1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-26 04:32:44 +01:00
llvm-mirror/lib/Target/SystemZ/SystemZInstrHFP.td
Chandler Carruth ae65e281f3 Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

llvm-svn: 351636
2019-01-19 08:50:56 +00:00

240 lines
9.5 KiB
TableGen

//==- SystemZInstrHFP.td - Floating-point SystemZ instructions -*- tblgen-*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// The instructions in this file implement SystemZ hexadecimal floating-point
// arithmetic. Since this format is not mapped to any source-language data
// type, these instructions are not used for code generation, but are provided
// for use with the assembler and disassembler only.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Move instructions
//===----------------------------------------------------------------------===//
// Load and test.
let Defs = [CC] in {
def LTER : UnaryRR <"lter", 0x32, null_frag, FP32, FP32>;
def LTDR : UnaryRR <"ltdr", 0x22, null_frag, FP64, FP64>;
def LTXR : UnaryRRE<"ltxr", 0xB362, null_frag, FP128, FP128>;
}
//===----------------------------------------------------------------------===//
// Conversion instructions
//===----------------------------------------------------------------------===//
// Convert floating-point values to narrower representations.
def LEDR : UnaryRR <"ledr", 0x35, null_frag, FP32, FP64>;
def LEXR : UnaryRRE<"lexr", 0xB366, null_frag, FP32, FP128>;
def LDXR : UnaryRR <"ldxr", 0x25, null_frag, FP64, FP128>;
let isAsmParserOnly = 1 in {
def LRER : UnaryRR <"lrer", 0x35, null_frag, FP32, FP64>;
def LRDR : UnaryRR <"lrdr", 0x25, null_frag, FP64, FP128>;
}
// Extend floating-point values to wider representations.
def LDER : UnaryRRE<"lder", 0xB324, null_frag, FP64, FP32>;
def LXER : UnaryRRE<"lxer", 0xB326, null_frag, FP128, FP32>;
def LXDR : UnaryRRE<"lxdr", 0xB325, null_frag, FP128, FP64>;
def LDE : UnaryRXE<"lde", 0xED24, null_frag, FP64, 4>;
def LXE : UnaryRXE<"lxe", 0xED26, null_frag, FP128, 4>;
def LXD : UnaryRXE<"lxd", 0xED25, null_frag, FP128, 8>;
// Convert a signed integer register value to a floating-point one.
def CEFR : UnaryRRE<"cefr", 0xB3B4, null_frag, FP32, GR32>;
def CDFR : UnaryRRE<"cdfr", 0xB3B5, null_frag, FP64, GR32>;
def CXFR : UnaryRRE<"cxfr", 0xB3B6, null_frag, FP128, GR32>;
def CEGR : UnaryRRE<"cegr", 0xB3C4, null_frag, FP32, GR64>;
def CDGR : UnaryRRE<"cdgr", 0xB3C5, null_frag, FP64, GR64>;
def CXGR : UnaryRRE<"cxgr", 0xB3C6, null_frag, FP128, GR64>;
// Convert a floating-point register value to a signed integer value,
// with the second operand (modifier M3) specifying the rounding mode.
let Defs = [CC] in {
def CFER : BinaryRRFe<"cfer", 0xB3B8, GR32, FP32>;
def CFDR : BinaryRRFe<"cfdr", 0xB3B9, GR32, FP64>;
def CFXR : BinaryRRFe<"cfxr", 0xB3BA, GR32, FP128>;
def CGER : BinaryRRFe<"cger", 0xB3C8, GR64, FP32>;
def CGDR : BinaryRRFe<"cgdr", 0xB3C9, GR64, FP64>;
def CGXR : BinaryRRFe<"cgxr", 0xB3CA, GR64, FP128>;
}
// Convert BFP to HFP.
let Defs = [CC] in {
def THDER : UnaryRRE<"thder", 0xB358, null_frag, FP64, FP32>;
def THDR : UnaryRRE<"thdr", 0xB359, null_frag, FP64, FP64>;
}
// Convert HFP to BFP.
let Defs = [CC] in {
def TBEDR : BinaryRRFe<"tbedr", 0xB350, FP32, FP64>;
def TBDR : BinaryRRFe<"tbdr", 0xB351, FP64, FP64>;
}
//===----------------------------------------------------------------------===//
// Unary arithmetic
//===----------------------------------------------------------------------===//
// Negation (Load Complement).
let Defs = [CC] in {
def LCER : UnaryRR <"lcer", 0x33, null_frag, FP32, FP32>;
def LCDR : UnaryRR <"lcdr", 0x23, null_frag, FP64, FP64>;
def LCXR : UnaryRRE<"lcxr", 0xB363, null_frag, FP128, FP128>;
}
// Absolute value (Load Positive).
let Defs = [CC] in {
def LPER : UnaryRR <"lper", 0x30, null_frag, FP32, FP32>;
def LPDR : UnaryRR <"lpdr", 0x20, null_frag, FP64, FP64>;
def LPXR : UnaryRRE<"lpxr", 0xB360, null_frag, FP128, FP128>;
}
// Negative absolute value (Load Negative).
let Defs = [CC] in {
def LNER : UnaryRR <"lner", 0x31, null_frag, FP32, FP32>;
def LNDR : UnaryRR <"lndr", 0x21, null_frag, FP64, FP64>;
def LNXR : UnaryRRE<"lnxr", 0xB361, null_frag, FP128, FP128>;
}
// Halve.
def HER : UnaryRR <"her", 0x34, null_frag, FP32, FP32>;
def HDR : UnaryRR <"hdr", 0x24, null_frag, FP64, FP64>;
// Square root.
def SQER : UnaryRRE<"sqer", 0xB245, null_frag, FP32, FP32>;
def SQDR : UnaryRRE<"sqdr", 0xB244, null_frag, FP64, FP64>;
def SQXR : UnaryRRE<"sqxr", 0xB336, null_frag, FP128, FP128>;
def SQE : UnaryRXE<"sqe", 0xED34, null_frag, FP32, 4>;
def SQD : UnaryRXE<"sqd", 0xED35, null_frag, FP64, 8>;
// Round to an integer (rounding towards zero).
def FIER : UnaryRRE<"fier", 0xB377, null_frag, FP32, FP32>;
def FIDR : UnaryRRE<"fidr", 0xB37F, null_frag, FP64, FP64>;
def FIXR : UnaryRRE<"fixr", 0xB367, null_frag, FP128, FP128>;
//===----------------------------------------------------------------------===//
// Binary arithmetic
//===----------------------------------------------------------------------===//
// Addition.
let Defs = [CC] in {
let isCommutable = 1 in {
def AER : BinaryRR<"aer", 0x3A, null_frag, FP32, FP32>;
def ADR : BinaryRR<"adr", 0x2A, null_frag, FP64, FP64>;
def AXR : BinaryRR<"axr", 0x36, null_frag, FP128, FP128>;
}
def AE : BinaryRX<"ae", 0x7A, null_frag, FP32, load, 4>;
def AD : BinaryRX<"ad", 0x6A, null_frag, FP64, load, 8>;
}
// Addition (unnormalized).
let Defs = [CC] in {
let isCommutable = 1 in {
def AUR : BinaryRR<"aur", 0x3E, null_frag, FP32, FP32>;
def AWR : BinaryRR<"awr", 0x2E, null_frag, FP64, FP64>;
}
def AU : BinaryRX<"au", 0x7E, null_frag, FP32, load, 4>;
def AW : BinaryRX<"aw", 0x6E, null_frag, FP64, load, 8>;
}
// Subtraction.
let Defs = [CC] in {
def SER : BinaryRR<"ser", 0x3B, null_frag, FP32, FP32>;
def SDR : BinaryRR<"sdr", 0x2B, null_frag, FP64, FP64>;
def SXR : BinaryRR<"sxr", 0x37, null_frag, FP128, FP128>;
def SE : BinaryRX<"se", 0x7B, null_frag, FP32, load, 4>;
def SD : BinaryRX<"sd", 0x6B, null_frag, FP64, load, 8>;
}
// Subtraction (unnormalized).
let Defs = [CC] in {
def SUR : BinaryRR<"sur", 0x3F, null_frag, FP32, FP32>;
def SWR : BinaryRR<"swr", 0x2F, null_frag, FP64, FP64>;
def SU : BinaryRX<"su", 0x7F, null_frag, FP32, load, 4>;
def SW : BinaryRX<"sw", 0x6F, null_frag, FP64, load, 8>;
}
// Multiplication.
let isCommutable = 1 in {
def MEER : BinaryRRE<"meer", 0xB337, null_frag, FP32, FP32>;
def MDR : BinaryRR <"mdr", 0x2C, null_frag, FP64, FP64>;
def MXR : BinaryRR <"mxr", 0x26, null_frag, FP128, FP128>;
}
def MEE : BinaryRXE<"mee", 0xED37, null_frag, FP32, load, 4>;
def MD : BinaryRX <"md", 0x6C, null_frag, FP64, load, 8>;
// Extending multiplication (f32 x f32 -> f64).
def MDER : BinaryRR<"mder", 0x3C, null_frag, FP64, FP32>;
def MDE : BinaryRX<"mde", 0x7C, null_frag, FP64, load, 4>;
let isAsmParserOnly = 1 in {
def MER : BinaryRR<"mer", 0x3C, null_frag, FP64, FP32>;
def ME : BinaryRX<"me", 0x7C, null_frag, FP64, load, 4>;
}
// Extending multiplication (f64 x f64 -> f128).
def MXDR : BinaryRR<"mxdr", 0x27, null_frag, FP128, FP64>;
def MXD : BinaryRX<"mxd", 0x67, null_frag, FP128, load, 8>;
// Fused multiply-add.
def MAER : TernaryRRD<"maer", 0xB32E, null_frag, FP32, FP32>;
def MADR : TernaryRRD<"madr", 0xB33E, null_frag, FP64, FP64>;
def MAE : TernaryRXF<"mae", 0xED2E, null_frag, FP32, FP32, load, 4>;
def MAD : TernaryRXF<"mad", 0xED3E, null_frag, FP64, FP64, load, 8>;
// Fused multiply-subtract.
def MSER : TernaryRRD<"mser", 0xB32F, null_frag, FP32, FP32>;
def MSDR : TernaryRRD<"msdr", 0xB33F, null_frag, FP64, FP64>;
def MSE : TernaryRXF<"mse", 0xED2F, null_frag, FP32, FP32, load, 4>;
def MSD : TernaryRXF<"msd", 0xED3F, null_frag, FP64, FP64, load, 8>;
// Multiplication (unnormalized).
def MYR : BinaryRRD<"myr", 0xB33B, null_frag, FP128, FP64>;
def MYHR : BinaryRRD<"myhr", 0xB33D, null_frag, FP64, FP64>;
def MYLR : BinaryRRD<"mylr", 0xB339, null_frag, FP64, FP64>;
def MY : BinaryRXF<"my", 0xED3B, null_frag, FP128, FP64, load, 8>;
def MYH : BinaryRXF<"myh", 0xED3D, null_frag, FP64, FP64, load, 8>;
def MYL : BinaryRXF<"myl", 0xED39, null_frag, FP64, FP64, load, 8>;
// Fused multiply-add (unnormalized).
def MAYR : TernaryRRD<"mayr", 0xB33A, null_frag, FP128, FP64>;
def MAYHR : TernaryRRD<"mayhr", 0xB33C, null_frag, FP64, FP64>;
def MAYLR : TernaryRRD<"maylr", 0xB338, null_frag, FP64, FP64>;
def MAY : TernaryRXF<"may", 0xED3A, null_frag, FP128, FP64, load, 8>;
def MAYH : TernaryRXF<"mayh", 0xED3C, null_frag, FP64, FP64, load, 8>;
def MAYL : TernaryRXF<"mayl", 0xED38, null_frag, FP64, FP64, load, 8>;
// Division.
def DER : BinaryRR <"der", 0x3D, null_frag, FP32, FP32>;
def DDR : BinaryRR <"ddr", 0x2D, null_frag, FP64, FP64>;
def DXR : BinaryRRE<"dxr", 0xB22D, null_frag, FP128, FP128>;
def DE : BinaryRX <"de", 0x7D, null_frag, FP32, load, 4>;
def DD : BinaryRX <"dd", 0x6D, null_frag, FP64, load, 8>;
//===----------------------------------------------------------------------===//
// Comparisons
//===----------------------------------------------------------------------===//
let Defs = [CC] in {
def CER : CompareRR <"cer", 0x39, null_frag, FP32, FP32>;
def CDR : CompareRR <"cdr", 0x29, null_frag, FP64, FP64>;
def CXR : CompareRRE<"cxr", 0xB369, null_frag, FP128, FP128>;
def CE : CompareRX<"ce", 0x79, null_frag, FP32, load, 4>;
def CD : CompareRX<"cd", 0x69, null_frag, FP64, load, 8>;
}