1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-19 02:52:53 +02:00
llvm-mirror/lib/MC/SubtargetFeature.cpp
Chandler Carruth eb66b33867 Sort the remaining #include lines in include/... and lib/....
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.

I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.

This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.

Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).

llvm-svn: 304787
2017-06-06 11:49:48 +00:00

280 lines
8.8 KiB
C++

//===- SubtargetFeature.cpp - CPU characteristics Implementation ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file Implements the SubtargetFeature interface.
//
//===----------------------------------------------------------------------===//
#include "llvm/MC/SubtargetFeature.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstring>
#include <iterator>
#include <string>
#include <vector>
using namespace llvm;
/// Determine if a feature has a flag; '+' or '-'
static inline bool hasFlag(StringRef Feature) {
assert(!Feature.empty() && "Empty string");
// Get first character
char Ch = Feature[0];
// Check if first character is '+' or '-' flag
return Ch == '+' || Ch =='-';
}
/// Return string stripped of flag.
static inline std::string StripFlag(StringRef Feature) {
return hasFlag(Feature) ? Feature.substr(1) : Feature;
}
/// Return true if enable flag; '+'.
static inline bool isEnabled(StringRef Feature) {
assert(!Feature.empty() && "Empty string");
// Get first character
char Ch = Feature[0];
// Check if first character is '+' for enabled
return Ch == '+';
}
/// Splits a string of comma separated items in to a vector of strings.
static void Split(std::vector<std::string> &V, StringRef S) {
SmallVector<StringRef, 3> Tmp;
S.split(Tmp, ',', -1, false /* KeepEmpty */);
V.assign(Tmp.begin(), Tmp.end());
}
void SubtargetFeatures::AddFeature(StringRef String, bool Enable) {
// Don't add empty features.
if (!String.empty())
// Convert to lowercase, prepend flag if we don't already have a flag.
Features.push_back(hasFlag(String) ? String.lower()
: (Enable ? "+" : "-") + String.lower());
}
/// Find KV in array using binary search.
static const SubtargetFeatureKV *Find(StringRef S,
ArrayRef<SubtargetFeatureKV> A) {
// Binary search the array
auto F = std::lower_bound(A.begin(), A.end(), S);
// If not found then return NULL
if (F == A.end() || StringRef(F->Key) != S) return nullptr;
// Return the found array item
return F;
}
/// Return the length of the longest entry in the table.
static size_t getLongestEntryLength(ArrayRef<SubtargetFeatureKV> Table) {
size_t MaxLen = 0;
for (auto &I : Table)
MaxLen = std::max(MaxLen, std::strlen(I.Key));
return MaxLen;
}
/// Display help for feature choices.
static void Help(ArrayRef<SubtargetFeatureKV> CPUTable,
ArrayRef<SubtargetFeatureKV> FeatTable) {
// Determine the length of the longest CPU and Feature entries.
unsigned MaxCPULen = getLongestEntryLength(CPUTable);
unsigned MaxFeatLen = getLongestEntryLength(FeatTable);
// Print the CPU table.
errs() << "Available CPUs for this target:\n\n";
for (auto &CPU : CPUTable)
errs() << format(" %-*s - %s.\n", MaxCPULen, CPU.Key, CPU.Desc);
errs() << '\n';
// Print the Feature table.
errs() << "Available features for this target:\n\n";
for (auto &Feature : FeatTable)
errs() << format(" %-*s - %s.\n", MaxFeatLen, Feature.Key, Feature.Desc);
errs() << '\n';
errs() << "Use +feature to enable a feature, or -feature to disable it.\n"
"For example, llc -mcpu=mycpu -mattr=+feature1,-feature2\n";
}
SubtargetFeatures::SubtargetFeatures(StringRef Initial) {
// Break up string into separate features
Split(Features, Initial);
}
std::string SubtargetFeatures::getString() const {
return join(Features.begin(), Features.end(), ",");
}
/// For each feature that is (transitively) implied by this feature, set it.
static
void SetImpliedBits(FeatureBitset &Bits, const SubtargetFeatureKV &FeatureEntry,
ArrayRef<SubtargetFeatureKV> FeatureTable) {
for (const SubtargetFeatureKV &FE : FeatureTable) {
if (FeatureEntry.Value == FE.Value) continue;
if ((FeatureEntry.Implies & FE.Value).any()) {
Bits |= FE.Value;
SetImpliedBits(Bits, FE, FeatureTable);
}
}
}
/// For each feature that (transitively) implies this feature, clear it.
static
void ClearImpliedBits(FeatureBitset &Bits,
const SubtargetFeatureKV &FeatureEntry,
ArrayRef<SubtargetFeatureKV> FeatureTable) {
for (const SubtargetFeatureKV &FE : FeatureTable) {
if (FeatureEntry.Value == FE.Value) continue;
if ((FE.Implies & FeatureEntry.Value).any()) {
Bits &= ~FE.Value;
ClearImpliedBits(Bits, FE, FeatureTable);
}
}
}
void
SubtargetFeatures::ToggleFeature(FeatureBitset &Bits, StringRef Feature,
ArrayRef<SubtargetFeatureKV> FeatureTable) {
// Find feature in table.
const SubtargetFeatureKV *FeatureEntry =
Find(StripFlag(Feature), FeatureTable);
// If there is a match
if (FeatureEntry) {
if ((Bits & FeatureEntry->Value) == FeatureEntry->Value) {
Bits &= ~FeatureEntry->Value;
// For each feature that implies this, clear it.
ClearImpliedBits(Bits, *FeatureEntry, FeatureTable);
} else {
Bits |= FeatureEntry->Value;
// For each feature that this implies, set it.
SetImpliedBits(Bits, *FeatureEntry, FeatureTable);
}
} else {
errs() << "'" << Feature << "' is not a recognized feature for this target"
<< " (ignoring feature)\n";
}
}
void SubtargetFeatures::ApplyFeatureFlag(FeatureBitset &Bits, StringRef Feature,
ArrayRef<SubtargetFeatureKV> FeatureTable) {
assert(hasFlag(Feature));
// Find feature in table.
const SubtargetFeatureKV *FeatureEntry =
Find(StripFlag(Feature), FeatureTable);
// If there is a match
if (FeatureEntry) {
// Enable/disable feature in bits
if (isEnabled(Feature)) {
Bits |= FeatureEntry->Value;
// For each feature that this implies, set it.
SetImpliedBits(Bits, *FeatureEntry, FeatureTable);
} else {
Bits &= ~FeatureEntry->Value;
// For each feature that implies this, clear it.
ClearImpliedBits(Bits, *FeatureEntry, FeatureTable);
}
} else {
errs() << "'" << Feature << "' is not a recognized feature for this target"
<< " (ignoring feature)\n";
}
}
FeatureBitset
SubtargetFeatures::getFeatureBits(StringRef CPU,
ArrayRef<SubtargetFeatureKV> CPUTable,
ArrayRef<SubtargetFeatureKV> FeatureTable) {
if (CPUTable.empty() || FeatureTable.empty())
return FeatureBitset();
assert(std::is_sorted(std::begin(CPUTable), std::end(CPUTable)) &&
"CPU table is not sorted");
assert(std::is_sorted(std::begin(FeatureTable), std::end(FeatureTable)) &&
"CPU features table is not sorted");
// Resulting bits
FeatureBitset Bits;
// Check if help is needed
if (CPU == "help")
Help(CPUTable, FeatureTable);
// Find CPU entry if CPU name is specified.
else if (!CPU.empty()) {
const SubtargetFeatureKV *CPUEntry = Find(CPU, CPUTable);
// If there is a match
if (CPUEntry) {
// Set base feature bits
Bits = CPUEntry->Value;
// Set the feature implied by this CPU feature, if any.
for (auto &FE : FeatureTable) {
if ((CPUEntry->Value & FE.Value).any())
SetImpliedBits(Bits, FE, FeatureTable);
}
} else {
errs() << "'" << CPU << "' is not a recognized processor for this target"
<< " (ignoring processor)\n";
}
}
// Iterate through each feature
for (const std::string &Feature : Features) {
// Check for help
if (Feature == "+help")
Help(CPUTable, FeatureTable);
ApplyFeatureFlag(Bits, Feature, FeatureTable);
}
return Bits;
}
void SubtargetFeatures::print(raw_ostream &OS) const {
for (auto &F : Features)
OS << F << " ";
OS << "\n";
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void SubtargetFeatures::dump() const {
print(dbgs());
}
#endif
void SubtargetFeatures::getDefaultSubtargetFeatures(const Triple& Triple) {
// FIXME: This is an inelegant way of specifying the features of a
// subtarget. It would be better if we could encode this information
// into the IR. See <rdar://5972456>.
if (Triple.getVendor() == Triple::Apple) {
if (Triple.getArch() == Triple::ppc) {
// powerpc-apple-*
AddFeature("altivec");
} else if (Triple.getArch() == Triple::ppc64) {
// powerpc64-apple-*
AddFeature("64bit");
AddFeature("altivec");
}
}
}