1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 18:54:02 +01:00
llvm-mirror/lib/Analysis/ConstraintSystem.cpp
Kazu Hirata dfbe37a54f [llvm] Remove redundant string initialization (NFC)
Identified with readability-redundant-string-init.
2021-01-12 21:43:46 -08:00

159 lines
5.0 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//===- ConstraintSytem.cpp - A system of linear constraints. ----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/ConstraintSystem.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/Debug.h"
#include <algorithm>
#include <string>
using namespace llvm;
#define DEBUG_TYPE "constraint-system"
bool ConstraintSystem::eliminateUsingFM() {
// Implementation of FourierMotzkin elimination, with some tricks from the
// paper Pugh, William. "The Omega test: a fast and practical integer
// programming algorithm for dependence
// analysis."
// Supercomputing'91: Proceedings of the 1991 ACM/
// IEEE conference on Supercomputing. IEEE, 1991.
assert(!Constraints.empty() &&
"should only be called for non-empty constraint systems");
unsigned NumVariables = Constraints[0].size();
SmallVector<SmallVector<int64_t, 8>, 4> NewSystem;
unsigned NumConstraints = Constraints.size();
uint32_t NewGCD = 1;
// FIXME do not use copy
for (unsigned R1 = 0; R1 < NumConstraints; R1++) {
if (Constraints[R1][1] == 0) {
SmallVector<int64_t, 8> NR;
NR.push_back(Constraints[R1][0]);
for (unsigned i = 2; i < NumVariables; i++) {
NR.push_back(Constraints[R1][i]);
}
NewSystem.push_back(std::move(NR));
continue;
}
// FIXME do not use copy
for (unsigned R2 = R1 + 1; R2 < NumConstraints; R2++) {
if (R1 == R2)
continue;
// FIXME: can we do better than just dropping things here?
if (Constraints[R2][1] == 0)
continue;
if ((Constraints[R1][1] < 0 && Constraints[R2][1] < 0) ||
(Constraints[R1][1] > 0 && Constraints[R2][1] > 0))
continue;
unsigned LowerR = R1;
unsigned UpperR = R2;
if (Constraints[UpperR][1] < 0)
std::swap(LowerR, UpperR);
SmallVector<int64_t, 8> NR;
for (unsigned I = 0; I < NumVariables; I++) {
if (I == 1)
continue;
int64_t M1, M2, N;
if (MulOverflow(Constraints[UpperR][I],
((-1) * Constraints[LowerR][1] / GCD), M1))
return false;
if (MulOverflow(Constraints[LowerR][I],
(Constraints[UpperR][1] / GCD), M2))
return false;
if (AddOverflow(M1, M2, N))
return false;
NR.push_back(N);
NewGCD = APIntOps::GreatestCommonDivisor({32, (uint32_t)NR.back()},
{32, NewGCD})
.getZExtValue();
}
NewSystem.push_back(std::move(NR));
// Give up if the new system gets too big.
if (NewSystem.size() > 500)
return false;
}
}
Constraints = std::move(NewSystem);
GCD = NewGCD;
return true;
}
bool ConstraintSystem::mayHaveSolutionImpl() {
while (!Constraints.empty() && Constraints[0].size() > 1) {
if (!eliminateUsingFM())
return true;
}
if (Constraints.empty() || Constraints[0].size() > 1)
return true;
return all_of(Constraints, [](auto &R) { return R[0] >= 0; });
}
void ConstraintSystem::dump(ArrayRef<std::string> Names) const {
if (Constraints.empty())
return;
for (auto &Row : Constraints) {
SmallVector<std::string, 16> Parts;
for (unsigned I = 1, S = Row.size(); I < S; ++I) {
if (Row[I] == 0)
continue;
std::string Coefficient;
if (Row[I] != 1)
Coefficient = std::to_string(Row[I]) + " * ";
Parts.push_back(Coefficient + Names[I - 1]);
}
assert(!Parts.empty() && "need to have at least some parts");
LLVM_DEBUG(dbgs() << join(Parts, std::string(" + "))
<< " <= " << std::to_string(Row[0]) << "\n");
}
}
void ConstraintSystem::dump() const {
SmallVector<std::string, 16> Names;
for (unsigned i = 1; i < Constraints.back().size(); ++i)
Names.push_back("x" + std::to_string(i));
LLVM_DEBUG(dbgs() << "---\n");
dump(Names);
}
bool ConstraintSystem::mayHaveSolution() {
LLVM_DEBUG(dump());
bool HasSolution = mayHaveSolutionImpl();
LLVM_DEBUG(dbgs() << (HasSolution ? "sat" : "unsat") << "\n");
return HasSolution;
}
bool ConstraintSystem::isConditionImplied(SmallVector<int64_t, 8> R) {
// If all variable coefficients are 0, we have 'C >= 0'. If the constant is >=
// 0, R is always true, regardless of the system.
if (all_of(makeArrayRef(R).drop_front(1), [](int64_t C) { return C == 0; }))
return R[0] >= 0;
// If there is no solution with the negation of R added to the system, the
// condition must hold based on the existing constraints.
R = ConstraintSystem::negate(R);
auto NewSystem = *this;
NewSystem.addVariableRow(R);
return !NewSystem.mayHaveSolution();
}