwarf::AttributeString(V.getAttribute())
<< " added.\n");
switch (V.getAttribute()) {
COLLECT_ATTR(DW_AT_name);
COLLECT_ATTR(DW_AT_accessibility);
COLLECT_ATTR(DW_AT_address_class);
COLLECT_ATTR(DW_AT_allocated);
COLLECT_ATTR(DW_AT_artificial);
COLLECT_ATTR(DW_AT_associated);
COLLECT_ATTR(DW_AT_binary_scale);
COLLECT_ATTR(DW_AT_bit_offset);
COLLECT_ATTR(DW_AT_bit_size);
COLLECT_ATTR(DW_AT_bit_stride);
COLLECT_ATTR(DW_AT_byte_size);
COLLECT_ATTR(DW_AT_byte_stride);
COLLECT_ATTR(DW_AT_const_expr);
COLLECT_ATTR(DW_AT_const_value);
COLLECT_ATTR(DW_AT_containing_type);
COLLECT_ATTR(DW_AT_count);
COLLECT_ATTR(DW_AT_data_bit_offset);
COLLECT_ATTR(DW_AT_data_location);
COLLECT_ATTR(DW_AT_data_member_location);
COLLECT_ATTR(DW_AT_decimal_scale);
COLLECT_ATTR(DW_AT_decimal_sign);
COLLECT_ATTR(DW_AT_default_value);
COLLECT_ATTR(DW_AT_digit_count);
COLLECT_ATTR(DW_AT_discr);
COLLECT_ATTR(DW_AT_discr_list);
COLLECT_ATTR(DW_AT_discr_value);
COLLECT_ATTR(DW_AT_encoding);
COLLECT_ATTR(DW_AT_enum_class);
COLLECT_ATTR(DW_AT_endianity);
COLLECT_ATTR(DW_AT_explicit);
COLLECT_ATTR(DW_AT_is_optional);
COLLECT_ATTR(DW_AT_location);
COLLECT_ATTR(DW_AT_lower_bound);
COLLECT_ATTR(DW_AT_mutable);
COLLECT_ATTR(DW_AT_ordering);
COLLECT_ATTR(DW_AT_picture_string);
COLLECT_ATTR(DW_AT_prototyped);
COLLECT_ATTR(DW_AT_small);
COLLECT_ATTR(DW_AT_segment);
COLLECT_ATTR(DW_AT_string_length);
COLLECT_ATTR(DW_AT_threads_scaled);
COLLECT_ATTR(DW_AT_upper_bound);
COLLECT_ATTR(DW_AT_use_location);
COLLECT_ATTR(DW_AT_use_UTF8);
COLLECT_ATTR(DW_AT_variable_parameter);
COLLECT_ATTR(DW_AT_virtuality);
COLLECT_ATTR(DW_AT_visibility);
COLLECT_ATTR(DW_AT_vtable_elem_location);
COLLECT_ATTR(DW_AT_type);
default:
break;
}
}
}
void DIEHash::hashShallowTypeReference(dwarf::Attribute Attribute,
const DIE &Entry, StringRef Name) {
// append the letter 'N'
addULEB128('N');
// the DWARF attribute code (DW_AT_type or DW_AT_friend),
addULEB128(Attribute);
// the context of the tag,
if (const DIE *Parent = Entry.getParent())
addParentContext(*Parent);
// the letter 'E',
addULEB128('E');
// and the name of the type.
addString(Name);
// Currently DW_TAG_friends are not used by Clang, but if they do become so,
// here's the relevant spec text to implement:
//
// For DW_TAG_friend, if the referenced entry is the DW_TAG_subprogram,
// the context is omitted and the name to be used is the ABI-specific name
// of the subprogram (e.g., the mangled linker name).
}
void DIEHash::hashRepeatedTypeReference(dwarf::Attribute Attribute,
unsigned DieNumber) {
// a) If T is in the list of [previously hashed types], use the letter
// 'R' as the marker
addULEB128('R');
addULEB128(Attribute);
// and use the unsigned LEB128 encoding of [the index of T in the
// list] as the attribute value;
addULEB128(DieNumber);
}
void DIEHash::hashDIEEntry(dwarf::Attribute Attribute, dwarf::Tag Tag,
const DIE &Entry) {
assert(Tag != dwarf::DW_TAG_friend && "No current LLVM clients emit friend "
"tags. Add support here when there's "
"a use case");
// Step 5
// If the tag in Step 3 is one of [the below tags]
if ((Tag == dwarf::DW_TAG_pointer_type ||
Tag == dwarf::DW_TAG_reference_type ||
Tag == dwarf::DW_TAG_rvalue_reference_type ||
Tag == dwarf::DW_TAG_ptr_to_member_type) &&
// and the referenced type (via the [below attributes])
// FIXME: This seems overly restrictive, and causes hash mismatches
// there's a decl/def difference in the containing type of a
// ptr_to_member_type, but it's what DWARF says, for some reason.
Attribute == dwarf::DW_AT_type) {
// ... has a DW_AT_name attribute,
StringRef Name = getDIEStringAttr(Entry, dwarf::DW_AT_name);
if (!Name.empty()) {
hashShallowTypeReference(Attribute, Entry, Name);
return;
}
}
unsigned &DieNumber = Numbering[&Entry];
if (DieNumber) {
hashRepeatedTypeReference(Attribute, DieNumber);
return;
}
// otherwise, b) use the letter 'T' as the marker, ...
addULEB128('T');
addULEB128(Attribute);
// ... process the type T recursively by performing Steps 2 through 7, and
// use the result as the attribute value.
DieNumber = Numbering.size();
computeHash(Entry);
}
// Hash all of the values in a block like set of values. This assumes that
// all of the data is going to be added as integers.
void DIEHash::hashBlockData(const DIE::const_value_range &Values) {
for (const auto &V : Values)
Hash.update((uint64_t)V.getDIEInteger().getValue());
}
// Hash the contents of a loclistptr class.
void DIEHash::hashLocList(const DIELocList &LocList) {
HashingByteStreamer Streamer(*this);
DwarfDebug &DD = *AP->getDwarfDebug();
const DebugLocStream &Locs = DD.getDebugLocs();
for (const auto &Entry : Locs.getEntries(Locs.getList(LocList.getValue())))
DD.emitDebugLocEntry(Streamer, Entry);
}
// Hash an individual attribute \param Attr based on the type of attribute and
// the form.
void DIEHash::hashAttribute(const DIEValue &Value, dwarf::Tag Tag) {
dwarf::Attribute Attribute = Value.getAttribute();
// Other attribute values use the letter 'A' as the marker, and the value
// consists of the form code (encoded as an unsigned LEB128 value) followed by
// the encoding of the value according to the form code. To ensure
// reproducibility of the signature, the set of forms used in the signature
// computation is limited to the following: DW_FORM_sdata, DW_FORM_flag,
// DW_FORM_string, and DW_FORM_block.
switch (Value.getType()) {
case DIEValue::isNone:
llvm_unreachable("Expected valid DIEValue");
// 7.27 Step 3
// ... An attribute that refers to another type entry T is processed as
// follows:
case DIEValue::isEntry:
hashDIEEntry(Attribute, Tag, Value.getDIEEntry().getEntry());
break;
case DIEValue::isInteger: {
addULEB128('A');
addULEB128(Attribute);
switch (Value.getForm()) {
case dwarf::DW_FORM_data1:
case dwarf::DW_FORM_data2:
case dwarf::DW_FORM_data4:
case dwarf::DW_FORM_data8:
case dwarf::DW_FORM_udata:
case dwarf::DW_FORM_sdata:
addULEB128(dwarf::DW_FORM_sdata);
addSLEB128((int64_t)Value.getDIEInteger().getValue());
break;
// DW_FORM_flag_present is just flag with a value of one. We still give it a
// value so just use the value.
case dwarf::DW_FORM_flag_present:
case dwarf::DW_FORM_flag:
addULEB128(dwarf::DW_FORM_flag);
addULEB128((int64_t)Value.getDIEInteger().getValue());
break;
default:
llvm_unreachable("Unknown integer form!");
}
break;
}
case DIEValue::isString:
addULEB128('A');
addULEB128(Attribute);
addULEB128(dwarf::DW_FORM_string);
addString(Value.getDIEString().getString());
break;
case DIEValue::isInlineString:
addULEB128('A');
addULEB128(Attribute);
addULEB128(dwarf::DW_FORM_string);
addString(Value.getDIEInlineString().getString());
break;
case DIEValue::isBlock:
case DIEValue::isLoc:
case DIEValue::isLocList:
addULEB128('A');
addULEB128(Attribute);
addULEB128(dwarf::DW_FORM_block);
if (Value.getType() == DIEValue::isBlock) {
addULEB128(Value.getDIEBlock().ComputeSize(AP));
hashBlockData(Value.getDIEBlock().values());
} else if (Value.getType() == DIEValue::isLoc) {
addULEB128(Value.getDIELoc().ComputeSize(AP));
hashBlockData(Value.getDIELoc().values());
} else {
// We could add the block length, but that would take
// a bit of work and not add a lot of uniqueness
// to the hash in some way we could test.
hashLocList(Value.getDIELocList());
}
break;
// FIXME: It's uncertain whether or not we should handle this at the moment.
case DIEValue::isExpr:
case DIEValue::isLabel:
case DIEValue::isDelta:
llvm_unreachable("Add support for additional value types.");
}
}
// Go through the attributes from \param Attrs in the order specified in 7.27.4
// and hash them.
void DIEHash::hashAttributes(const DIEAttrs &Attrs, dwarf::Tag Tag) {
#define ADD_ATTR(ATTR) \
{ \
if (ATTR) \
hashAttribute(ATTR, Tag); \
}
ADD_ATTR(Attrs.DW_AT_name);
ADD_ATTR(Attrs.DW_AT_accessibility);
ADD_ATTR(Attrs.DW_AT_address_class);
ADD_ATTR(Attrs.DW_AT_allocated);
ADD_ATTR(Attrs.DW_AT_artificial);
ADD_ATTR(Attrs.DW_AT_associated);
ADD_ATTR(Attrs.DW_AT_binary_scale);
ADD_ATTR(Attrs.DW_AT_bit_offset);
ADD_ATTR(Attrs.DW_AT_bit_size);
ADD_ATTR(Attrs.DW_AT_bit_stride);
ADD_ATTR(Attrs.DW_AT_byte_size);
ADD_ATTR(Attrs.DW_AT_byte_stride);
ADD_ATTR(Attrs.DW_AT_const_expr);
ADD_ATTR(Attrs.DW_AT_const_value);
ADD_ATTR(Attrs.DW_AT_containing_type);
ADD_ATTR(Attrs.DW_AT_count);
ADD_ATTR(Attrs.DW_AT_data_bit_offset);
ADD_ATTR(Attrs.DW_AT_data_location);
ADD_ATTR(Attrs.DW_AT_data_member_location);
ADD_ATTR(Attrs.DW_AT_decimal_scale);
ADD_ATTR(Attrs.DW_AT_decimal_sign);
ADD_ATTR(Attrs.DW_AT_default_value);
ADD_ATTR(Attrs.DW_AT_digit_count);
ADD_ATTR(Attrs.DW_AT_discr);
ADD_ATTR(Attrs.DW_AT_discr_list);
ADD_ATTR(Attrs.DW_AT_discr_value);
ADD_ATTR(Attrs.DW_AT_encoding);
ADD_ATTR(Attrs.DW_AT_enum_class);
ADD_ATTR(Attrs.DW_AT_endianity);
ADD_ATTR(Attrs.DW_AT_explicit);
ADD_ATTR(Attrs.DW_AT_is_optional);
ADD_ATTR(Attrs.DW_AT_location);
ADD_ATTR(Attrs.DW_AT_lower_bound);
ADD_ATTR(Attrs.DW_AT_mutable);
ADD_ATTR(Attrs.DW_AT_ordering);
ADD_ATTR(Attrs.DW_AT_picture_string);
ADD_ATTR(Attrs.DW_AT_prototyped);
ADD_ATTR(Attrs.DW_AT_small);
ADD_ATTR(Attrs.DW_AT_segment);
ADD_ATTR(Attrs.DW_AT_string_length);
ADD_ATTR(Attrs.DW_AT_threads_scaled);
ADD_ATTR(Attrs.DW_AT_upper_bound);
ADD_ATTR(Attrs.DW_AT_use_location);
ADD_ATTR(Attrs.DW_AT_use_UTF8);
ADD_ATTR(Attrs.DW_AT_variable_parameter);
ADD_ATTR(Attrs.DW_AT_virtuality);
ADD_ATTR(Attrs.DW_AT_visibility);
ADD_ATTR(Attrs.DW_AT_vtable_elem_location);
ADD_ATTR(Attrs.DW_AT_type);
// FIXME: Add the extended attributes.
}
// Add all of the attributes for \param Die to the hash.
void DIEHash::addAttributes(const DIE &Die) {
DIEAttrs Attrs = {};
collectAttributes(Die, Attrs);
hashAttributes(Attrs, Die.getTag());
}
void DIEHash::hashNestedType(const DIE &Die, StringRef Name) {
// 7.27 Step 7
// ... append the letter 'S',
addULEB128('S');
// the tag of C,
addULEB128(Die.getTag());
// and the name.
addString(Name);
}
// Compute the hash of a DIE. This is based on the type signature computation
// given in section 7.27 of the DWARF4 standard. It is the md5 hash of a
// flattened description of the DIE.
void DIEHash::computeHash(const DIE &Die) {
// Append the letter 'D', followed by the DWARF tag of the DIE.
addULEB128('D');
addULEB128(Die.getTag());
// Add each of the attributes of the DIE.
addAttributes(Die);
// Then hash each of the children of the DIE.
for (auto &C : Die.children()) {
// 7.27 Step 7
// If C is a nested type entry or a member function entry, ...
if (isType(C.getTag()) || C.getTag() == dwarf::DW_TAG_subprogram) {
StringRef Name = getDIEStringAttr(C, dwarf::DW_AT_name);
// ... and has a DW_AT_name attribute
if (!Name.empty()) {
hashNestedType(C, Name);
continue;
}
}
computeHash(C);
}
// Following the last (or if there are no children), append a zero byte.
Hash.update(makeArrayRef((uint8_t)'\0'));
}
/// This is based on the type signature computation given in section 7.27 of the
/// DWARF4 standard. It is an md5 hash of the flattened description of the DIE
/// with the inclusion of the full CU and all top level CU entities.
// TODO: Initialize the type chain at 0 instead of 1 for CU signatures.
uint64_t DIEHash::computeCUSignature(const DIE &Die) {
Numbering.clear();
Numbering[&Die] = 1;
// Hash the DIE.
computeHash(Die);
// Now return the result.
MD5::MD5Result Result;
Hash.final(Result);
// ... take the least significant 8 bytes and return those. Our MD5
// implementation always returns its results in little endian, swap bytes
// appropriately.
return support::endian::read64le(Result + 8);
}
/// This is based on the type signature computation given in section 7.27 of the
/// DWARF4 standard. It is an md5 hash of the flattened description of the DIE
/// with the inclusion of additional forms not specifically called out in the
/// standard.
uint64_t DIEHash::computeTypeSignature(const DIE &Die) {
Numbering.clear();
Numbering[&Die] = 1;
if (const DIE *Parent = Die.getParent())
addParentContext(*Parent);
// Hash the DIE.
computeHash(Die);
// Now return the result.
MD5::MD5Result Result;
Hash.final(Result);
// ... take the least significant 8 bytes and return those. Our MD5
// implementation always returns its results in little endian, swap bytes
// appropriately.
return support::endian::read64le(Result + 8);
}