mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 04:02:41 +01:00
a6292a6c0f
Recommitting r314517 with the fix for handling ConstantExpr. Original commit message: Currently, getGEPCost() returns TCC_FREE whenever a GEP is a legal addressing mode in the target. However, since it doesn't check its actual users, it will return FREE even in cases where the GEP cannot be folded away as a part of actual addressing mode. For example, if an user of the GEP is a call instruction taking the GEP as a parameter, then the GEP may not be folded in isel. llvm-svn: 314923
1578 lines
72 KiB
C++
1578 lines
72 KiB
C++
//===- TargetTransformInfo.h ------------------------------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
/// \file
|
|
/// This pass exposes codegen information to IR-level passes. Every
|
|
/// transformation that uses codegen information is broken into three parts:
|
|
/// 1. The IR-level analysis pass.
|
|
/// 2. The IR-level transformation interface which provides the needed
|
|
/// information.
|
|
/// 3. Codegen-level implementation which uses target-specific hooks.
|
|
///
|
|
/// This file defines #2, which is the interface that IR-level transformations
|
|
/// use for querying the codegen.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
|
|
#define LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
|
|
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/IR/PassManager.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/AtomicOrdering.h"
|
|
#include "llvm/Support/DataTypes.h"
|
|
#include <functional>
|
|
|
|
namespace llvm {
|
|
|
|
namespace Intrinsic {
|
|
enum ID : unsigned;
|
|
}
|
|
|
|
class Function;
|
|
class GlobalValue;
|
|
class IntrinsicInst;
|
|
class LoadInst;
|
|
class Loop;
|
|
class SCEV;
|
|
class ScalarEvolution;
|
|
class StoreInst;
|
|
class SwitchInst;
|
|
class Type;
|
|
class User;
|
|
class Value;
|
|
|
|
/// \brief Information about a load/store intrinsic defined by the target.
|
|
struct MemIntrinsicInfo {
|
|
/// This is the pointer that the intrinsic is loading from or storing to.
|
|
/// If this is non-null, then analysis/optimization passes can assume that
|
|
/// this intrinsic is functionally equivalent to a load/store from this
|
|
/// pointer.
|
|
Value *PtrVal = nullptr;
|
|
|
|
// Ordering for atomic operations.
|
|
AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
|
|
|
|
// Same Id is set by the target for corresponding load/store intrinsics.
|
|
unsigned short MatchingId = 0;
|
|
|
|
bool ReadMem = false;
|
|
bool WriteMem = false;
|
|
bool IsVolatile = false;
|
|
|
|
bool isUnordered() const {
|
|
return (Ordering == AtomicOrdering::NotAtomic ||
|
|
Ordering == AtomicOrdering::Unordered) && !IsVolatile;
|
|
}
|
|
};
|
|
|
|
/// \brief This pass provides access to the codegen interfaces that are needed
|
|
/// for IR-level transformations.
|
|
class TargetTransformInfo {
|
|
public:
|
|
/// \brief Construct a TTI object using a type implementing the \c Concept
|
|
/// API below.
|
|
///
|
|
/// This is used by targets to construct a TTI wrapping their target-specific
|
|
/// implementaion that encodes appropriate costs for their target.
|
|
template <typename T> TargetTransformInfo(T Impl);
|
|
|
|
/// \brief Construct a baseline TTI object using a minimal implementation of
|
|
/// the \c Concept API below.
|
|
///
|
|
/// The TTI implementation will reflect the information in the DataLayout
|
|
/// provided if non-null.
|
|
explicit TargetTransformInfo(const DataLayout &DL);
|
|
|
|
// Provide move semantics.
|
|
TargetTransformInfo(TargetTransformInfo &&Arg);
|
|
TargetTransformInfo &operator=(TargetTransformInfo &&RHS);
|
|
|
|
// We need to define the destructor out-of-line to define our sub-classes
|
|
// out-of-line.
|
|
~TargetTransformInfo();
|
|
|
|
/// \brief Handle the invalidation of this information.
|
|
///
|
|
/// When used as a result of \c TargetIRAnalysis this method will be called
|
|
/// when the function this was computed for changes. When it returns false,
|
|
/// the information is preserved across those changes.
|
|
bool invalidate(Function &, const PreservedAnalyses &,
|
|
FunctionAnalysisManager::Invalidator &) {
|
|
// FIXME: We should probably in some way ensure that the subtarget
|
|
// information for a function hasn't changed.
|
|
return false;
|
|
}
|
|
|
|
/// \name Generic Target Information
|
|
/// @{
|
|
|
|
/// \brief The kind of cost model.
|
|
///
|
|
/// There are several different cost models that can be customized by the
|
|
/// target. The normalization of each cost model may be target specific.
|
|
enum TargetCostKind {
|
|
TCK_RecipThroughput, ///< Reciprocal throughput.
|
|
TCK_Latency, ///< The latency of instruction.
|
|
TCK_CodeSize ///< Instruction code size.
|
|
};
|
|
|
|
/// \brief Query the cost of a specified instruction.
|
|
///
|
|
/// Clients should use this interface to query the cost of an existing
|
|
/// instruction. The instruction must have a valid parent (basic block).
|
|
///
|
|
/// Note, this method does not cache the cost calculation and it
|
|
/// can be expensive in some cases.
|
|
int getInstructionCost(const Instruction *I, enum TargetCostKind kind) const {
|
|
switch (kind){
|
|
case TCK_RecipThroughput:
|
|
return getInstructionThroughput(I);
|
|
|
|
case TCK_Latency:
|
|
return getInstructionLatency(I);
|
|
|
|
case TCK_CodeSize:
|
|
return getUserCost(I);
|
|
}
|
|
llvm_unreachable("Unknown instruction cost kind");
|
|
}
|
|
|
|
/// \brief Underlying constants for 'cost' values in this interface.
|
|
///
|
|
/// Many APIs in this interface return a cost. This enum defines the
|
|
/// fundamental values that should be used to interpret (and produce) those
|
|
/// costs. The costs are returned as an int rather than a member of this
|
|
/// enumeration because it is expected that the cost of one IR instruction
|
|
/// may have a multiplicative factor to it or otherwise won't fit directly
|
|
/// into the enum. Moreover, it is common to sum or average costs which works
|
|
/// better as simple integral values. Thus this enum only provides constants.
|
|
/// Also note that the returned costs are signed integers to make it natural
|
|
/// to add, subtract, and test with zero (a common boundary condition). It is
|
|
/// not expected that 2^32 is a realistic cost to be modeling at any point.
|
|
///
|
|
/// Note that these costs should usually reflect the intersection of code-size
|
|
/// cost and execution cost. A free instruction is typically one that folds
|
|
/// into another instruction. For example, reg-to-reg moves can often be
|
|
/// skipped by renaming the registers in the CPU, but they still are encoded
|
|
/// and thus wouldn't be considered 'free' here.
|
|
enum TargetCostConstants {
|
|
TCC_Free = 0, ///< Expected to fold away in lowering.
|
|
TCC_Basic = 1, ///< The cost of a typical 'add' instruction.
|
|
TCC_Expensive = 4 ///< The cost of a 'div' instruction on x86.
|
|
};
|
|
|
|
/// \brief Estimate the cost of a specific operation when lowered.
|
|
///
|
|
/// Note that this is designed to work on an arbitrary synthetic opcode, and
|
|
/// thus work for hypothetical queries before an instruction has even been
|
|
/// formed. However, this does *not* work for GEPs, and must not be called
|
|
/// for a GEP instruction. Instead, use the dedicated getGEPCost interface as
|
|
/// analyzing a GEP's cost required more information.
|
|
///
|
|
/// Typically only the result type is required, and the operand type can be
|
|
/// omitted. However, if the opcode is one of the cast instructions, the
|
|
/// operand type is required.
|
|
///
|
|
/// The returned cost is defined in terms of \c TargetCostConstants, see its
|
|
/// comments for a detailed explanation of the cost values.
|
|
int getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy = nullptr) const;
|
|
|
|
/// \brief Estimate the cost of a GEP operation when lowered.
|
|
///
|
|
/// The contract for this function is the same as \c getOperationCost except
|
|
/// that it supports an interface that provides extra information specific to
|
|
/// the GEP operation.
|
|
int getGEPCost(Type *PointeeType, const Value *Ptr,
|
|
ArrayRef<const Value *> Operands) const;
|
|
|
|
/// \brief Estimate the cost of a GEP operation when lowered.
|
|
///
|
|
/// This user-based overload adds the ability to check if the GEP can be
|
|
/// folded into its users.
|
|
int getGEPCost(const GEPOperator *GEP,
|
|
ArrayRef<const Value *> Operands) const;
|
|
|
|
/// \brief Estimate the cost of a EXT operation when lowered.
|
|
///
|
|
/// The contract for this function is the same as \c getOperationCost except
|
|
/// that it supports an interface that provides extra information specific to
|
|
/// the EXT operation.
|
|
int getExtCost(const Instruction *I, const Value *Src) const;
|
|
|
|
/// \brief Estimate the cost of a function call when lowered.
|
|
///
|
|
/// The contract for this is the same as \c getOperationCost except that it
|
|
/// supports an interface that provides extra information specific to call
|
|
/// instructions.
|
|
///
|
|
/// This is the most basic query for estimating call cost: it only knows the
|
|
/// function type and (potentially) the number of arguments at the call site.
|
|
/// The latter is only interesting for varargs function types.
|
|
int getCallCost(FunctionType *FTy, int NumArgs = -1) const;
|
|
|
|
/// \brief Estimate the cost of calling a specific function when lowered.
|
|
///
|
|
/// This overload adds the ability to reason about the particular function
|
|
/// being called in the event it is a library call with special lowering.
|
|
int getCallCost(const Function *F, int NumArgs = -1) const;
|
|
|
|
/// \brief Estimate the cost of calling a specific function when lowered.
|
|
///
|
|
/// This overload allows specifying a set of candidate argument values.
|
|
int getCallCost(const Function *F, ArrayRef<const Value *> Arguments) const;
|
|
|
|
/// \returns A value by which our inlining threshold should be multiplied.
|
|
/// This is primarily used to bump up the inlining threshold wholesale on
|
|
/// targets where calls are unusually expensive.
|
|
///
|
|
/// TODO: This is a rather blunt instrument. Perhaps altering the costs of
|
|
/// individual classes of instructions would be better.
|
|
unsigned getInliningThresholdMultiplier() const;
|
|
|
|
/// \brief Estimate the cost of an intrinsic when lowered.
|
|
///
|
|
/// Mirrors the \c getCallCost method but uses an intrinsic identifier.
|
|
int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
|
|
ArrayRef<Type *> ParamTys) const;
|
|
|
|
/// \brief Estimate the cost of an intrinsic when lowered.
|
|
///
|
|
/// Mirrors the \c getCallCost method but uses an intrinsic identifier.
|
|
int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
|
|
ArrayRef<const Value *> Arguments) const;
|
|
|
|
/// \return The estimated number of case clusters when lowering \p 'SI'.
|
|
/// \p JTSize Set a jump table size only when \p SI is suitable for a jump
|
|
/// table.
|
|
unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
|
|
unsigned &JTSize) const;
|
|
|
|
/// \brief Estimate the cost of a given IR user when lowered.
|
|
///
|
|
/// This can estimate the cost of either a ConstantExpr or Instruction when
|
|
/// lowered. It has two primary advantages over the \c getOperationCost above,
|
|
/// and one significant disadvantage: it can only be used when the IR
|
|
/// construct has already been formed.
|
|
///
|
|
/// The advantages are that it can inspect the SSA use graph to reason more
|
|
/// accurately about the cost. For example, all-constant-GEPs can often be
|
|
/// folded into a load or other instruction, but if they are used in some
|
|
/// other context they may not be folded. This routine can distinguish such
|
|
/// cases.
|
|
///
|
|
/// \p Operands is a list of operands which can be a result of transformations
|
|
/// of the current operands. The number of the operands on the list must equal
|
|
/// to the number of the current operands the IR user has. Their order on the
|
|
/// list must be the same as the order of the current operands the IR user
|
|
/// has.
|
|
///
|
|
/// The returned cost is defined in terms of \c TargetCostConstants, see its
|
|
/// comments for a detailed explanation of the cost values.
|
|
int getUserCost(const User *U, ArrayRef<const Value *> Operands) const;
|
|
|
|
/// \brief This is a helper function which calls the two-argument getUserCost
|
|
/// with \p Operands which are the current operands U has.
|
|
int getUserCost(const User *U) const {
|
|
SmallVector<const Value *, 4> Operands(U->value_op_begin(),
|
|
U->value_op_end());
|
|
return getUserCost(U, Operands);
|
|
}
|
|
|
|
/// \brief Return true if branch divergence exists.
|
|
///
|
|
/// Branch divergence has a significantly negative impact on GPU performance
|
|
/// when threads in the same wavefront take different paths due to conditional
|
|
/// branches.
|
|
bool hasBranchDivergence() const;
|
|
|
|
/// \brief Returns whether V is a source of divergence.
|
|
///
|
|
/// This function provides the target-dependent information for
|
|
/// the target-independent DivergenceAnalysis. DivergenceAnalysis first
|
|
/// builds the dependency graph, and then runs the reachability algorithm
|
|
/// starting with the sources of divergence.
|
|
bool isSourceOfDivergence(const Value *V) const;
|
|
|
|
// \brief Returns true for the target specific
|
|
// set of operations which produce uniform result
|
|
// even taking non-unform arguments
|
|
bool isAlwaysUniform(const Value *V) const;
|
|
|
|
/// Returns the address space ID for a target's 'flat' address space. Note
|
|
/// this is not necessarily the same as addrspace(0), which LLVM sometimes
|
|
/// refers to as the generic address space. The flat address space is a
|
|
/// generic address space that can be used access multiple segments of memory
|
|
/// with different address spaces. Access of a memory location through a
|
|
/// pointer with this address space is expected to be legal but slower
|
|
/// compared to the same memory location accessed through a pointer with a
|
|
/// different address space.
|
|
//
|
|
/// This is for for targets with different pointer representations which can
|
|
/// be converted with the addrspacecast instruction. If a pointer is converted
|
|
/// to this address space, optimizations should attempt to replace the access
|
|
/// with the source address space.
|
|
///
|
|
/// \returns ~0u if the target does not have such a flat address space to
|
|
/// optimize away.
|
|
unsigned getFlatAddressSpace() const;
|
|
|
|
/// \brief Test whether calls to a function lower to actual program function
|
|
/// calls.
|
|
///
|
|
/// The idea is to test whether the program is likely to require a 'call'
|
|
/// instruction or equivalent in order to call the given function.
|
|
///
|
|
/// FIXME: It's not clear that this is a good or useful query API. Client's
|
|
/// should probably move to simpler cost metrics using the above.
|
|
/// Alternatively, we could split the cost interface into distinct code-size
|
|
/// and execution-speed costs. This would allow modelling the core of this
|
|
/// query more accurately as a call is a single small instruction, but
|
|
/// incurs significant execution cost.
|
|
bool isLoweredToCall(const Function *F) const;
|
|
|
|
struct LSRCost {
|
|
/// TODO: Some of these could be merged. Also, a lexical ordering
|
|
/// isn't always optimal.
|
|
unsigned Insns;
|
|
unsigned NumRegs;
|
|
unsigned AddRecCost;
|
|
unsigned NumIVMuls;
|
|
unsigned NumBaseAdds;
|
|
unsigned ImmCost;
|
|
unsigned SetupCost;
|
|
unsigned ScaleCost;
|
|
};
|
|
|
|
/// Parameters that control the generic loop unrolling transformation.
|
|
struct UnrollingPreferences {
|
|
/// The cost threshold for the unrolled loop. Should be relative to the
|
|
/// getUserCost values returned by this API, and the expectation is that
|
|
/// the unrolled loop's instructions when run through that interface should
|
|
/// not exceed this cost. However, this is only an estimate. Also, specific
|
|
/// loops may be unrolled even with a cost above this threshold if deemed
|
|
/// profitable. Set this to UINT_MAX to disable the loop body cost
|
|
/// restriction.
|
|
unsigned Threshold;
|
|
/// If complete unrolling will reduce the cost of the loop, we will boost
|
|
/// the Threshold by a certain percent to allow more aggressive complete
|
|
/// unrolling. This value provides the maximum boost percentage that we
|
|
/// can apply to Threshold (The value should be no less than 100).
|
|
/// BoostedThreshold = Threshold * min(RolledCost / UnrolledCost,
|
|
/// MaxPercentThresholdBoost / 100)
|
|
/// E.g. if complete unrolling reduces the loop execution time by 50%
|
|
/// then we boost the threshold by the factor of 2x. If unrolling is not
|
|
/// expected to reduce the running time, then we do not increase the
|
|
/// threshold.
|
|
unsigned MaxPercentThresholdBoost;
|
|
/// The cost threshold for the unrolled loop when optimizing for size (set
|
|
/// to UINT_MAX to disable).
|
|
unsigned OptSizeThreshold;
|
|
/// The cost threshold for the unrolled loop, like Threshold, but used
|
|
/// for partial/runtime unrolling (set to UINT_MAX to disable).
|
|
unsigned PartialThreshold;
|
|
/// The cost threshold for the unrolled loop when optimizing for size, like
|
|
/// OptSizeThreshold, but used for partial/runtime unrolling (set to
|
|
/// UINT_MAX to disable).
|
|
unsigned PartialOptSizeThreshold;
|
|
/// A forced unrolling factor (the number of concatenated bodies of the
|
|
/// original loop in the unrolled loop body). When set to 0, the unrolling
|
|
/// transformation will select an unrolling factor based on the current cost
|
|
/// threshold and other factors.
|
|
unsigned Count;
|
|
/// A forced peeling factor (the number of bodied of the original loop
|
|
/// that should be peeled off before the loop body). When set to 0, the
|
|
/// unrolling transformation will select a peeling factor based on profile
|
|
/// information and other factors.
|
|
unsigned PeelCount;
|
|
/// Default unroll count for loops with run-time trip count.
|
|
unsigned DefaultUnrollRuntimeCount;
|
|
// Set the maximum unrolling factor. The unrolling factor may be selected
|
|
// using the appropriate cost threshold, but may not exceed this number
|
|
// (set to UINT_MAX to disable). This does not apply in cases where the
|
|
// loop is being fully unrolled.
|
|
unsigned MaxCount;
|
|
/// Set the maximum unrolling factor for full unrolling. Like MaxCount, but
|
|
/// applies even if full unrolling is selected. This allows a target to fall
|
|
/// back to Partial unrolling if full unrolling is above FullUnrollMaxCount.
|
|
unsigned FullUnrollMaxCount;
|
|
// Represents number of instructions optimized when "back edge"
|
|
// becomes "fall through" in unrolled loop.
|
|
// For now we count a conditional branch on a backedge and a comparison
|
|
// feeding it.
|
|
unsigned BEInsns;
|
|
/// Allow partial unrolling (unrolling of loops to expand the size of the
|
|
/// loop body, not only to eliminate small constant-trip-count loops).
|
|
bool Partial;
|
|
/// Allow runtime unrolling (unrolling of loops to expand the size of the
|
|
/// loop body even when the number of loop iterations is not known at
|
|
/// compile time).
|
|
bool Runtime;
|
|
/// Allow generation of a loop remainder (extra iterations after unroll).
|
|
bool AllowRemainder;
|
|
/// Allow emitting expensive instructions (such as divisions) when computing
|
|
/// the trip count of a loop for runtime unrolling.
|
|
bool AllowExpensiveTripCount;
|
|
/// Apply loop unroll on any kind of loop
|
|
/// (mainly to loops that fail runtime unrolling).
|
|
bool Force;
|
|
/// Allow using trip count upper bound to unroll loops.
|
|
bool UpperBound;
|
|
/// Allow peeling off loop iterations for loops with low dynamic tripcount.
|
|
bool AllowPeeling;
|
|
/// Allow unrolling of all the iterations of the runtime loop remainder.
|
|
bool UnrollRemainder;
|
|
};
|
|
|
|
/// \brief Get target-customized preferences for the generic loop unrolling
|
|
/// transformation. The caller will initialize UP with the current
|
|
/// target-independent defaults.
|
|
void getUnrollingPreferences(Loop *L, ScalarEvolution &,
|
|
UnrollingPreferences &UP) const;
|
|
|
|
/// @}
|
|
|
|
/// \name Scalar Target Information
|
|
/// @{
|
|
|
|
/// \brief Flags indicating the kind of support for population count.
|
|
///
|
|
/// Compared to the SW implementation, HW support is supposed to
|
|
/// significantly boost the performance when the population is dense, and it
|
|
/// may or may not degrade performance if the population is sparse. A HW
|
|
/// support is considered as "Fast" if it can outperform, or is on a par
|
|
/// with, SW implementation when the population is sparse; otherwise, it is
|
|
/// considered as "Slow".
|
|
enum PopcntSupportKind { PSK_Software, PSK_SlowHardware, PSK_FastHardware };
|
|
|
|
/// \brief Return true if the specified immediate is legal add immediate, that
|
|
/// is the target has add instructions which can add a register with the
|
|
/// immediate without having to materialize the immediate into a register.
|
|
bool isLegalAddImmediate(int64_t Imm) const;
|
|
|
|
/// \brief Return true if the specified immediate is legal icmp immediate,
|
|
/// that is the target has icmp instructions which can compare a register
|
|
/// against the immediate without having to materialize the immediate into a
|
|
/// register.
|
|
bool isLegalICmpImmediate(int64_t Imm) const;
|
|
|
|
/// \brief Return true if the addressing mode represented by AM is legal for
|
|
/// this target, for a load/store of the specified type.
|
|
/// The type may be VoidTy, in which case only return true if the addressing
|
|
/// mode is legal for a load/store of any legal type.
|
|
/// If target returns true in LSRWithInstrQueries(), I may be valid.
|
|
/// TODO: Handle pre/postinc as well.
|
|
bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
|
|
bool HasBaseReg, int64_t Scale,
|
|
unsigned AddrSpace = 0,
|
|
Instruction *I = nullptr) const;
|
|
|
|
/// \brief Return true if LSR cost of C1 is lower than C1.
|
|
bool isLSRCostLess(TargetTransformInfo::LSRCost &C1,
|
|
TargetTransformInfo::LSRCost &C2) const;
|
|
|
|
/// \brief Return true if the target supports masked load/store
|
|
/// AVX2 and AVX-512 targets allow masks for consecutive load and store
|
|
bool isLegalMaskedStore(Type *DataType) const;
|
|
bool isLegalMaskedLoad(Type *DataType) const;
|
|
|
|
/// \brief Return true if the target supports masked gather/scatter
|
|
/// AVX-512 fully supports gather and scatter for vectors with 32 and 64
|
|
/// bits scalar type.
|
|
bool isLegalMaskedScatter(Type *DataType) const;
|
|
bool isLegalMaskedGather(Type *DataType) const;
|
|
|
|
/// Return true if the target has a unified operation to calculate division
|
|
/// and remainder. If so, the additional implicit multiplication and
|
|
/// subtraction required to calculate a remainder from division are free. This
|
|
/// can enable more aggressive transformations for division and remainder than
|
|
/// would typically be allowed using throughput or size cost models.
|
|
bool hasDivRemOp(Type *DataType, bool IsSigned) const;
|
|
|
|
/// Return true if target doesn't mind addresses in vectors.
|
|
bool prefersVectorizedAddressing() const;
|
|
|
|
/// \brief Return the cost of the scaling factor used in the addressing
|
|
/// mode represented by AM for this target, for a load/store
|
|
/// of the specified type.
|
|
/// If the AM is supported, the return value must be >= 0.
|
|
/// If the AM is not supported, it returns a negative value.
|
|
/// TODO: Handle pre/postinc as well.
|
|
int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
|
|
bool HasBaseReg, int64_t Scale,
|
|
unsigned AddrSpace = 0) const;
|
|
|
|
/// \brief Return true if the loop strength reduce pass should make
|
|
/// Instruction* based TTI queries to isLegalAddressingMode(). This is
|
|
/// needed on SystemZ, where e.g. a memcpy can only have a 12 bit unsigned
|
|
/// immediate offset and no index register.
|
|
bool LSRWithInstrQueries() const;
|
|
|
|
/// \brief Return true if it's free to truncate a value of type Ty1 to type
|
|
/// Ty2. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
|
|
/// by referencing its sub-register AX.
|
|
bool isTruncateFree(Type *Ty1, Type *Ty2) const;
|
|
|
|
/// \brief Return true if it is profitable to hoist instruction in the
|
|
/// then/else to before if.
|
|
bool isProfitableToHoist(Instruction *I) const;
|
|
|
|
/// \brief Return true if this type is legal.
|
|
bool isTypeLegal(Type *Ty) const;
|
|
|
|
/// \brief Returns the target's jmp_buf alignment in bytes.
|
|
unsigned getJumpBufAlignment() const;
|
|
|
|
/// \brief Returns the target's jmp_buf size in bytes.
|
|
unsigned getJumpBufSize() const;
|
|
|
|
/// \brief Return true if switches should be turned into lookup tables for the
|
|
/// target.
|
|
bool shouldBuildLookupTables() const;
|
|
|
|
/// \brief Return true if switches should be turned into lookup tables
|
|
/// containing this constant value for the target.
|
|
bool shouldBuildLookupTablesForConstant(Constant *C) const;
|
|
|
|
unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const;
|
|
|
|
unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
|
|
unsigned VF) const;
|
|
|
|
/// If target has efficient vector element load/store instructions, it can
|
|
/// return true here so that insertion/extraction costs are not added to
|
|
/// the scalarization cost of a load/store.
|
|
bool supportsEfficientVectorElementLoadStore() const;
|
|
|
|
/// \brief Don't restrict interleaved unrolling to small loops.
|
|
bool enableAggressiveInterleaving(bool LoopHasReductions) const;
|
|
|
|
/// \brief Enable inline expansion of memcmp
|
|
bool enableMemCmpExpansion(unsigned &MaxLoadSize) const;
|
|
|
|
/// \brief Enable matching of interleaved access groups.
|
|
bool enableInterleavedAccessVectorization() const;
|
|
|
|
/// \brief Indicate that it is potentially unsafe to automatically vectorize
|
|
/// floating-point operations because the semantics of vector and scalar
|
|
/// floating-point semantics may differ. For example, ARM NEON v7 SIMD math
|
|
/// does not support IEEE-754 denormal numbers, while depending on the
|
|
/// platform, scalar floating-point math does.
|
|
/// This applies to floating-point math operations and calls, not memory
|
|
/// operations, shuffles, or casts.
|
|
bool isFPVectorizationPotentiallyUnsafe() const;
|
|
|
|
/// \brief Determine if the target supports unaligned memory accesses.
|
|
bool allowsMisalignedMemoryAccesses(LLVMContext &Context,
|
|
unsigned BitWidth, unsigned AddressSpace = 0,
|
|
unsigned Alignment = 1,
|
|
bool *Fast = nullptr) const;
|
|
|
|
/// \brief Return hardware support for population count.
|
|
PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const;
|
|
|
|
/// \brief Return true if the hardware has a fast square-root instruction.
|
|
bool haveFastSqrt(Type *Ty) const;
|
|
|
|
/// \brief Return the expected cost of supporting the floating point operation
|
|
/// of the specified type.
|
|
int getFPOpCost(Type *Ty) const;
|
|
|
|
/// \brief Return the expected cost of materializing for the given integer
|
|
/// immediate of the specified type.
|
|
int getIntImmCost(const APInt &Imm, Type *Ty) const;
|
|
|
|
/// \brief Return the expected cost of materialization for the given integer
|
|
/// immediate of the specified type for a given instruction. The cost can be
|
|
/// zero if the immediate can be folded into the specified instruction.
|
|
int getIntImmCost(unsigned Opc, unsigned Idx, const APInt &Imm,
|
|
Type *Ty) const;
|
|
int getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
|
|
Type *Ty) const;
|
|
|
|
/// \brief Return the expected cost for the given integer when optimising
|
|
/// for size. This is different than the other integer immediate cost
|
|
/// functions in that it is subtarget agnostic. This is useful when you e.g.
|
|
/// target one ISA such as Aarch32 but smaller encodings could be possible
|
|
/// with another such as Thumb. This return value is used as a penalty when
|
|
/// the total costs for a constant is calculated (the bigger the cost, the
|
|
/// more beneficial constant hoisting is).
|
|
int getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, const APInt &Imm,
|
|
Type *Ty) const;
|
|
/// @}
|
|
|
|
/// \name Vector Target Information
|
|
/// @{
|
|
|
|
/// \brief The various kinds of shuffle patterns for vector queries.
|
|
enum ShuffleKind {
|
|
SK_Broadcast, ///< Broadcast element 0 to all other elements.
|
|
SK_Reverse, ///< Reverse the order of the vector.
|
|
SK_Alternate, ///< Choose alternate elements from vector.
|
|
SK_InsertSubvector, ///< InsertSubvector. Index indicates start offset.
|
|
SK_ExtractSubvector,///< ExtractSubvector Index indicates start offset.
|
|
SK_PermuteTwoSrc, ///< Merge elements from two source vectors into one
|
|
///< with any shuffle mask.
|
|
SK_PermuteSingleSrc ///< Shuffle elements of single source vector with any
|
|
///< shuffle mask.
|
|
};
|
|
|
|
/// \brief Additional information about an operand's possible values.
|
|
enum OperandValueKind {
|
|
OK_AnyValue, // Operand can have any value.
|
|
OK_UniformValue, // Operand is uniform (splat of a value).
|
|
OK_UniformConstantValue, // Operand is uniform constant.
|
|
OK_NonUniformConstantValue // Operand is a non uniform constant value.
|
|
};
|
|
|
|
/// \brief Additional properties of an operand's values.
|
|
enum OperandValueProperties { OP_None = 0, OP_PowerOf2 = 1 };
|
|
|
|
/// \return The number of scalar or vector registers that the target has.
|
|
/// If 'Vectors' is true, it returns the number of vector registers. If it is
|
|
/// set to false, it returns the number of scalar registers.
|
|
unsigned getNumberOfRegisters(bool Vector) const;
|
|
|
|
/// \return The width of the largest scalar or vector register type.
|
|
unsigned getRegisterBitWidth(bool Vector) const;
|
|
|
|
/// \return The width of the smallest vector register type.
|
|
unsigned getMinVectorRegisterBitWidth() const;
|
|
|
|
/// \return True if it should be considered for address type promotion.
|
|
/// \p AllowPromotionWithoutCommonHeader Set true if promoting \p I is
|
|
/// profitable without finding other extensions fed by the same input.
|
|
bool shouldConsiderAddressTypePromotion(
|
|
const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const;
|
|
|
|
/// \return The size of a cache line in bytes.
|
|
unsigned getCacheLineSize() const;
|
|
|
|
/// The possible cache levels
|
|
enum class CacheLevel {
|
|
L1D, // The L1 data cache
|
|
L2D, // The L2 data cache
|
|
|
|
// We currently do not model L3 caches, as their sizes differ widely between
|
|
// microarchitectures. Also, we currently do not have a use for L3 cache
|
|
// size modeling yet.
|
|
};
|
|
|
|
/// \return The size of the cache level in bytes, if available.
|
|
llvm::Optional<unsigned> getCacheSize(CacheLevel Level) const;
|
|
|
|
/// \return The associativity of the cache level, if available.
|
|
llvm::Optional<unsigned> getCacheAssociativity(CacheLevel Level) const;
|
|
|
|
/// \return How much before a load we should place the prefetch instruction.
|
|
/// This is currently measured in number of instructions.
|
|
unsigned getPrefetchDistance() const;
|
|
|
|
/// \return Some HW prefetchers can handle accesses up to a certain constant
|
|
/// stride. This is the minimum stride in bytes where it makes sense to start
|
|
/// adding SW prefetches. The default is 1, i.e. prefetch with any stride.
|
|
unsigned getMinPrefetchStride() const;
|
|
|
|
/// \return The maximum number of iterations to prefetch ahead. If the
|
|
/// required number of iterations is more than this number, no prefetching is
|
|
/// performed.
|
|
unsigned getMaxPrefetchIterationsAhead() const;
|
|
|
|
/// \return The maximum interleave factor that any transform should try to
|
|
/// perform for this target. This number depends on the level of parallelism
|
|
/// and the number of execution units in the CPU.
|
|
unsigned getMaxInterleaveFactor(unsigned VF) const;
|
|
|
|
/// \return The expected cost of arithmetic ops, such as mul, xor, fsub, etc.
|
|
/// \p Args is an optional argument which holds the instruction operands
|
|
/// values so the TTI can analyize those values searching for special
|
|
/// cases\optimizations based on those values.
|
|
int getArithmeticInstrCost(
|
|
unsigned Opcode, Type *Ty, OperandValueKind Opd1Info = OK_AnyValue,
|
|
OperandValueKind Opd2Info = OK_AnyValue,
|
|
OperandValueProperties Opd1PropInfo = OP_None,
|
|
OperandValueProperties Opd2PropInfo = OP_None,
|
|
ArrayRef<const Value *> Args = ArrayRef<const Value *>()) const;
|
|
|
|
/// \return The cost of a shuffle instruction of kind Kind and of type Tp.
|
|
/// The index and subtype parameters are used by the subvector insertion and
|
|
/// extraction shuffle kinds.
|
|
int getShuffleCost(ShuffleKind Kind, Type *Tp, int Index = 0,
|
|
Type *SubTp = nullptr) const;
|
|
|
|
/// \return The expected cost of cast instructions, such as bitcast, trunc,
|
|
/// zext, etc. If there is an existing instruction that holds Opcode, it
|
|
/// may be passed in the 'I' parameter.
|
|
int getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
|
|
const Instruction *I = nullptr) const;
|
|
|
|
/// \return The expected cost of a sign- or zero-extended vector extract. Use
|
|
/// -1 to indicate that there is no information about the index value.
|
|
int getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy,
|
|
unsigned Index = -1) const;
|
|
|
|
/// \return The expected cost of control-flow related instructions such as
|
|
/// Phi, Ret, Br.
|
|
int getCFInstrCost(unsigned Opcode) const;
|
|
|
|
/// \returns The expected cost of compare and select instructions. If there
|
|
/// is an existing instruction that holds Opcode, it may be passed in the
|
|
/// 'I' parameter.
|
|
int getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
|
|
Type *CondTy = nullptr, const Instruction *I = nullptr) const;
|
|
|
|
/// \return The expected cost of vector Insert and Extract.
|
|
/// Use -1 to indicate that there is no information on the index value.
|
|
int getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index = -1) const;
|
|
|
|
/// \return The cost of Load and Store instructions.
|
|
int getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
|
|
unsigned AddressSpace, const Instruction *I = nullptr) const;
|
|
|
|
/// \return The cost of masked Load and Store instructions.
|
|
int getMaskedMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
|
|
unsigned AddressSpace) const;
|
|
|
|
/// \return The cost of Gather or Scatter operation
|
|
/// \p Opcode - is a type of memory access Load or Store
|
|
/// \p DataTy - a vector type of the data to be loaded or stored
|
|
/// \p Ptr - pointer [or vector of pointers] - address[es] in memory
|
|
/// \p VariableMask - true when the memory access is predicated with a mask
|
|
/// that is not a compile-time constant
|
|
/// \p Alignment - alignment of single element
|
|
int getGatherScatterOpCost(unsigned Opcode, Type *DataTy, Value *Ptr,
|
|
bool VariableMask, unsigned Alignment) const;
|
|
|
|
/// \return The cost of the interleaved memory operation.
|
|
/// \p Opcode is the memory operation code
|
|
/// \p VecTy is the vector type of the interleaved access.
|
|
/// \p Factor is the interleave factor
|
|
/// \p Indices is the indices for interleaved load members (as interleaved
|
|
/// load allows gaps)
|
|
/// \p Alignment is the alignment of the memory operation
|
|
/// \p AddressSpace is address space of the pointer.
|
|
int getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor,
|
|
ArrayRef<unsigned> Indices, unsigned Alignment,
|
|
unsigned AddressSpace) const;
|
|
|
|
/// \brief Calculate the cost of performing a vector reduction.
|
|
///
|
|
/// This is the cost of reducing the vector value of type \p Ty to a scalar
|
|
/// value using the operation denoted by \p Opcode. The form of the reduction
|
|
/// can either be a pairwise reduction or a reduction that splits the vector
|
|
/// at every reduction level.
|
|
///
|
|
/// Pairwise:
|
|
/// (v0, v1, v2, v3)
|
|
/// ((v0+v1), (v2+v3), undef, undef)
|
|
/// Split:
|
|
/// (v0, v1, v2, v3)
|
|
/// ((v0+v2), (v1+v3), undef, undef)
|
|
int getArithmeticReductionCost(unsigned Opcode, Type *Ty,
|
|
bool IsPairwiseForm) const;
|
|
int getMinMaxReductionCost(Type *Ty, Type *CondTy, bool IsPairwiseForm,
|
|
bool IsUnsigned) const;
|
|
|
|
/// \returns The cost of Intrinsic instructions. Analyses the real arguments.
|
|
/// Three cases are handled: 1. scalar instruction 2. vector instruction
|
|
/// 3. scalar instruction which is to be vectorized with VF.
|
|
int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
|
|
ArrayRef<Value *> Args, FastMathFlags FMF,
|
|
unsigned VF = 1) const;
|
|
|
|
/// \returns The cost of Intrinsic instructions. Types analysis only.
|
|
/// If ScalarizationCostPassed is UINT_MAX, the cost of scalarizing the
|
|
/// arguments and the return value will be computed based on types.
|
|
int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
|
|
ArrayRef<Type *> Tys, FastMathFlags FMF,
|
|
unsigned ScalarizationCostPassed = UINT_MAX) const;
|
|
|
|
/// \returns The cost of Call instructions.
|
|
int getCallInstrCost(Function *F, Type *RetTy, ArrayRef<Type *> Tys) const;
|
|
|
|
/// \returns The number of pieces into which the provided type must be
|
|
/// split during legalization. Zero is returned when the answer is unknown.
|
|
unsigned getNumberOfParts(Type *Tp) const;
|
|
|
|
/// \returns The cost of the address computation. For most targets this can be
|
|
/// merged into the instruction indexing mode. Some targets might want to
|
|
/// distinguish between address computation for memory operations on vector
|
|
/// types and scalar types. Such targets should override this function.
|
|
/// The 'SE' parameter holds pointer for the scalar evolution object which
|
|
/// is used in order to get the Ptr step value in case of constant stride.
|
|
/// The 'Ptr' parameter holds SCEV of the access pointer.
|
|
int getAddressComputationCost(Type *Ty, ScalarEvolution *SE = nullptr,
|
|
const SCEV *Ptr = nullptr) const;
|
|
|
|
/// \returns The cost, if any, of keeping values of the given types alive
|
|
/// over a callsite.
|
|
///
|
|
/// Some types may require the use of register classes that do not have
|
|
/// any callee-saved registers, so would require a spill and fill.
|
|
unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const;
|
|
|
|
/// \returns True if the intrinsic is a supported memory intrinsic. Info
|
|
/// will contain additional information - whether the intrinsic may write
|
|
/// or read to memory, volatility and the pointer. Info is undefined
|
|
/// if false is returned.
|
|
bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) const;
|
|
|
|
/// \returns The maximum element size, in bytes, for an element
|
|
/// unordered-atomic memory intrinsic.
|
|
unsigned getAtomicMemIntrinsicMaxElementSize() const;
|
|
|
|
/// \returns A value which is the result of the given memory intrinsic. New
|
|
/// instructions may be created to extract the result from the given intrinsic
|
|
/// memory operation. Returns nullptr if the target cannot create a result
|
|
/// from the given intrinsic.
|
|
Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
|
|
Type *ExpectedType) const;
|
|
|
|
/// \returns The type to use in a loop expansion of a memcpy call.
|
|
Type *getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length,
|
|
unsigned SrcAlign, unsigned DestAlign) const;
|
|
|
|
/// \param[out] OpsOut The operand types to copy RemainingBytes of memory.
|
|
/// \param RemainingBytes The number of bytes to copy.
|
|
///
|
|
/// Calculates the operand types to use when copying \p RemainingBytes of
|
|
/// memory, where source and destination alignments are \p SrcAlign and
|
|
/// \p DestAlign respectively.
|
|
void getMemcpyLoopResidualLoweringType(SmallVectorImpl<Type *> &OpsOut,
|
|
LLVMContext &Context,
|
|
unsigned RemainingBytes,
|
|
unsigned SrcAlign,
|
|
unsigned DestAlign) const;
|
|
|
|
/// \returns True if we want to test the new memcpy lowering functionality in
|
|
/// Transform/Utils.
|
|
/// Temporary. Will be removed once we move to the new functionality and
|
|
/// remove the old.
|
|
bool useWideIRMemcpyLoopLowering() const;
|
|
|
|
/// \returns True if the two functions have compatible attributes for inlining
|
|
/// purposes.
|
|
bool areInlineCompatible(const Function *Caller,
|
|
const Function *Callee) const;
|
|
|
|
/// \returns The bitwidth of the largest vector type that should be used to
|
|
/// load/store in the given address space.
|
|
unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const;
|
|
|
|
/// \returns True if the load instruction is legal to vectorize.
|
|
bool isLegalToVectorizeLoad(LoadInst *LI) const;
|
|
|
|
/// \returns True if the store instruction is legal to vectorize.
|
|
bool isLegalToVectorizeStore(StoreInst *SI) const;
|
|
|
|
/// \returns True if it is legal to vectorize the given load chain.
|
|
bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
|
|
unsigned Alignment,
|
|
unsigned AddrSpace) const;
|
|
|
|
/// \returns True if it is legal to vectorize the given store chain.
|
|
bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
|
|
unsigned Alignment,
|
|
unsigned AddrSpace) const;
|
|
|
|
/// \returns The new vector factor value if the target doesn't support \p
|
|
/// SizeInBytes loads or has a better vector factor.
|
|
unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
|
|
unsigned ChainSizeInBytes,
|
|
VectorType *VecTy) const;
|
|
|
|
/// \returns The new vector factor value if the target doesn't support \p
|
|
/// SizeInBytes stores or has a better vector factor.
|
|
unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
|
|
unsigned ChainSizeInBytes,
|
|
VectorType *VecTy) const;
|
|
|
|
/// Flags describing the kind of vector reduction.
|
|
struct ReductionFlags {
|
|
ReductionFlags() : IsMaxOp(false), IsSigned(false), NoNaN(false) {}
|
|
bool IsMaxOp; ///< If the op a min/max kind, true if it's a max operation.
|
|
bool IsSigned; ///< Whether the operation is a signed int reduction.
|
|
bool NoNaN; ///< If op is an fp min/max, whether NaNs may be present.
|
|
};
|
|
|
|
/// \returns True if the target wants to handle the given reduction idiom in
|
|
/// the intrinsics form instead of the shuffle form.
|
|
bool useReductionIntrinsic(unsigned Opcode, Type *Ty,
|
|
ReductionFlags Flags) const;
|
|
|
|
/// \returns True if the target wants to expand the given reduction intrinsic
|
|
/// into a shuffle sequence.
|
|
bool shouldExpandReduction(const IntrinsicInst *II) const;
|
|
/// @}
|
|
|
|
private:
|
|
/// \brief Estimate the latency of specified instruction.
|
|
/// Returns 1 as the default value.
|
|
int getInstructionLatency(const Instruction *I) const;
|
|
|
|
/// \brief Returns the expected throughput cost of the instruction.
|
|
/// Returns -1 if the cost is unknown.
|
|
int getInstructionThroughput(const Instruction *I) const;
|
|
|
|
/// \brief The abstract base class used to type erase specific TTI
|
|
/// implementations.
|
|
class Concept;
|
|
|
|
/// \brief The template model for the base class which wraps a concrete
|
|
/// implementation in a type erased interface.
|
|
template <typename T> class Model;
|
|
|
|
std::unique_ptr<Concept> TTIImpl;
|
|
};
|
|
|
|
class TargetTransformInfo::Concept {
|
|
public:
|
|
virtual ~Concept() = 0;
|
|
virtual const DataLayout &getDataLayout() const = 0;
|
|
virtual int getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) = 0;
|
|
virtual int getGEPCost(Type *PointeeType, const Value *Ptr,
|
|
ArrayRef<const Value *> Operands) = 0;
|
|
virtual int getGEPCost(const GEPOperator *GEP,
|
|
ArrayRef<const Value *> Operands) = 0;
|
|
virtual int getExtCost(const Instruction *I, const Value *Src) = 0;
|
|
virtual int getCallCost(FunctionType *FTy, int NumArgs) = 0;
|
|
virtual int getCallCost(const Function *F, int NumArgs) = 0;
|
|
virtual int getCallCost(const Function *F,
|
|
ArrayRef<const Value *> Arguments) = 0;
|
|
virtual unsigned getInliningThresholdMultiplier() = 0;
|
|
virtual int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
|
|
ArrayRef<Type *> ParamTys) = 0;
|
|
virtual int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
|
|
ArrayRef<const Value *> Arguments) = 0;
|
|
virtual unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
|
|
unsigned &JTSize) = 0;
|
|
virtual int
|
|
getUserCost(const User *U, ArrayRef<const Value *> Operands) = 0;
|
|
virtual bool hasBranchDivergence() = 0;
|
|
virtual bool isSourceOfDivergence(const Value *V) = 0;
|
|
virtual bool isAlwaysUniform(const Value *V) = 0;
|
|
virtual unsigned getFlatAddressSpace() = 0;
|
|
virtual bool isLoweredToCall(const Function *F) = 0;
|
|
virtual void getUnrollingPreferences(Loop *L, ScalarEvolution &,
|
|
UnrollingPreferences &UP) = 0;
|
|
virtual bool isLegalAddImmediate(int64_t Imm) = 0;
|
|
virtual bool isLegalICmpImmediate(int64_t Imm) = 0;
|
|
virtual bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
|
|
int64_t BaseOffset, bool HasBaseReg,
|
|
int64_t Scale,
|
|
unsigned AddrSpace,
|
|
Instruction *I) = 0;
|
|
virtual bool isLSRCostLess(TargetTransformInfo::LSRCost &C1,
|
|
TargetTransformInfo::LSRCost &C2) = 0;
|
|
virtual bool isLegalMaskedStore(Type *DataType) = 0;
|
|
virtual bool isLegalMaskedLoad(Type *DataType) = 0;
|
|
virtual bool isLegalMaskedScatter(Type *DataType) = 0;
|
|
virtual bool isLegalMaskedGather(Type *DataType) = 0;
|
|
virtual bool hasDivRemOp(Type *DataType, bool IsSigned) = 0;
|
|
virtual bool prefersVectorizedAddressing() = 0;
|
|
virtual int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
|
|
int64_t BaseOffset, bool HasBaseReg,
|
|
int64_t Scale, unsigned AddrSpace) = 0;
|
|
virtual bool LSRWithInstrQueries() = 0;
|
|
virtual bool isTruncateFree(Type *Ty1, Type *Ty2) = 0;
|
|
virtual bool isProfitableToHoist(Instruction *I) = 0;
|
|
virtual bool isTypeLegal(Type *Ty) = 0;
|
|
virtual unsigned getJumpBufAlignment() = 0;
|
|
virtual unsigned getJumpBufSize() = 0;
|
|
virtual bool shouldBuildLookupTables() = 0;
|
|
virtual bool shouldBuildLookupTablesForConstant(Constant *C) = 0;
|
|
virtual unsigned
|
|
getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) = 0;
|
|
virtual unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
|
|
unsigned VF) = 0;
|
|
virtual bool supportsEfficientVectorElementLoadStore() = 0;
|
|
virtual bool enableAggressiveInterleaving(bool LoopHasReductions) = 0;
|
|
virtual bool enableMemCmpExpansion(unsigned &MaxLoadSize) = 0;
|
|
virtual bool enableInterleavedAccessVectorization() = 0;
|
|
virtual bool isFPVectorizationPotentiallyUnsafe() = 0;
|
|
virtual bool allowsMisalignedMemoryAccesses(LLVMContext &Context,
|
|
unsigned BitWidth,
|
|
unsigned AddressSpace,
|
|
unsigned Alignment,
|
|
bool *Fast) = 0;
|
|
virtual PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) = 0;
|
|
virtual bool haveFastSqrt(Type *Ty) = 0;
|
|
virtual int getFPOpCost(Type *Ty) = 0;
|
|
virtual int getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, const APInt &Imm,
|
|
Type *Ty) = 0;
|
|
virtual int getIntImmCost(const APInt &Imm, Type *Ty) = 0;
|
|
virtual int getIntImmCost(unsigned Opc, unsigned Idx, const APInt &Imm,
|
|
Type *Ty) = 0;
|
|
virtual int getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
|
|
Type *Ty) = 0;
|
|
virtual unsigned getNumberOfRegisters(bool Vector) = 0;
|
|
virtual unsigned getRegisterBitWidth(bool Vector) const = 0;
|
|
virtual unsigned getMinVectorRegisterBitWidth() = 0;
|
|
virtual bool shouldConsiderAddressTypePromotion(
|
|
const Instruction &I, bool &AllowPromotionWithoutCommonHeader) = 0;
|
|
virtual unsigned getCacheLineSize() = 0;
|
|
virtual llvm::Optional<unsigned> getCacheSize(CacheLevel Level) = 0;
|
|
virtual llvm::Optional<unsigned> getCacheAssociativity(CacheLevel Level) = 0;
|
|
virtual unsigned getPrefetchDistance() = 0;
|
|
virtual unsigned getMinPrefetchStride() = 0;
|
|
virtual unsigned getMaxPrefetchIterationsAhead() = 0;
|
|
virtual unsigned getMaxInterleaveFactor(unsigned VF) = 0;
|
|
virtual unsigned
|
|
getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind Opd1Info,
|
|
OperandValueKind Opd2Info,
|
|
OperandValueProperties Opd1PropInfo,
|
|
OperandValueProperties Opd2PropInfo,
|
|
ArrayRef<const Value *> Args) = 0;
|
|
virtual int getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
|
|
Type *SubTp) = 0;
|
|
virtual int getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
|
|
const Instruction *I) = 0;
|
|
virtual int getExtractWithExtendCost(unsigned Opcode, Type *Dst,
|
|
VectorType *VecTy, unsigned Index) = 0;
|
|
virtual int getCFInstrCost(unsigned Opcode) = 0;
|
|
virtual int getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
|
|
Type *CondTy, const Instruction *I) = 0;
|
|
virtual int getVectorInstrCost(unsigned Opcode, Type *Val,
|
|
unsigned Index) = 0;
|
|
virtual int getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
|
|
unsigned AddressSpace, const Instruction *I) = 0;
|
|
virtual int getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
|
|
unsigned Alignment,
|
|
unsigned AddressSpace) = 0;
|
|
virtual int getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
|
|
Value *Ptr, bool VariableMask,
|
|
unsigned Alignment) = 0;
|
|
virtual int getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
|
|
unsigned Factor,
|
|
ArrayRef<unsigned> Indices,
|
|
unsigned Alignment,
|
|
unsigned AddressSpace) = 0;
|
|
virtual int getArithmeticReductionCost(unsigned Opcode, Type *Ty,
|
|
bool IsPairwiseForm) = 0;
|
|
virtual int getMinMaxReductionCost(Type *Ty, Type *CondTy,
|
|
bool IsPairwiseForm, bool IsUnsigned) = 0;
|
|
virtual int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
|
|
ArrayRef<Type *> Tys, FastMathFlags FMF,
|
|
unsigned ScalarizationCostPassed) = 0;
|
|
virtual int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
|
|
ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) = 0;
|
|
virtual int getCallInstrCost(Function *F, Type *RetTy,
|
|
ArrayRef<Type *> Tys) = 0;
|
|
virtual unsigned getNumberOfParts(Type *Tp) = 0;
|
|
virtual int getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
|
|
const SCEV *Ptr) = 0;
|
|
virtual unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) = 0;
|
|
virtual bool getTgtMemIntrinsic(IntrinsicInst *Inst,
|
|
MemIntrinsicInfo &Info) = 0;
|
|
virtual unsigned getAtomicMemIntrinsicMaxElementSize() const = 0;
|
|
virtual Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
|
|
Type *ExpectedType) = 0;
|
|
virtual Type *getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length,
|
|
unsigned SrcAlign,
|
|
unsigned DestAlign) const = 0;
|
|
virtual void getMemcpyLoopResidualLoweringType(
|
|
SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
|
|
unsigned RemainingBytes, unsigned SrcAlign, unsigned DestAlign) const = 0;
|
|
virtual bool areInlineCompatible(const Function *Caller,
|
|
const Function *Callee) const = 0;
|
|
virtual unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const = 0;
|
|
virtual bool isLegalToVectorizeLoad(LoadInst *LI) const = 0;
|
|
virtual bool isLegalToVectorizeStore(StoreInst *SI) const = 0;
|
|
virtual bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
|
|
unsigned Alignment,
|
|
unsigned AddrSpace) const = 0;
|
|
virtual bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
|
|
unsigned Alignment,
|
|
unsigned AddrSpace) const = 0;
|
|
virtual unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
|
|
unsigned ChainSizeInBytes,
|
|
VectorType *VecTy) const = 0;
|
|
virtual unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
|
|
unsigned ChainSizeInBytes,
|
|
VectorType *VecTy) const = 0;
|
|
virtual bool useReductionIntrinsic(unsigned Opcode, Type *Ty,
|
|
ReductionFlags) const = 0;
|
|
virtual bool shouldExpandReduction(const IntrinsicInst *II) const = 0;
|
|
virtual int getInstructionLatency(const Instruction *I) = 0;
|
|
};
|
|
|
|
template <typename T>
|
|
class TargetTransformInfo::Model final : public TargetTransformInfo::Concept {
|
|
T Impl;
|
|
|
|
public:
|
|
Model(T Impl) : Impl(std::move(Impl)) {}
|
|
~Model() override {}
|
|
|
|
const DataLayout &getDataLayout() const override {
|
|
return Impl.getDataLayout();
|
|
}
|
|
|
|
int getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) override {
|
|
return Impl.getOperationCost(Opcode, Ty, OpTy);
|
|
}
|
|
int getGEPCost(Type *PointeeType, const Value *Ptr,
|
|
ArrayRef<const Value *> Operands) override {
|
|
return Impl.getGEPCost(PointeeType, Ptr, Operands);
|
|
}
|
|
int getGEPCost(const GEPOperator *GEP,
|
|
ArrayRef<const Value *> Operands) override {
|
|
return Impl.getGEPCost(GEP, Operands);
|
|
}
|
|
int getExtCost(const Instruction *I, const Value *Src) override {
|
|
return Impl.getExtCost(I, Src);
|
|
}
|
|
int getCallCost(FunctionType *FTy, int NumArgs) override {
|
|
return Impl.getCallCost(FTy, NumArgs);
|
|
}
|
|
int getCallCost(const Function *F, int NumArgs) override {
|
|
return Impl.getCallCost(F, NumArgs);
|
|
}
|
|
int getCallCost(const Function *F,
|
|
ArrayRef<const Value *> Arguments) override {
|
|
return Impl.getCallCost(F, Arguments);
|
|
}
|
|
unsigned getInliningThresholdMultiplier() override {
|
|
return Impl.getInliningThresholdMultiplier();
|
|
}
|
|
int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
|
|
ArrayRef<Type *> ParamTys) override {
|
|
return Impl.getIntrinsicCost(IID, RetTy, ParamTys);
|
|
}
|
|
int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
|
|
ArrayRef<const Value *> Arguments) override {
|
|
return Impl.getIntrinsicCost(IID, RetTy, Arguments);
|
|
}
|
|
int getUserCost(const User *U, ArrayRef<const Value *> Operands) override {
|
|
return Impl.getUserCost(U, Operands);
|
|
}
|
|
bool hasBranchDivergence() override { return Impl.hasBranchDivergence(); }
|
|
bool isSourceOfDivergence(const Value *V) override {
|
|
return Impl.isSourceOfDivergence(V);
|
|
}
|
|
|
|
bool isAlwaysUniform(const Value *V) override {
|
|
return Impl.isAlwaysUniform(V);
|
|
}
|
|
|
|
unsigned getFlatAddressSpace() override {
|
|
return Impl.getFlatAddressSpace();
|
|
}
|
|
|
|
bool isLoweredToCall(const Function *F) override {
|
|
return Impl.isLoweredToCall(F);
|
|
}
|
|
void getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
|
|
UnrollingPreferences &UP) override {
|
|
return Impl.getUnrollingPreferences(L, SE, UP);
|
|
}
|
|
bool isLegalAddImmediate(int64_t Imm) override {
|
|
return Impl.isLegalAddImmediate(Imm);
|
|
}
|
|
bool isLegalICmpImmediate(int64_t Imm) override {
|
|
return Impl.isLegalICmpImmediate(Imm);
|
|
}
|
|
bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
|
|
bool HasBaseReg, int64_t Scale,
|
|
unsigned AddrSpace,
|
|
Instruction *I) override {
|
|
return Impl.isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
|
|
Scale, AddrSpace, I);
|
|
}
|
|
bool isLSRCostLess(TargetTransformInfo::LSRCost &C1,
|
|
TargetTransformInfo::LSRCost &C2) override {
|
|
return Impl.isLSRCostLess(C1, C2);
|
|
}
|
|
bool isLegalMaskedStore(Type *DataType) override {
|
|
return Impl.isLegalMaskedStore(DataType);
|
|
}
|
|
bool isLegalMaskedLoad(Type *DataType) override {
|
|
return Impl.isLegalMaskedLoad(DataType);
|
|
}
|
|
bool isLegalMaskedScatter(Type *DataType) override {
|
|
return Impl.isLegalMaskedScatter(DataType);
|
|
}
|
|
bool isLegalMaskedGather(Type *DataType) override {
|
|
return Impl.isLegalMaskedGather(DataType);
|
|
}
|
|
bool hasDivRemOp(Type *DataType, bool IsSigned) override {
|
|
return Impl.hasDivRemOp(DataType, IsSigned);
|
|
}
|
|
bool prefersVectorizedAddressing() override {
|
|
return Impl.prefersVectorizedAddressing();
|
|
}
|
|
int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
|
|
bool HasBaseReg, int64_t Scale,
|
|
unsigned AddrSpace) override {
|
|
return Impl.getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg,
|
|
Scale, AddrSpace);
|
|
}
|
|
bool LSRWithInstrQueries() override {
|
|
return Impl.LSRWithInstrQueries();
|
|
}
|
|
bool isTruncateFree(Type *Ty1, Type *Ty2) override {
|
|
return Impl.isTruncateFree(Ty1, Ty2);
|
|
}
|
|
bool isProfitableToHoist(Instruction *I) override {
|
|
return Impl.isProfitableToHoist(I);
|
|
}
|
|
bool isTypeLegal(Type *Ty) override { return Impl.isTypeLegal(Ty); }
|
|
unsigned getJumpBufAlignment() override { return Impl.getJumpBufAlignment(); }
|
|
unsigned getJumpBufSize() override { return Impl.getJumpBufSize(); }
|
|
bool shouldBuildLookupTables() override {
|
|
return Impl.shouldBuildLookupTables();
|
|
}
|
|
bool shouldBuildLookupTablesForConstant(Constant *C) override {
|
|
return Impl.shouldBuildLookupTablesForConstant(C);
|
|
}
|
|
unsigned getScalarizationOverhead(Type *Ty, bool Insert,
|
|
bool Extract) override {
|
|
return Impl.getScalarizationOverhead(Ty, Insert, Extract);
|
|
}
|
|
unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
|
|
unsigned VF) override {
|
|
return Impl.getOperandsScalarizationOverhead(Args, VF);
|
|
}
|
|
|
|
bool supportsEfficientVectorElementLoadStore() override {
|
|
return Impl.supportsEfficientVectorElementLoadStore();
|
|
}
|
|
|
|
bool enableAggressiveInterleaving(bool LoopHasReductions) override {
|
|
return Impl.enableAggressiveInterleaving(LoopHasReductions);
|
|
}
|
|
bool enableMemCmpExpansion(unsigned &MaxLoadSize) override {
|
|
return Impl.enableMemCmpExpansion(MaxLoadSize);
|
|
}
|
|
bool enableInterleavedAccessVectorization() override {
|
|
return Impl.enableInterleavedAccessVectorization();
|
|
}
|
|
bool isFPVectorizationPotentiallyUnsafe() override {
|
|
return Impl.isFPVectorizationPotentiallyUnsafe();
|
|
}
|
|
bool allowsMisalignedMemoryAccesses(LLVMContext &Context,
|
|
unsigned BitWidth, unsigned AddressSpace,
|
|
unsigned Alignment, bool *Fast) override {
|
|
return Impl.allowsMisalignedMemoryAccesses(Context, BitWidth, AddressSpace,
|
|
Alignment, Fast);
|
|
}
|
|
PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) override {
|
|
return Impl.getPopcntSupport(IntTyWidthInBit);
|
|
}
|
|
bool haveFastSqrt(Type *Ty) override { return Impl.haveFastSqrt(Ty); }
|
|
|
|
int getFPOpCost(Type *Ty) override { return Impl.getFPOpCost(Ty); }
|
|
|
|
int getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, const APInt &Imm,
|
|
Type *Ty) override {
|
|
return Impl.getIntImmCodeSizeCost(Opc, Idx, Imm, Ty);
|
|
}
|
|
int getIntImmCost(const APInt &Imm, Type *Ty) override {
|
|
return Impl.getIntImmCost(Imm, Ty);
|
|
}
|
|
int getIntImmCost(unsigned Opc, unsigned Idx, const APInt &Imm,
|
|
Type *Ty) override {
|
|
return Impl.getIntImmCost(Opc, Idx, Imm, Ty);
|
|
}
|
|
int getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
|
|
Type *Ty) override {
|
|
return Impl.getIntImmCost(IID, Idx, Imm, Ty);
|
|
}
|
|
unsigned getNumberOfRegisters(bool Vector) override {
|
|
return Impl.getNumberOfRegisters(Vector);
|
|
}
|
|
unsigned getRegisterBitWidth(bool Vector) const override {
|
|
return Impl.getRegisterBitWidth(Vector);
|
|
}
|
|
unsigned getMinVectorRegisterBitWidth() override {
|
|
return Impl.getMinVectorRegisterBitWidth();
|
|
}
|
|
bool shouldConsiderAddressTypePromotion(
|
|
const Instruction &I, bool &AllowPromotionWithoutCommonHeader) override {
|
|
return Impl.shouldConsiderAddressTypePromotion(
|
|
I, AllowPromotionWithoutCommonHeader);
|
|
}
|
|
unsigned getCacheLineSize() override {
|
|
return Impl.getCacheLineSize();
|
|
}
|
|
llvm::Optional<unsigned> getCacheSize(CacheLevel Level) override {
|
|
return Impl.getCacheSize(Level);
|
|
}
|
|
llvm::Optional<unsigned> getCacheAssociativity(CacheLevel Level) override {
|
|
return Impl.getCacheAssociativity(Level);
|
|
}
|
|
unsigned getPrefetchDistance() override { return Impl.getPrefetchDistance(); }
|
|
unsigned getMinPrefetchStride() override {
|
|
return Impl.getMinPrefetchStride();
|
|
}
|
|
unsigned getMaxPrefetchIterationsAhead() override {
|
|
return Impl.getMaxPrefetchIterationsAhead();
|
|
}
|
|
unsigned getMaxInterleaveFactor(unsigned VF) override {
|
|
return Impl.getMaxInterleaveFactor(VF);
|
|
}
|
|
unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
|
|
unsigned &JTSize) override {
|
|
return Impl.getEstimatedNumberOfCaseClusters(SI, JTSize);
|
|
}
|
|
unsigned
|
|
getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind Opd1Info,
|
|
OperandValueKind Opd2Info,
|
|
OperandValueProperties Opd1PropInfo,
|
|
OperandValueProperties Opd2PropInfo,
|
|
ArrayRef<const Value *> Args) override {
|
|
return Impl.getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
|
|
Opd1PropInfo, Opd2PropInfo, Args);
|
|
}
|
|
int getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
|
|
Type *SubTp) override {
|
|
return Impl.getShuffleCost(Kind, Tp, Index, SubTp);
|
|
}
|
|
int getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
|
|
const Instruction *I) override {
|
|
return Impl.getCastInstrCost(Opcode, Dst, Src, I);
|
|
}
|
|
int getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy,
|
|
unsigned Index) override {
|
|
return Impl.getExtractWithExtendCost(Opcode, Dst, VecTy, Index);
|
|
}
|
|
int getCFInstrCost(unsigned Opcode) override {
|
|
return Impl.getCFInstrCost(Opcode);
|
|
}
|
|
int getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
|
|
const Instruction *I) override {
|
|
return Impl.getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
|
|
}
|
|
int getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) override {
|
|
return Impl.getVectorInstrCost(Opcode, Val, Index);
|
|
}
|
|
int getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
|
|
unsigned AddressSpace, const Instruction *I) override {
|
|
return Impl.getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, I);
|
|
}
|
|
int getMaskedMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
|
|
unsigned AddressSpace) override {
|
|
return Impl.getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
|
|
}
|
|
int getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
|
|
Value *Ptr, bool VariableMask,
|
|
unsigned Alignment) override {
|
|
return Impl.getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
|
|
Alignment);
|
|
}
|
|
int getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor,
|
|
ArrayRef<unsigned> Indices, unsigned Alignment,
|
|
unsigned AddressSpace) override {
|
|
return Impl.getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
|
|
Alignment, AddressSpace);
|
|
}
|
|
int getArithmeticReductionCost(unsigned Opcode, Type *Ty,
|
|
bool IsPairwiseForm) override {
|
|
return Impl.getArithmeticReductionCost(Opcode, Ty, IsPairwiseForm);
|
|
}
|
|
int getMinMaxReductionCost(Type *Ty, Type *CondTy,
|
|
bool IsPairwiseForm, bool IsUnsigned) override {
|
|
return Impl.getMinMaxReductionCost(Ty, CondTy, IsPairwiseForm, IsUnsigned);
|
|
}
|
|
int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, ArrayRef<Type *> Tys,
|
|
FastMathFlags FMF, unsigned ScalarizationCostPassed) override {
|
|
return Impl.getIntrinsicInstrCost(ID, RetTy, Tys, FMF,
|
|
ScalarizationCostPassed);
|
|
}
|
|
int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
|
|
ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) override {
|
|
return Impl.getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF);
|
|
}
|
|
int getCallInstrCost(Function *F, Type *RetTy,
|
|
ArrayRef<Type *> Tys) override {
|
|
return Impl.getCallInstrCost(F, RetTy, Tys);
|
|
}
|
|
unsigned getNumberOfParts(Type *Tp) override {
|
|
return Impl.getNumberOfParts(Tp);
|
|
}
|
|
int getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
|
|
const SCEV *Ptr) override {
|
|
return Impl.getAddressComputationCost(Ty, SE, Ptr);
|
|
}
|
|
unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) override {
|
|
return Impl.getCostOfKeepingLiveOverCall(Tys);
|
|
}
|
|
bool getTgtMemIntrinsic(IntrinsicInst *Inst,
|
|
MemIntrinsicInfo &Info) override {
|
|
return Impl.getTgtMemIntrinsic(Inst, Info);
|
|
}
|
|
unsigned getAtomicMemIntrinsicMaxElementSize() const override {
|
|
return Impl.getAtomicMemIntrinsicMaxElementSize();
|
|
}
|
|
Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
|
|
Type *ExpectedType) override {
|
|
return Impl.getOrCreateResultFromMemIntrinsic(Inst, ExpectedType);
|
|
}
|
|
Type *getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length,
|
|
unsigned SrcAlign,
|
|
unsigned DestAlign) const override {
|
|
return Impl.getMemcpyLoopLoweringType(Context, Length, SrcAlign, DestAlign);
|
|
}
|
|
void getMemcpyLoopResidualLoweringType(SmallVectorImpl<Type *> &OpsOut,
|
|
LLVMContext &Context,
|
|
unsigned RemainingBytes,
|
|
unsigned SrcAlign,
|
|
unsigned DestAlign) const override {
|
|
Impl.getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes,
|
|
SrcAlign, DestAlign);
|
|
}
|
|
bool areInlineCompatible(const Function *Caller,
|
|
const Function *Callee) const override {
|
|
return Impl.areInlineCompatible(Caller, Callee);
|
|
}
|
|
unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const override {
|
|
return Impl.getLoadStoreVecRegBitWidth(AddrSpace);
|
|
}
|
|
bool isLegalToVectorizeLoad(LoadInst *LI) const override {
|
|
return Impl.isLegalToVectorizeLoad(LI);
|
|
}
|
|
bool isLegalToVectorizeStore(StoreInst *SI) const override {
|
|
return Impl.isLegalToVectorizeStore(SI);
|
|
}
|
|
bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
|
|
unsigned Alignment,
|
|
unsigned AddrSpace) const override {
|
|
return Impl.isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment,
|
|
AddrSpace);
|
|
}
|
|
bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
|
|
unsigned Alignment,
|
|
unsigned AddrSpace) const override {
|
|
return Impl.isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment,
|
|
AddrSpace);
|
|
}
|
|
unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
|
|
unsigned ChainSizeInBytes,
|
|
VectorType *VecTy) const override {
|
|
return Impl.getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy);
|
|
}
|
|
unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
|
|
unsigned ChainSizeInBytes,
|
|
VectorType *VecTy) const override {
|
|
return Impl.getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy);
|
|
}
|
|
bool useReductionIntrinsic(unsigned Opcode, Type *Ty,
|
|
ReductionFlags Flags) const override {
|
|
return Impl.useReductionIntrinsic(Opcode, Ty, Flags);
|
|
}
|
|
bool shouldExpandReduction(const IntrinsicInst *II) const override {
|
|
return Impl.shouldExpandReduction(II);
|
|
}
|
|
int getInstructionLatency(const Instruction *I) override {
|
|
return Impl.getInstructionLatency(I);
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
TargetTransformInfo::TargetTransformInfo(T Impl)
|
|
: TTIImpl(new Model<T>(Impl)) {}
|
|
|
|
/// \brief Analysis pass providing the \c TargetTransformInfo.
|
|
///
|
|
/// The core idea of the TargetIRAnalysis is to expose an interface through
|
|
/// which LLVM targets can analyze and provide information about the middle
|
|
/// end's target-independent IR. This supports use cases such as target-aware
|
|
/// cost modeling of IR constructs.
|
|
///
|
|
/// This is a function analysis because much of the cost modeling for targets
|
|
/// is done in a subtarget specific way and LLVM supports compiling different
|
|
/// functions targeting different subtargets in order to support runtime
|
|
/// dispatch according to the observed subtarget.
|
|
class TargetIRAnalysis : public AnalysisInfoMixin<TargetIRAnalysis> {
|
|
public:
|
|
typedef TargetTransformInfo Result;
|
|
|
|
/// \brief Default construct a target IR analysis.
|
|
///
|
|
/// This will use the module's datalayout to construct a baseline
|
|
/// conservative TTI result.
|
|
TargetIRAnalysis();
|
|
|
|
/// \brief Construct an IR analysis pass around a target-provide callback.
|
|
///
|
|
/// The callback will be called with a particular function for which the TTI
|
|
/// is needed and must return a TTI object for that function.
|
|
TargetIRAnalysis(std::function<Result(const Function &)> TTICallback);
|
|
|
|
// Value semantics. We spell out the constructors for MSVC.
|
|
TargetIRAnalysis(const TargetIRAnalysis &Arg)
|
|
: TTICallback(Arg.TTICallback) {}
|
|
TargetIRAnalysis(TargetIRAnalysis &&Arg)
|
|
: TTICallback(std::move(Arg.TTICallback)) {}
|
|
TargetIRAnalysis &operator=(const TargetIRAnalysis &RHS) {
|
|
TTICallback = RHS.TTICallback;
|
|
return *this;
|
|
}
|
|
TargetIRAnalysis &operator=(TargetIRAnalysis &&RHS) {
|
|
TTICallback = std::move(RHS.TTICallback);
|
|
return *this;
|
|
}
|
|
|
|
Result run(const Function &F, FunctionAnalysisManager &);
|
|
|
|
private:
|
|
friend AnalysisInfoMixin<TargetIRAnalysis>;
|
|
static AnalysisKey Key;
|
|
|
|
/// \brief The callback used to produce a result.
|
|
///
|
|
/// We use a completely opaque callback so that targets can provide whatever
|
|
/// mechanism they desire for constructing the TTI for a given function.
|
|
///
|
|
/// FIXME: Should we really use std::function? It's relatively inefficient.
|
|
/// It might be possible to arrange for even stateful callbacks to outlive
|
|
/// the analysis and thus use a function_ref which would be lighter weight.
|
|
/// This may also be less error prone as the callback is likely to reference
|
|
/// the external TargetMachine, and that reference needs to never dangle.
|
|
std::function<Result(const Function &)> TTICallback;
|
|
|
|
/// \brief Helper function used as the callback in the default constructor.
|
|
static Result getDefaultTTI(const Function &F);
|
|
};
|
|
|
|
/// \brief Wrapper pass for TargetTransformInfo.
|
|
///
|
|
/// This pass can be constructed from a TTI object which it stores internally
|
|
/// and is queried by passes.
|
|
class TargetTransformInfoWrapperPass : public ImmutablePass {
|
|
TargetIRAnalysis TIRA;
|
|
Optional<TargetTransformInfo> TTI;
|
|
|
|
virtual void anchor();
|
|
|
|
public:
|
|
static char ID;
|
|
|
|
/// \brief We must provide a default constructor for the pass but it should
|
|
/// never be used.
|
|
///
|
|
/// Use the constructor below or call one of the creation routines.
|
|
TargetTransformInfoWrapperPass();
|
|
|
|
explicit TargetTransformInfoWrapperPass(TargetIRAnalysis TIRA);
|
|
|
|
TargetTransformInfo &getTTI(const Function &F);
|
|
};
|
|
|
|
/// \brief Create an analysis pass wrapper around a TTI object.
|
|
///
|
|
/// This analysis pass just holds the TTI instance and makes it available to
|
|
/// clients.
|
|
ImmutablePass *createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA);
|
|
|
|
} // End llvm namespace
|
|
|
|
#endif
|