1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 10:42:39 +01:00
llvm-mirror/lib/Target/X86/X86ScheduleBtVer2.td
Harald van Dijk f675df37ba [X86] Fix handling of maskmovdqu in X32
The maskmovdqu instruction is an odd one: it has a 32-bit and a 64-bit
variant, the former using EDI, the latter RDI, but the use of the
register is implicit. In 64-bit mode, a 0x67 prefix can be used to get
the version using EDI, but there is no way to express this in
assembly in a single instruction, the only way is with an explicit
addr32.

This change adds support for the instruction. When generating assembly
text, that explicit addr32 will be added. When not generating assembly
text, it will be kept as a single instruction and will be emitted with
that 0x67 prefix. When parsing assembly text, it will be re-parsed as
ADDR32 followed by MASKMOVDQU64, which still results in the correct
bytes when converted to machine code.

The same applies to vmaskmovdqu as well.

Reviewed By: craig.topper

Differential Revision: https://reviews.llvm.org/D103427
2021-07-15 22:56:08 +01:00

1052 lines
47 KiB
TableGen

//=- X86ScheduleBtVer2.td - X86 BtVer2 (Jaguar) Scheduling ---*- tablegen -*-=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the machine model for AMD btver2 (Jaguar) to support
// instruction scheduling and other instruction cost heuristics. Based off AMD Software
// Optimization Guide for AMD Family 16h Processors & Instruction Latency appendix.
//
//===----------------------------------------------------------------------===//
def BtVer2Model : SchedMachineModel {
// All x86 instructions are modeled as a single micro-op, and btver2 can
// decode 2 instructions per cycle.
let IssueWidth = 2;
let MicroOpBufferSize = 64; // Retire Control Unit
let LoadLatency = 5; // FPU latency (worse case cf Integer 3 cycle latency)
let HighLatency = 25;
let MispredictPenalty = 14; // Minimum branch misdirection penalty
let PostRAScheduler = 1;
// FIXME: SSE4/AVX is unimplemented. This flag is set to allow
// the scheduler to assign a default model to unrecognized opcodes.
let CompleteModel = 0;
}
let SchedModel = BtVer2Model in {
// Jaguar can issue up to 6 micro-ops in one cycle
def JALU0 : ProcResource<1>; // Integer Pipe0: integer ALU0 (also handle FP->INT jam)
def JALU1 : ProcResource<1>; // Integer Pipe1: integer ALU1/MUL/DIV
def JLAGU : ProcResource<1>; // Integer Pipe2: LAGU
def JSAGU : ProcResource<1>; // Integer Pipe3: SAGU (also handles 3-operand LEA)
def JFPU0 : ProcResource<1>; // Vector/FPU Pipe0: VALU0/VIMUL/FPA
def JFPU1 : ProcResource<1>; // Vector/FPU Pipe1: VALU1/STC/FPM
// The Integer PRF for Jaguar is 64 entries, and it holds the architectural and
// speculative version of the 64-bit integer registers.
// Reference: www.realworldtech.com/jaguar/4/
//
// The processor always keeps the different parts of an integer register
// together. An instruction that writes to a part of a register will therefore
// have a false dependence on any previous write to the same register or any
// part of it.
// Reference: Section 21.10 "AMD Bobcat and Jaguar pipeline: Partial register
// access" - Agner Fog's "microarchitecture.pdf".
def JIntegerPRF : RegisterFile<64, [GR64, CCR], [1, 1], [1, 0],
0, // Max moves that can be eliminated per cycle.
1>; // Restrict move elimination to zero regs.
// The Jaguar FP Retire Queue renames SIMD and FP uOps onto a pool of 72 SSE
// registers. Operations on 256-bit data types are cracked into two COPs.
// Reference: www.realworldtech.com/jaguar/4/
// The PRF in the floating point unit can eliminate a move from a MMX or SSE
// register that is know to be zero (i.e. it has been zeroed using a zero-idiom
// dependency breaking instruction, or via VZEROALL).
// Reference: Section 21.8 "AMD Bobcat and Jaguar pipeline: Dependency-breaking
// instructions" - Agner Fog's "microarchitecture.pdf"
def JFpuPRF: RegisterFile<72, [VR64, VR128, VR256], [1, 1, 2], [1, 1, 0],
0, // Max moves that can be eliminated per cycle.
1>; // Restrict move elimination to zero regs.
// The retire control unit (RCU) can track up to 64 macro-ops in-flight. It can
// retire up to two macro-ops per cycle.
// Reference: "Software Optimization Guide for AMD Family 16h Processors"
def JRCU : RetireControlUnit<64, 2>;
// Integer Pipe Scheduler
def JALU01 : ProcResGroup<[JALU0, JALU1]> {
let BufferSize=20;
}
// AGU Pipe Scheduler
def JLSAGU : ProcResGroup<[JLAGU, JSAGU]> {
let BufferSize=12;
}
// Fpu Pipe Scheduler
def JFPU01 : ProcResGroup<[JFPU0, JFPU1]> {
let BufferSize=18;
}
// Functional units
def JDiv : ProcResource<1>; // integer division
def JMul : ProcResource<1>; // integer multiplication
def JVALU0 : ProcResource<1>; // vector integer
def JVALU1 : ProcResource<1>; // vector integer
def JVIMUL : ProcResource<1>; // vector integer multiplication
def JSTC : ProcResource<1>; // vector store/convert
def JFPM : ProcResource<1>; // FP multiplication
def JFPA : ProcResource<1>; // FP addition
// Functional unit groups
def JFPX : ProcResGroup<[JFPA, JFPM]>;
def JVALU : ProcResGroup<[JVALU0, JVALU1]>;
// Integer loads are 3 cycles, so ReadAfterLd registers needn't be available until 3
// cycles after the memory operand.
def : ReadAdvance<ReadAfterLd, 3>;
// Vector loads are 5 cycles, so ReadAfterVec*Ld registers needn't be available until 5
// cycles after the memory operand.
def : ReadAdvance<ReadAfterVecLd, 5>;
def : ReadAdvance<ReadAfterVecXLd, 5>;
def : ReadAdvance<ReadAfterVecYLd, 5>;
/// "Additional 6 cycle transfer operation which moves a floating point
/// operation input value from the integer unit to the floating point unit.
/// Reference: AMDfam16h SOG (Appendix A "Instruction Latencies", Section A.2).
def : ReadAdvance<ReadInt2Fpu, -6>;
// Many SchedWrites are defined in pairs with and without a folded load.
// Instructions with folded loads are usually micro-fused, so they only appear
// as two micro-ops when dispatched by the schedulers.
// This multiclass defines the resource usage for variants with and without
// folded loads.
multiclass JWriteResIntPair<X86FoldableSchedWrite SchedRW,
list<ProcResourceKind> ExePorts,
int Lat, list<int> Res = [], int UOps = 1,
int LoadUOps = 0> {
// Register variant is using a single cycle on ExePort.
def : WriteRes<SchedRW, ExePorts> {
let Latency = Lat;
let ResourceCycles = Res;
let NumMicroOps = UOps;
}
// Memory variant also uses a cycle on JLAGU and adds 3 cycles to the
// latency.
def : WriteRes<SchedRW.Folded, !listconcat([JLAGU], ExePorts)> {
let Latency = !add(Lat, 3);
let ResourceCycles = !if(!empty(Res), [], !listconcat([1], Res));
let NumMicroOps = !add(UOps, LoadUOps);
}
}
multiclass JWriteResFpuPair<X86FoldableSchedWrite SchedRW,
list<ProcResourceKind> ExePorts,
int Lat, list<int> Res = [], int UOps = 1,
int LoadUOps = 0> {
// Register variant is using a single cycle on ExePort.
def : WriteRes<SchedRW, ExePorts> {
let Latency = Lat;
let ResourceCycles = Res;
let NumMicroOps = UOps;
}
// Memory variant also uses a cycle on JLAGU and adds 5 cycles to the
// latency.
def : WriteRes<SchedRW.Folded, !listconcat([JLAGU], ExePorts)> {
let Latency = !add(Lat, 5);
let ResourceCycles = !if(!empty(Res), [], !listconcat([1], Res));
let NumMicroOps = !add(UOps, LoadUOps);
}
}
multiclass JWriteResYMMPair<X86FoldableSchedWrite SchedRW,
list<ProcResourceKind> ExePorts,
int Lat, list<int> Res = [2], int UOps = 2,
int LoadUOps = 0> {
// Register variant is using a single cycle on ExePort.
def : WriteRes<SchedRW, ExePorts> {
let Latency = Lat;
let ResourceCycles = Res;
let NumMicroOps = UOps;
}
// Memory variant also uses 2 cycles on JLAGU and adds 5 cycles to the
// latency.
def : WriteRes<SchedRW.Folded, !listconcat([JLAGU], ExePorts)> {
let Latency = !add(Lat, 5);
let ResourceCycles = !listconcat([2], Res);
let NumMicroOps = !add(UOps, LoadUOps);
}
}
// Instructions that have local forwarding disabled have an extra +1cy latency.
// A folded store needs a cycle on the SAGU for the store data, most RMW
// instructions don't need an extra uop. ALU RMW operations don't seem to
// benefit from STLF, and their observed latency is 6cy. That is the reason why
// this write adds two extra cycles (instead of just 1cy for the store).
defm : X86WriteRes<WriteRMW, [JSAGU], 2, [1], 0>;
////////////////////////////////////////////////////////////////////////////////
// Arithmetic.
////////////////////////////////////////////////////////////////////////////////
defm : JWriteResIntPair<WriteALU, [JALU01], 1>;
defm : JWriteResIntPair<WriteADC, [JALU01], 1, [2]>;
defm : X86WriteRes<WriteBSWAP32, [JALU01], 1, [1], 1>;
defm : X86WriteRes<WriteBSWAP64, [JALU01], 1, [1], 1>;
defm : X86WriteRes<WriteCMPXCHG, [JALU01], 3, [3], 5>;
defm : X86WriteRes<WriteCMPXCHGRMW, [JALU01, JSAGU, JLAGU], 11, [3, 1, 1], 6>;
defm : X86WriteRes<WriteXCHG, [JALU01], 1, [2], 2>;
defm : JWriteResIntPair<WriteIMul8, [JALU1, JMul], 3, [1, 1], 1>;
defm : JWriteResIntPair<WriteIMul16, [JALU1, JMul], 3, [1, 3], 3>;
defm : JWriteResIntPair<WriteIMul16Imm, [JALU1, JMul], 4, [1, 2], 2>;
defm : JWriteResIntPair<WriteIMul16Reg, [JALU1, JMul], 3, [1, 1], 1>;
defm : JWriteResIntPair<WriteIMul32, [JALU1, JMul], 3, [1, 2], 2>;
defm : JWriteResIntPair<WriteIMul32Imm, [JALU1, JMul], 3, [1, 1], 1>;
defm : JWriteResIntPair<WriteIMul32Reg, [JALU1, JMul], 3, [1, 1], 1>;
defm : JWriteResIntPair<WriteIMul64, [JALU1, JMul], 6, [1, 4], 2>;
defm : JWriteResIntPair<WriteIMul64Imm, [JALU1, JMul], 6, [1, 4], 1>;
defm : JWriteResIntPair<WriteIMul64Reg, [JALU1, JMul], 6, [1, 4], 1>;
defm : X86WriteRes<WriteIMulH, [JALU1], 6, [4], 1>;
defm : JWriteResIntPair<WriteDiv8, [JALU1, JDiv], 12, [1, 12], 1>;
defm : JWriteResIntPair<WriteDiv16, [JALU1, JDiv], 17, [1, 17], 2>;
defm : JWriteResIntPair<WriteDiv32, [JALU1, JDiv], 25, [1, 25], 2>;
defm : JWriteResIntPair<WriteDiv64, [JALU1, JDiv], 41, [1, 41], 2>;
defm : JWriteResIntPair<WriteIDiv8, [JALU1, JDiv], 12, [1, 12], 1>;
defm : JWriteResIntPair<WriteIDiv16, [JALU1, JDiv], 17, [1, 17], 2>;
defm : JWriteResIntPair<WriteIDiv32, [JALU1, JDiv], 25, [1, 25], 2>;
defm : JWriteResIntPair<WriteIDiv64, [JALU1, JDiv], 41, [1, 41], 2>;
defm : JWriteResIntPair<WriteCRC32, [JALU01], 3, [4], 3>;
defm : JWriteResIntPair<WriteCMOV, [JALU01], 1>; // Conditional move.
defm : X86WriteRes<WriteFCMOV, [JFPU0, JFPA], 3, [1,1], 1>; // x87 conditional move.
def : WriteRes<WriteSETCC, [JALU01]>; // Setcc.
def : WriteRes<WriteSETCCStore, [JALU01,JSAGU]>;
def : WriteRes<WriteLAHFSAHF, [JALU01]>;
defm : X86WriteRes<WriteBitTest, [JALU01], 1, [1], 1>;
defm : X86WriteRes<WriteBitTestImmLd, [JALU01,JLAGU], 4, [1,1], 1>;
defm : X86WriteRes<WriteBitTestRegLd, [JALU01,JLAGU], 4, [1,1], 5>;
defm : X86WriteRes<WriteBitTestSet, [JALU01], 1, [1], 2>;
defm : X86WriteRes<WriteBitTestSetImmLd, [JALU01,JLAGU], 4, [1,1], 4>;
defm : X86WriteRes<WriteBitTestSetRegLd, [JALU01,JLAGU], 4, [1,1], 8>;
// This is for simple LEAs with one or two input operands.
def : WriteRes<WriteLEA, [JALU01]>;
// Bit counts.
defm : JWriteResIntPair<WriteBSF, [JALU01], 4, [8], 7>;
defm : JWriteResIntPair<WriteBSR, [JALU01], 5, [8], 8>;
defm : JWriteResIntPair<WritePOPCNT, [JALU01], 1>;
defm : JWriteResIntPair<WriteLZCNT, [JALU01], 1>;
defm : JWriteResIntPair<WriteTZCNT, [JALU01], 2, [2], 2>;
// BMI1 BEXTR/BLS, BMI2 BZHI
defm : JWriteResIntPair<WriteBEXTR, [JALU01], 1>;
defm : JWriteResIntPair<WriteBLS, [JALU01], 2, [2], 2>;
defm : X86WriteResPairUnsupported<WriteBZHI>;
////////////////////////////////////////////////////////////////////////////////
// Integer shifts and rotates.
////////////////////////////////////////////////////////////////////////////////
defm : JWriteResIntPair<WriteShift, [JALU01], 1>;
defm : JWriteResIntPair<WriteShiftCL, [JALU01], 1>;
defm : JWriteResIntPair<WriteRotate, [JALU01], 1>;
defm : JWriteResIntPair<WriteRotateCL, [JALU01], 1>;
// SHLD/SHRD.
defm : X86WriteRes<WriteSHDrri, [JALU01], 3, [6], 6>;
defm : X86WriteRes<WriteSHDrrcl,[JALU01], 4, [8], 7>;
defm : X86WriteRes<WriteSHDmri, [JLAGU, JALU01], 9, [1, 22], 8>;
defm : X86WriteRes<WriteSHDmrcl,[JLAGU, JALU01], 9, [1, 22], 8>;
////////////////////////////////////////////////////////////////////////////////
// Loads, stores, and moves, not folded with other operations.
////////////////////////////////////////////////////////////////////////////////
def : WriteRes<WriteLoad, [JLAGU]> { let Latency = 3; }
def : WriteRes<WriteStore, [JSAGU]>;
def : WriteRes<WriteStoreNT, [JSAGU]>;
def : WriteRes<WriteMove, [JALU01]>;
defm : X86WriteResUnsupported<WriteVecMaskedGatherWriteback>;
// Load/store MXCSR.
def : WriteRes<WriteLDMXCSR, [JLAGU]> { let Latency = 3; }
def : WriteRes<WriteSTMXCSR, [JSAGU]>;
// Treat misc copies as a move.
def : InstRW<[WriteMove], (instrs COPY)>;
////////////////////////////////////////////////////////////////////////////////
// Idioms that clear a register, like xorps %xmm0, %xmm0.
// These can often bypass execution ports completely.
////////////////////////////////////////////////////////////////////////////////
def : WriteRes<WriteZero, []>;
////////////////////////////////////////////////////////////////////////////////
// Branches don't produce values, so they have no latency, but they still
// consume resources. Indirect branches can fold loads.
////////////////////////////////////////////////////////////////////////////////
defm : JWriteResIntPair<WriteJump, [JALU01], 1>;
////////////////////////////////////////////////////////////////////////////////
// Special case scheduling classes.
////////////////////////////////////////////////////////////////////////////////
def : WriteRes<WriteSystem, [JALU01]> { let Latency = 100; }
def : WriteRes<WriteMicrocoded, [JALU01]> { let Latency = 100; }
def : WriteRes<WriteFence, [JSAGU]>;
// Nops don't have dependencies, so there's no actual latency, but we set this
// to '1' to tell the scheduler that the nop uses an ALU slot for a cycle.
def : WriteRes<WriteNop, [JALU01]> { let Latency = 1; }
def JWriteCMPXCHG8rr : SchedWriteRes<[JALU01]> {
let Latency = 3;
let ResourceCycles = [3];
let NumMicroOps = 3;
}
def JWriteLOCK_CMPXCHG8rm : SchedWriteRes<[JALU01, JLAGU, JSAGU]> {
let Latency = 16;
let ResourceCycles = [3,16,16];
let NumMicroOps = 5;
}
def JWriteLOCK_CMPXCHGrm : SchedWriteRes<[JALU01, JLAGU, JSAGU]> {
let Latency = 17;
let ResourceCycles = [3,17,17];
let NumMicroOps = 6;
}
def JWriteCMPXCHG8rm : SchedWriteRes<[JALU01, JLAGU, JSAGU]> {
let Latency = 11;
let ResourceCycles = [3,1,1];
let NumMicroOps = 5;
}
def JWriteCMPXCHG8B : SchedWriteRes<[JALU01, JLAGU, JSAGU]> {
let Latency = 11;
let ResourceCycles = [3,1,1];
let NumMicroOps = 18;
}
def JWriteCMPXCHG16B : SchedWriteRes<[JALU01, JLAGU, JSAGU]> {
let Latency = 32;
let ResourceCycles = [6,1,1];
let NumMicroOps = 28;
}
def JWriteLOCK_CMPXCHG8B : SchedWriteRes<[JALU01, JLAGU, JSAGU]> {
let Latency = 19;
let ResourceCycles = [3,19,19];
let NumMicroOps = 18;
}
def JWriteLOCK_CMPXCHG16B : SchedWriteRes<[JALU01, JLAGU, JSAGU]> {
let Latency = 38;
let ResourceCycles = [6,38,38];
let NumMicroOps = 28;
}
def JWriteCMPXCHGVariant : SchedWriteVariant<[
SchedVar<MCSchedPredicate<IsAtomicCompareAndSwap8B>, [JWriteLOCK_CMPXCHG8B]>,
SchedVar<MCSchedPredicate<IsAtomicCompareAndSwap16B>, [JWriteLOCK_CMPXCHG16B]>,
SchedVar<MCSchedPredicate<IsAtomicCompareAndSwap_8>, [JWriteLOCK_CMPXCHG8rm]>,
SchedVar<MCSchedPredicate<IsAtomicCompareAndSwap>, [JWriteLOCK_CMPXCHGrm]>,
SchedVar<MCSchedPredicate<IsCompareAndSwap8B>, [JWriteCMPXCHG8B]>,
SchedVar<MCSchedPredicate<IsCompareAndSwap16B>, [JWriteCMPXCHG16B]>,
SchedVar<MCSchedPredicate<IsRegMemCompareAndSwap_8>, [JWriteCMPXCHG8rm]>,
SchedVar<MCSchedPredicate<IsRegMemCompareAndSwap>, [WriteCMPXCHGRMW]>,
SchedVar<MCSchedPredicate<IsRegRegCompareAndSwap_8>, [JWriteCMPXCHG8rr]>,
SchedVar<NoSchedPred, [WriteCMPXCHG]>
]>;
// The first five reads are contributed by the memory load operand.
// We ignore those reads and set a read-advance for the other input operands
// including the implicit read of RAX.
def : InstRW<[JWriteCMPXCHGVariant,
ReadDefault, ReadDefault, ReadDefault, ReadDefault, ReadDefault,
ReadAfterLd, ReadAfterLd], (instrs LCMPXCHG8, LCMPXCHG16,
LCMPXCHG32, LCMPXCHG64,
CMPXCHG8rm, CMPXCHG16rm,
CMPXCHG32rm, CMPXCHG64rm)>;
def : InstRW<[JWriteCMPXCHGVariant], (instrs CMPXCHG8rr, CMPXCHG16rr,
CMPXCHG32rr, CMPXCHG64rr)>;
def : InstRW<[JWriteCMPXCHGVariant,
// Ignore reads contributed by the memory operand.
ReadDefault, ReadDefault, ReadDefault, ReadDefault, ReadDefault,
// Add a read-advance to every implicit register read.
ReadAfterLd, ReadAfterLd, ReadAfterLd, ReadAfterLd], (instrs LCMPXCHG8B, LCMPXCHG16B,
CMPXCHG8B, CMPXCHG16B)>;
def JWriteLOCK_ALURMW : SchedWriteRes<[JALU01, JLAGU, JSAGU]> {
let Latency = 19;
let ResourceCycles = [1,19,19];
let NumMicroOps = 1;
}
def JWriteLOCK_ALURMWVariant : SchedWriteVariant<[
SchedVar<MCSchedPredicate<CheckLockPrefix>, [JWriteLOCK_ALURMW]>,
SchedVar<NoSchedPred, [WriteALURMW]>
]>;
def : InstRW<[JWriteLOCK_ALURMWVariant], (instrs INC8m, INC16m, INC32m, INC64m,
DEC8m, DEC16m, DEC32m, DEC64m,
NOT8m, NOT16m, NOT32m, NOT64m,
NEG8m, NEG16m, NEG32m, NEG64m)>;
def JWriteXCHG8rr_XADDrr : SchedWriteRes<[JALU01]> {
let Latency = 2;
let ResourceCycles = [3];
let NumMicroOps = 3;
}
def : InstRW<[JWriteXCHG8rr_XADDrr], (instrs XCHG8rr, XADD8rr, XADD16rr,
XADD32rr, XADD64rr)>;
// This write defines the latency of the in/out register operand of a non-atomic
// XADDrm. This is the first of a pair of writes that model non-atomic
// XADDrm instructions (the second write definition is JWriteXADDrm_LdSt_Part).
//
// We need two writes because the instruction latency differs from the output
// register operand latency. In particular, the first write describes the first
// (and only) output register operand of the instruction. However, the
// instruction latency is set to the MAX of all the write latencies. That's why
// a second write is needed in this case (see example below).
//
// Example:
// XADD %ecx, (%rsp) ## Instruction latency: 11cy
// ## ECX write Latency: 3cy
//
// Register ECX becomes available in 3 cycles. That is because the value of ECX
// is exchanged with the value read from the stack pointer, and the load-to-use
// latency is assumed to be 3cy.
def JWriteXADDrm_XCHG_Part : SchedWriteRes<[JALU01]> {
let Latency = 3; // load-to-use latency
let ResourceCycles = [3];
let NumMicroOps = 3;
}
// This write defines the latency of the in/out register operand of an atomic
// XADDrm. This is the first of a sequence of two writes used to model atomic
// XADD instructions. The second write of the sequence is JWriteXCHGrm_LdSt_Part.
//
//
// Example:
// LOCK XADD %ecx, (%rsp) ## Instruction Latency: 16cy
// ## ECX write Latency: 11cy
//
// The value of ECX becomes available only after 11cy from the start of
// execution. This write is used to specifically set that operand latency.
def JWriteLOCK_XADDrm_XCHG_Part : SchedWriteRes<[JALU01]> {
let Latency = 11;
let ResourceCycles = [3];
let NumMicroOps = 3;
}
// This write defines the latency of the in/out register operand of an atomic
// XCHGrm. This write is the first of a sequence of two writes that describe
// atomic XCHG operations. We need two writes because the instruction latency
// differs from the output register write latency. We want to make sure that
// the output register operand becomes visible after 11cy. However, we want to
// set the instruction latency to 16cy.
def JWriteXCHGrm_XCHG_Part : SchedWriteRes<[JALU01]> {
let Latency = 11;
let ResourceCycles = [2];
let NumMicroOps = 2;
}
def JWriteXADDrm_LdSt_Part : SchedWriteRes<[JLAGU, JSAGU]> {
let Latency = 11;
let ResourceCycles = [1, 1];
let NumMicroOps = 1;
}
def JWriteXCHGrm_LdSt_Part : SchedWriteRes<[JLAGU, JSAGU]> {
let Latency = 16;
let ResourceCycles = [16, 16];
let NumMicroOps = 1;
}
def JWriteXADDrm_Part1 : SchedWriteVariant<[
SchedVar<MCSchedPredicate<CheckLockPrefix>, [JWriteLOCK_XADDrm_XCHG_Part]>,
SchedVar<NoSchedPred, [JWriteXADDrm_XCHG_Part]>
]>;
def JWriteXADDrm_Part2 : SchedWriteVariant<[
SchedVar<MCSchedPredicate<CheckLockPrefix>, [JWriteXCHGrm_LdSt_Part]>,
SchedVar<NoSchedPred, [JWriteXADDrm_LdSt_Part]>
]>;
def : InstRW<[JWriteXADDrm_Part1, JWriteXADDrm_Part2, ReadAfterLd],
(instrs XADD8rm, XADD16rm, XADD32rm, XADD64rm,
LXADD8, LXADD16, LXADD32, LXADD64)>;
def : InstRW<[JWriteXCHGrm_XCHG_Part, JWriteXCHGrm_LdSt_Part, ReadAfterLd],
(instrs XCHG8rm, XCHG16rm, XCHG32rm, XCHG64rm)>;
////////////////////////////////////////////////////////////////////////////////
// Floating point. This covers both scalar and vector operations.
////////////////////////////////////////////////////////////////////////////////
defm : X86WriteRes<WriteFLD0, [JFPU1, JSTC], 3, [1,1], 1>;
defm : X86WriteRes<WriteFLD1, [JFPU1, JSTC], 3, [1,1], 1>;
defm : X86WriteRes<WriteFLDC, [JFPU1, JSTC], 3, [1,1], 1>;
defm : X86WriteRes<WriteFLoad, [JLAGU, JFPU01, JFPX], 5, [1, 1, 1], 1>;
defm : X86WriteRes<WriteFLoadX, [JLAGU], 5, [1], 1>;
defm : X86WriteRes<WriteFLoadY, [JLAGU], 5, [2], 2>;
defm : X86WriteRes<WriteFMaskedLoad, [JLAGU, JFPU01, JFPX], 6, [1, 2, 2], 1>;
defm : X86WriteRes<WriteFMaskedLoadY, [JLAGU, JFPU01, JFPX], 6, [2, 4, 4], 2>;
defm : X86WriteRes<WriteFStore, [JSAGU, JFPU1, JSTC], 2, [1, 1, 1], 1>;
defm : X86WriteRes<WriteFStoreX, [JSAGU, JFPU1, JSTC], 1, [1, 1, 1], 1>;
defm : X86WriteRes<WriteFStoreY, [JSAGU, JFPU1, JSTC], 1, [2, 2, 2], 2>;
defm : X86WriteRes<WriteFStoreNT, [JSAGU, JFPU1, JSTC], 3, [1, 1, 1], 1>;
defm : X86WriteRes<WriteFStoreNTX, [JSAGU, JFPU1, JSTC], 3, [1, 1, 1], 1>;
defm : X86WriteRes<WriteFStoreNTY, [JSAGU, JFPU1, JSTC], 3, [2, 2, 2], 1>;
defm : X86WriteRes<WriteFMaskedStore32, [JFPU0, JFPA, JFPU1, JSTC, JLAGU, JSAGU, JALU01], 16, [1,1, 5, 5,4,4,4], 19>;
defm : X86WriteRes<WriteFMaskedStore64, [JFPU0, JFPA, JFPU1, JSTC, JLAGU, JSAGU, JALU01], 13, [1,1, 2, 2,2,2,2], 10>;
defm : X86WriteRes<WriteFMaskedStore32Y, [JFPU0, JFPA, JFPU1, JSTC, JLAGU, JSAGU, JALU01], 22, [1,1,10,10,8,8,8], 36>;
defm : X86WriteRes<WriteFMaskedStore64Y, [JFPU0, JFPA, JFPU1, JSTC, JLAGU, JSAGU, JALU01], 16, [1,1, 4, 4,4,4,4], 18>;
defm : X86WriteRes<WriteFMove, [JFPU01, JFPX], 1, [1, 1], 1>;
defm : X86WriteRes<WriteFMoveX, [JFPU01, JFPX], 1, [1, 1], 1>;
defm : X86WriteRes<WriteFMoveY, [JFPU01, JFPX], 1, [2, 2], 2>;
defm : X86WriteRes<WriteEMMS, [JFPU01, JFPX], 2, [1, 1], 1>;
defm : JWriteResFpuPair<WriteFAdd, [JFPU0, JFPA], 3>;
defm : JWriteResFpuPair<WriteFAddX, [JFPU0, JFPA], 3>;
defm : JWriteResYMMPair<WriteFAddY, [JFPU0, JFPA], 3, [2,2], 2>;
defm : X86WriteResPairUnsupported<WriteFAddZ>;
defm : JWriteResFpuPair<WriteFAdd64, [JFPU0, JFPA], 3>;
defm : JWriteResFpuPair<WriteFAdd64X, [JFPU0, JFPA], 3>;
defm : JWriteResYMMPair<WriteFAdd64Y, [JFPU0, JFPA], 3, [2,2], 2>;
defm : X86WriteResPairUnsupported<WriteFAdd64Z>;
defm : JWriteResFpuPair<WriteFCmp, [JFPU0, JFPA], 2>;
defm : JWriteResFpuPair<WriteFCmpX, [JFPU0, JFPA], 2>;
defm : JWriteResYMMPair<WriteFCmpY, [JFPU0, JFPA], 2, [2,2], 2>;
defm : X86WriteResPairUnsupported<WriteFCmpZ>;
defm : JWriteResFpuPair<WriteFCmp64, [JFPU0, JFPA], 2>;
defm : JWriteResFpuPair<WriteFCmp64X, [JFPU0, JFPA], 2>;
defm : JWriteResYMMPair<WriteFCmp64Y, [JFPU0, JFPA], 2, [2,2], 2>;
defm : X86WriteResPairUnsupported<WriteFCmp64Z>;
defm : JWriteResFpuPair<WriteFCom, [JFPU0, JFPA, JALU0], 3>;
defm : JWriteResFpuPair<WriteFComX, [JFPU0, JFPA, JALU0], 3>;
defm : JWriteResFpuPair<WriteFMul, [JFPU1, JFPM], 2>;
defm : JWriteResFpuPair<WriteFMulX, [JFPU1, JFPM], 2>;
defm : JWriteResYMMPair<WriteFMulY, [JFPU1, JFPM], 2, [2,2], 2>;
defm : X86WriteResPairUnsupported<WriteFMulZ>;
defm : JWriteResFpuPair<WriteFMul64, [JFPU1, JFPM], 4, [1,2]>;
defm : JWriteResFpuPair<WriteFMul64X, [JFPU1, JFPM], 4, [1,2]>;
defm : JWriteResYMMPair<WriteFMul64Y, [JFPU1, JFPM], 4, [2,4], 2>;
defm : X86WriteResPairUnsupported<WriteFMul64Z>;
defm : X86WriteResPairUnsupported<WriteFMA>;
defm : X86WriteResPairUnsupported<WriteFMAX>;
defm : X86WriteResPairUnsupported<WriteFMAY>;
defm : X86WriteResPairUnsupported<WriteFMAZ>;
defm : JWriteResFpuPair<WriteDPPD, [JFPU1, JFPM, JFPA], 9, [1, 3, 3], 3>;
defm : JWriteResFpuPair<WriteDPPS, [JFPU1, JFPM, JFPA], 11, [1, 3, 3], 5>;
defm : JWriteResYMMPair<WriteDPPSY, [JFPU1, JFPM, JFPA], 12, [2, 6, 6], 10>;
defm : X86WriteResPairUnsupported<WriteDPPSZ>;
defm : JWriteResFpuPair<WriteFRcp, [JFPU1, JFPM], 2>;
defm : JWriteResFpuPair<WriteFRcpX, [JFPU1, JFPM], 2>;
defm : JWriteResYMMPair<WriteFRcpY, [JFPU1, JFPM], 2, [2,2], 2>;
defm : X86WriteResPairUnsupported<WriteFRcpZ>;
defm : JWriteResFpuPair<WriteFRsqrt, [JFPU1, JFPM], 2>;
defm : JWriteResFpuPair<WriteFRsqrtX, [JFPU1, JFPM], 2>;
defm : JWriteResYMMPair<WriteFRsqrtY, [JFPU1, JFPM], 2, [2,2], 2>;
defm : X86WriteResPairUnsupported<WriteFRsqrtZ>;
defm : JWriteResFpuPair<WriteFDiv, [JFPU1, JFPM], 19, [1, 19]>;
defm : JWriteResFpuPair<WriteFDivX, [JFPU1, JFPM], 19, [1, 19]>;
defm : JWriteResYMMPair<WriteFDivY, [JFPU1, JFPM], 38, [2, 38], 2>;
defm : X86WriteResPairUnsupported<WriteFDivZ>;
defm : JWriteResFpuPair<WriteFDiv64, [JFPU1, JFPM], 19, [1, 19]>;
defm : JWriteResFpuPair<WriteFDiv64X, [JFPU1, JFPM], 19, [1, 19]>;
defm : JWriteResYMMPair<WriteFDiv64Y, [JFPU1, JFPM], 38, [2, 38], 2>;
defm : X86WriteResPairUnsupported<WriteFDiv64Z>;
defm : JWriteResFpuPair<WriteFSqrt, [JFPU1, JFPM], 21, [1, 21]>;
defm : JWriteResFpuPair<WriteFSqrtX, [JFPU1, JFPM], 21, [1, 21]>;
defm : JWriteResYMMPair<WriteFSqrtY, [JFPU1, JFPM], 42, [2, 42], 2>;
defm : X86WriteResPairUnsupported<WriteFSqrtZ>;
defm : JWriteResFpuPair<WriteFSqrt64, [JFPU1, JFPM], 27, [1, 27]>;
defm : JWriteResFpuPair<WriteFSqrt64X, [JFPU1, JFPM], 27, [1, 27]>;
defm : JWriteResYMMPair<WriteFSqrt64Y, [JFPU1, JFPM], 54, [2, 54], 2>;
defm : X86WriteResPairUnsupported<WriteFSqrt64Z>;
defm : JWriteResFpuPair<WriteFSqrt80, [JFPU1, JFPM], 35, [1, 35]>;
defm : JWriteResFpuPair<WriteFSign, [JFPU1, JFPM], 2>;
defm : JWriteResFpuPair<WriteFRnd, [JFPU1, JSTC], 3>;
defm : JWriteResYMMPair<WriteFRndY, [JFPU1, JSTC], 3, [2,2], 2>;
defm : X86WriteResPairUnsupported<WriteFRndZ>;
defm : JWriteResFpuPair<WriteFLogic, [JFPU01, JFPX], 1>;
defm : JWriteResYMMPair<WriteFLogicY, [JFPU01, JFPX], 1, [2, 2], 2>;
defm : X86WriteResPairUnsupported<WriteFLogicZ>;
defm : JWriteResFpuPair<WriteFTest, [JFPU0, JFPA, JALU0], 3>;
defm : JWriteResYMMPair<WriteFTestY , [JFPU01, JFPX, JFPA, JALU0], 4, [2, 2, 2, 1], 3>;
defm : X86WriteResPairUnsupported<WriteFTestZ>;
defm : JWriteResFpuPair<WriteFShuffle, [JFPU01, JFPX], 1>;
defm : JWriteResYMMPair<WriteFShuffleY, [JFPU01, JFPX], 1, [2, 2], 2>;
defm : X86WriteResPairUnsupported<WriteFShuffleZ>;
defm : JWriteResFpuPair<WriteFVarShuffle, [JFPU01, JFPX], 3, [1, 4], 3>; // +1cy latency.
defm : JWriteResYMMPair<WriteFVarShuffleY,[JFPU01, JFPX], 4, [2, 6], 6>; // +1cy latency.
defm : X86WriteResPairUnsupported<WriteFVarShuffleZ>;
defm : JWriteResFpuPair<WriteFBlend, [JFPU01, JFPX], 1>;
defm : JWriteResYMMPair<WriteFBlendY, [JFPU01, JFPX], 1, [2, 2], 2>;
defm : X86WriteResPairUnsupported<WriteFBlendZ>;
defm : JWriteResFpuPair<WriteFVarBlend, [JFPU01, JFPX], 2, [4, 4], 3>;
defm : JWriteResYMMPair<WriteFVarBlendY, [JFPU01, JFPX], 3, [6, 6], 6>;
defm : X86WriteResPairUnsupported<WriteFVarBlendZ>;
defm : JWriteResFpuPair<WriteFShuffle256, [JFPU01, JFPX], 1, [2, 2], 2>;
defm : X86WriteResPairUnsupported<WriteFVarShuffle256>;
////////////////////////////////////////////////////////////////////////////////
// Conversions.
////////////////////////////////////////////////////////////////////////////////
defm : JWriteResFpuPair<WriteCvtSS2I, [JFPU1, JSTC, JFPU0, JFPA, JALU0], 7, [1,1,1,1,1], 2>;
defm : JWriteResFpuPair<WriteCvtPS2I, [JFPU1, JSTC], 3, [1,1], 1>;
defm : JWriteResYMMPair<WriteCvtPS2IY, [JFPU1, JSTC], 3, [2,2], 2>;
defm : X86WriteResPairUnsupported<WriteCvtPS2IZ>;
defm : JWriteResFpuPair<WriteCvtSD2I, [JFPU1, JSTC, JFPU0, JFPA, JALU0], 7, [1,1,1,1,1], 2>;
defm : JWriteResFpuPair<WriteCvtPD2I, [JFPU1, JSTC], 3, [1,1], 1>;
defm : JWriteResYMMPair<WriteCvtPD2IY, [JFPU1, JSTC, JFPX], 6, [2,2,4], 3>;
defm : X86WriteResPairUnsupported<WriteCvtPD2IZ>;
defm : X86WriteRes<WriteCvtI2SS, [JFPU1, JSTC], 4, [1,1], 2>;
defm : X86WriteRes<WriteCvtI2SSLd, [JLAGU, JFPU1, JSTC], 9, [1,1,1], 1>;
defm : JWriteResFpuPair<WriteCvtI2PS, [JFPU1, JSTC], 3, [1,1], 1>;
defm : JWriteResYMMPair<WriteCvtI2PSY, [JFPU1, JSTC], 3, [2,2], 2>;
defm : X86WriteResPairUnsupported<WriteCvtI2PSZ>;
defm : X86WriteRes<WriteCvtI2SD, [JFPU1, JSTC], 4, [1,1], 2>;
defm : X86WriteRes<WriteCvtI2SDLd, [JLAGU, JFPU1, JSTC], 9, [1,1,1], 1>;
defm : JWriteResFpuPair<WriteCvtI2PD, [JFPU1, JSTC], 3, [1,1], 1>;
defm : JWriteResYMMPair<WriteCvtI2PDY, [JFPU1, JSTC], 3, [2,2], 2>;
defm : X86WriteResPairUnsupported<WriteCvtI2PDZ>;
defm : JWriteResFpuPair<WriteCvtSS2SD, [JFPU1, JSTC], 7, [1,2], 2>;
defm : JWriteResFpuPair<WriteCvtPS2PD, [JFPU1, JSTC], 2, [1,1], 1>;
defm : JWriteResYMMPair<WriteCvtPS2PDY, [JFPU1, JSTC], 2, [2,2], 2>;
defm : X86WriteResPairUnsupported<WriteCvtPS2PDZ>;
defm : JWriteResFpuPair<WriteCvtSD2SS, [JFPU1, JSTC], 7, [1,2], 2>;
defm : JWriteResFpuPair<WriteCvtPD2PS, [JFPU1, JSTC], 3, [1,1], 1>;
defm : JWriteResYMMPair<WriteCvtPD2PSY, [JFPU1, JSTC, JFPX], 6, [2,2,4], 3>;
defm : X86WriteResPairUnsupported<WriteCvtPD2PSZ>;
defm : JWriteResFpuPair<WriteCvtPH2PS, [JFPU1, JSTC], 3, [1,1], 1>;
defm : JWriteResYMMPair<WriteCvtPH2PSY, [JFPU1, JSTC], 3, [2,2], 2>;
defm : X86WriteResPairUnsupported<WriteCvtPH2PSZ>;
defm : X86WriteRes<WriteCvtPS2PH, [JFPU1, JSTC], 3, [1,1], 1>;
defm : X86WriteRes<WriteCvtPS2PHY, [JFPU1, JSTC, JFPX], 6, [2,2,2], 3>;
defm : X86WriteResUnsupported<WriteCvtPS2PHZ>;
defm : X86WriteRes<WriteCvtPS2PHSt, [JFPU1, JSTC, JSAGU], 4, [1,1,1], 1>;
defm : X86WriteRes<WriteCvtPS2PHYSt, [JFPU1, JSTC, JFPX, JSAGU], 7, [2,2,2,1], 3>;
defm : X86WriteResUnsupported<WriteCvtPS2PHZSt>;
////////////////////////////////////////////////////////////////////////////////
// Vector integer operations.
////////////////////////////////////////////////////////////////////////////////
defm : X86WriteRes<WriteVecLoad, [JLAGU, JFPU01, JVALU], 5, [1, 1, 1], 1>;
defm : X86WriteRes<WriteVecLoadX, [JLAGU], 5, [1], 1>;
defm : X86WriteRes<WriteVecLoadY, [JLAGU], 5, [2], 2>;
defm : X86WriteRes<WriteVecLoadNT, [JLAGU, JFPU01, JVALU], 5, [1, 1, 1], 1>;
defm : X86WriteRes<WriteVecLoadNTY, [JLAGU, JFPU01, JVALU], 5, [1, 1, 1], 1>;
defm : X86WriteRes<WriteVecMaskedLoad, [JLAGU, JFPU01, JVALU], 6, [1, 2, 2], 1>;
defm : X86WriteRes<WriteVecMaskedLoadY, [JLAGU, JFPU01, JVALU], 6, [2, 4, 4], 2>;
defm : X86WriteRes<WriteVecStore, [JSAGU, JFPU1, JSTC], 2, [1, 1, 1], 1>;
defm : X86WriteRes<WriteVecStoreX, [JSAGU, JFPU1, JSTC], 1, [1, 1, 1], 1>;
defm : X86WriteRes<WriteVecStoreY, [JSAGU, JFPU1, JSTC], 1, [2, 2, 2], 2>;
defm : X86WriteRes<WriteVecStoreNT, [JSAGU, JFPU1, JSTC], 2, [1, 1, 1], 1>;
defm : X86WriteRes<WriteVecStoreNTY, [JSAGU, JFPU1, JSTC], 2, [2, 2, 2], 1>;
defm : X86WriteResUnsupported<WriteVecMaskedStore32>;
defm : X86WriteResUnsupported<WriteVecMaskedStore64>;
defm : X86WriteResUnsupported<WriteVecMaskedStore32Y>;
defm : X86WriteResUnsupported<WriteVecMaskedStore64Y>;
defm : X86WriteRes<WriteVecMove, [JFPU01, JVALU], 1, [1, 1], 1>;
defm : X86WriteRes<WriteVecMoveX, [JFPU01, JVALU], 1, [1, 1], 1>;
defm : X86WriteRes<WriteVecMoveY, [JFPU01, JVALU], 1, [2, 2], 2>;
defm : X86WriteRes<WriteVecMoveToGpr, [JFPU0, JFPA, JALU0], 4, [1, 1, 1], 1>;
defm : X86WriteRes<WriteVecMoveFromGpr, [JFPU01, JFPX], 8, [1, 1], 2>;
defm : JWriteResFpuPair<WriteVecALU, [JFPU01, JVALU], 1>;
defm : JWriteResFpuPair<WriteVecALUX, [JFPU01, JVALU], 1>;
defm : X86WriteResPairUnsupported<WriteVecALUY>;
defm : X86WriteResPairUnsupported<WriteVecALUZ>;
defm : JWriteResFpuPair<WriteVecShift, [JFPU01, JVALU], 1>;
defm : JWriteResFpuPair<WriteVecShiftX, [JFPU01, JVALU], 2>; // +1cy latency.
defm : X86WriteResPairUnsupported<WriteVecShiftY>;
defm : X86WriteResPairUnsupported<WriteVecShiftZ>;
defm : JWriteResFpuPair<WriteVecShiftImm, [JFPU01, JVALU], 1>;
defm : JWriteResFpuPair<WriteVecShiftImmX,[JFPU01, JVALU], 2>; // +1cy latency.
defm : X86WriteResPairUnsupported<WriteVecShiftImmY>;
defm : X86WriteResPairUnsupported<WriteVecShiftImmZ>;
defm : X86WriteResPairUnsupported<WriteVarVecShift>;
defm : X86WriteResPairUnsupported<WriteVarVecShiftY>;
defm : X86WriteResPairUnsupported<WriteVarVecShiftZ>;
defm : JWriteResFpuPair<WriteVecIMul, [JFPU0, JVIMUL], 2>;
defm : JWriteResFpuPair<WriteVecIMulX, [JFPU0, JVIMUL], 2>;
defm : X86WriteResPairUnsupported<WriteVecIMulY>;
defm : X86WriteResPairUnsupported<WriteVecIMulZ>;
defm : JWriteResFpuPair<WritePMULLD, [JFPU0, JFPU01, JVIMUL, JVALU], 4, [2, 1, 2, 1], 3>;
defm : X86WriteResPairUnsupported<WritePMULLDY>;
defm : X86WriteResPairUnsupported<WritePMULLDZ>;
defm : JWriteResFpuPair<WriteMPSAD, [JFPU0, JVIMUL], 3, [1, 2], 3>;
defm : X86WriteResPairUnsupported<WriteMPSADY>;
defm : X86WriteResPairUnsupported<WriteMPSADZ>;
defm : JWriteResFpuPair<WritePSADBW, [JFPU01, JVALU], 2>;
defm : JWriteResFpuPair<WritePSADBWX, [JFPU01, JVALU], 2>;
defm : X86WriteResPairUnsupported<WritePSADBWY>;
defm : X86WriteResPairUnsupported<WritePSADBWZ>;
defm : JWriteResFpuPair<WritePHMINPOS, [JFPU01, JVALU], 2>;
defm : JWriteResFpuPair<WriteShuffle, [JFPU01, JVALU], 1>;
defm : JWriteResFpuPair<WriteShuffleX, [JFPU01, JVALU], 1>;
defm : X86WriteResPairUnsupported<WriteShuffleY>;
defm : X86WriteResPairUnsupported<WriteShuffleZ>;
defm : JWriteResFpuPair<WriteVarShuffle, [JFPU01, JVALU], 2, [1, 1], 1>;
defm : JWriteResFpuPair<WriteVarShuffleX, [JFPU01, JVALU], 2, [1, 4], 3>;
defm : X86WriteResPairUnsupported<WriteVarShuffleY>;
defm : X86WriteResPairUnsupported<WriteVarShuffleZ>;
defm : JWriteResFpuPair<WriteBlend, [JFPU01, JVALU], 1>;
defm : X86WriteResPairUnsupported<WriteBlendY>;
defm : X86WriteResPairUnsupported<WriteBlendZ>;
defm : JWriteResFpuPair<WriteVarBlend, [JFPU01, JVALU], 2, [4, 4], 3>;
defm : X86WriteResPairUnsupported<WriteVarBlendY>;
defm : X86WriteResPairUnsupported<WriteVarBlendZ>;
defm : JWriteResFpuPair<WriteVecLogic, [JFPU01, JVALU], 1>;
defm : JWriteResFpuPair<WriteVecLogicX, [JFPU01, JVALU], 1>;
defm : X86WriteResPairUnsupported<WriteVecLogicY>;
defm : X86WriteResPairUnsupported<WriteVecLogicZ>;
defm : JWriteResFpuPair<WriteVecTest, [JFPU0, JFPA, JALU0], 3>;
defm : JWriteResYMMPair<WriteVecTestY, [JFPU01, JFPX, JFPA, JALU0], 4, [2, 2, 2, 1], 3>;
defm : X86WriteResPairUnsupported<WriteVecTestZ>;
defm : X86WriteResPairUnsupported<WriteShuffle256>;
defm : X86WriteResPairUnsupported<WriteVPMOV256>;
defm : X86WriteResPairUnsupported<WriteVarShuffle256>;
////////////////////////////////////////////////////////////////////////////////
// Vector insert/extract operations.
////////////////////////////////////////////////////////////////////////////////
defm : X86WriteRes<WriteVecInsert, [JFPU01, JVALU], 1, [1,1], 2>;
defm : X86WriteRes<WriteVecInsertLd, [JFPU01, JVALU, JLAGU], 4, [1,1,1], 1>;
defm : X86WriteRes<WriteVecExtract, [JFPU0, JFPA, JALU0], 3, [1,1,1], 1>;
defm : X86WriteRes<WriteVecExtractSt, [JFPU1, JSTC, JSAGU], 3, [1,1,1], 1>;
////////////////////////////////////////////////////////////////////////////////
// SSE42 String instructions.
////////////////////////////////////////////////////////////////////////////////
defm : JWriteResFpuPair<WritePCmpIStrI, [JFPU1, JVALU1, JFPU0, JFPA, JALU0], 7, [2, 2, 1, 1, 1], 3>;
defm : JWriteResFpuPair<WritePCmpIStrM, [JFPU1, JVALU1, JFPU0, JFPA, JALU0], 8, [2, 2, 1, 1, 1], 3>;
defm : JWriteResFpuPair<WritePCmpEStrI, [JFPU1, JSAGU, JLAGU, JVALU, JVALU1, JFPA, JALU0], 14, [1, 2, 2, 6, 4, 1, 1], 9>;
defm : JWriteResFpuPair<WritePCmpEStrM, [JFPU1, JSAGU, JLAGU, JVALU, JVALU1, JFPA, JALU0], 14, [1, 2, 2, 6, 4, 1, 1], 9>;
////////////////////////////////////////////////////////////////////////////////
// MOVMSK Instructions.
////////////////////////////////////////////////////////////////////////////////
def : WriteRes<WriteFMOVMSK, [JFPU0, JFPA, JALU0]> { let Latency = 3; }
def : WriteRes<WriteVecMOVMSK, [JFPU0, JFPA, JALU0]> { let Latency = 3; }
defm : X86WriteResUnsupported<WriteVecMOVMSKY>;
def : WriteRes<WriteMMXMOVMSK, [JFPU0, JFPA, JALU0]> { let Latency = 3; }
////////////////////////////////////////////////////////////////////////////////
// AES Instructions.
////////////////////////////////////////////////////////////////////////////////
defm : JWriteResFpuPair<WriteAESIMC, [JFPU0, JVIMUL], 2>;
defm : JWriteResFpuPair<WriteAESKeyGen, [JFPU0, JVIMUL], 2>;
defm : JWriteResFpuPair<WriteAESDecEnc, [JFPU01, JVALU, JFPU0, JVIMUL], 3, [1,1,1,1], 2>;
////////////////////////////////////////////////////////////////////////////////
// Horizontal add/sub instructions.
////////////////////////////////////////////////////////////////////////////////
defm : JWriteResFpuPair<WriteFHAdd, [JFPU0, JFPA], 4>; // +1cy latency.
defm : JWriteResYMMPair<WriteFHAddY, [JFPU0, JFPA], 4, [2,2], 2>; // +1cy latency.
defm : JWriteResFpuPair<WritePHAdd, [JFPU01, JVALU], 1>;
defm : JWriteResFpuPair<WritePHAddX, [JFPU01, JVALU], 2>; // +1cy latency.
defm : X86WriteResPairUnsupported<WritePHAddY>;
////////////////////////////////////////////////////////////////////////////////
// Carry-less multiplication instructions.
////////////////////////////////////////////////////////////////////////////////
defm : JWriteResFpuPair<WriteCLMul, [JFPU0, JVIMUL], 2>;
////////////////////////////////////////////////////////////////////////////////
// SSE4A instructions.
////////////////////////////////////////////////////////////////////////////////
def JWriteINSERTQ: SchedWriteRes<[JFPU01, JVALU]> {
let Latency = 2;
let ResourceCycles = [1, 4];
}
def : InstRW<[JWriteINSERTQ], (instrs INSERTQ, INSERTQI)>;
////////////////////////////////////////////////////////////////////////////////
// AVX instructions.
////////////////////////////////////////////////////////////////////////////////
def JWriteVecExtractF128: SchedWriteRes<[JFPU01, JFPX]>;
def : InstRW<[JWriteVecExtractF128], (instrs VEXTRACTF128rr)>;
def JWriteVBROADCASTYLd: SchedWriteRes<[JLAGU, JFPU01, JFPX]> {
let Latency = 6;
let ResourceCycles = [1, 2, 4];
let NumMicroOps = 2;
}
def : InstRW<[JWriteVBROADCASTYLd], (instrs VBROADCASTSDYrm,
VBROADCASTSSYrm,
VBROADCASTF128)>;
def JWriteJVZEROALL: SchedWriteRes<[]> {
let Latency = 90;
let NumMicroOps = 73;
}
def : InstRW<[JWriteJVZEROALL], (instrs VZEROALL)>;
def JWriteJVZEROUPPER: SchedWriteRes<[]> {
let Latency = 46;
let NumMicroOps = 37;
}
def : InstRW<[JWriteJVZEROUPPER], (instrs VZEROUPPER)>;
///////////////////////////////////////////////////////////////////////////////
// SSE2/AVX Store Selected Bytes of Double Quadword - (V)MASKMOVDQ
///////////////////////////////////////////////////////////////////////////////
def JWriteMASKMOVDQU: SchedWriteRes<[JFPU0, JFPA, JFPU1, JSTC, JLAGU, JSAGU, JALU01]> {
let Latency = 34;
let ResourceCycles = [1, 1, 2, 2, 2, 16, 42];
let NumMicroOps = 63;
}
def : InstRW<[JWriteMASKMOVDQU], (instrs MASKMOVDQU, MASKMOVDQU64, MASKMOVDQUX32,
VMASKMOVDQU, VMASKMOVDQU64, VMASKMOVDQUX32)>;
///////////////////////////////////////////////////////////////////////////////
// SchedWriteVariant definitions.
///////////////////////////////////////////////////////////////////////////////
def JWriteZeroLatency : SchedWriteRes<[]> {
let Latency = 0;
}
def JWriteZeroIdiomYmm : SchedWriteRes<[JFPU01, JFPX]> {
let NumMicroOps = 2;
}
// Certain instructions that use the same register for both source
// operands do not have a real dependency on the previous contents of the
// register, and thus, do not have to wait before completing. They can be
// optimized out at register renaming stage.
// Reference: Section 10.8 of the "Software Optimization Guide for AMD Family
// 15h Processors".
// Reference: Agner's Fog "The microarchitecture of Intel, AMD and VIA CPUs",
// Section 21.8 [Dependency-breaking instructions].
def JWriteZeroIdiom : SchedWriteVariant<[
SchedVar<MCSchedPredicate<ZeroIdiomPredicate>, [JWriteZeroLatency]>,
SchedVar<NoSchedPred, [WriteALU]>
]>;
def : InstRW<[JWriteZeroIdiom], (instrs SUB32rr, SUB64rr,
XOR32rr, XOR64rr)>;
def JWriteFZeroIdiom : SchedWriteVariant<[
SchedVar<MCSchedPredicate<ZeroIdiomPredicate>, [JWriteZeroLatency]>,
SchedVar<NoSchedPred, [WriteFLogic]>
]>;
def : InstRW<[JWriteFZeroIdiom], (instrs XORPSrr, VXORPSrr, XORPDrr, VXORPDrr,
ANDNPSrr, VANDNPSrr,
ANDNPDrr, VANDNPDrr)>;
def JWriteFZeroIdiomY : SchedWriteVariant<[
SchedVar<MCSchedPredicate<ZeroIdiomPredicate>, [JWriteZeroIdiomYmm]>,
SchedVar<NoSchedPred, [WriteFLogicY]>
]>;
def : InstRW<[JWriteFZeroIdiomY], (instrs VXORPSYrr, VXORPDYrr,
VANDNPSYrr, VANDNPDYrr)>;
def JWriteVZeroIdiomLogic : SchedWriteVariant<[
SchedVar<MCSchedPredicate<ZeroIdiomPredicate>, [JWriteZeroLatency]>,
SchedVar<NoSchedPred, [WriteVecLogic]>
]>;
def : InstRW<[JWriteVZeroIdiomLogic], (instrs MMX_PXORirr, MMX_PANDNirr)>;
def JWriteVZeroIdiomLogicX : SchedWriteVariant<[
SchedVar<MCSchedPredicate<ZeroIdiomPredicate>, [JWriteZeroLatency]>,
SchedVar<NoSchedPred, [WriteVecLogicX]>
]>;
def : InstRW<[JWriteVZeroIdiomLogicX], (instrs PXORrr, VPXORrr,
PANDNrr, VPANDNrr)>;
def JWriteVZeroIdiomALU : SchedWriteVariant<[
SchedVar<MCSchedPredicate<ZeroIdiomPredicate>, [JWriteZeroLatency]>,
SchedVar<NoSchedPred, [WriteVecALU]>
]>;
def : InstRW<[JWriteVZeroIdiomALU], (instrs MMX_PSUBBirr, MMX_PSUBDirr,
MMX_PSUBQirr, MMX_PSUBWirr,
MMX_PSUBSBirr, MMX_PSUBSWirr,
MMX_PSUBUSBirr, MMX_PSUBUSWirr,
MMX_PCMPGTBirr, MMX_PCMPGTDirr,
MMX_PCMPGTWirr)>;
def JWriteVZeroIdiomALUX : SchedWriteVariant<[
SchedVar<MCSchedPredicate<ZeroIdiomPredicate>, [JWriteZeroLatency]>,
SchedVar<NoSchedPred, [WriteVecALUX]>
]>;
def : InstRW<[JWriteVZeroIdiomALUX], (instrs PSUBBrr, VPSUBBrr,
PSUBDrr, VPSUBDrr,
PSUBQrr, VPSUBQrr,
PSUBWrr, VPSUBWrr,
PSUBSBrr, VPSUBSBrr,
PSUBSWrr, VPSUBSWrr,
PSUBUSBrr, VPSUBUSBrr,
PSUBUSWrr, VPSUBUSWrr,
PCMPGTBrr, VPCMPGTBrr,
PCMPGTDrr, VPCMPGTDrr,
PCMPGTQrr, VPCMPGTQrr,
PCMPGTWrr, VPCMPGTWrr)>;
def JWriteVPERM2F128 : SchedWriteVariant<[
SchedVar<MCSchedPredicate<ZeroIdiomVPERMPredicate>, [JWriteZeroIdiomYmm]>,
SchedVar<NoSchedPred, [WriteFShuffle256]>
]>;
def : InstRW<[JWriteVPERM2F128], (instrs VPERM2F128rr)>;
// This write is used for slow LEA instructions.
def JWrite3OpsLEA : SchedWriteRes<[JALU1, JSAGU]> {
let Latency = 2;
}
// On Jaguar, a slow LEA is either a 3Ops LEA (base, index, offset), or an LEA
// with a `Scale` value different than 1.
def JSlowLEAPredicate : MCSchedPredicate<
CheckAny<[
// A 3-operand LEA (base, index, offset).
IsThreeOperandsLEAFn,
// An LEA with a "Scale" different than 1.
CheckAll<[
CheckIsImmOperand<2>,
CheckNot<CheckImmOperand<2, 1>>
]>
]>
>;
def JWriteLEA : SchedWriteVariant<[
SchedVar<JSlowLEAPredicate, [JWrite3OpsLEA]>,
SchedVar<NoSchedPred, [WriteLEA]>
]>;
def : InstRW<[JWriteLEA], (instrs LEA32r, LEA64r, LEA64_32r)>;
def JSlowLEA16r : SchedWriteRes<[JALU01]> {
let Latency = 3;
let ResourceCycles = [4];
}
def : InstRW<[JSlowLEA16r], (instrs LEA16r)>;
///////////////////////////////////////////////////////////////////////////////
// Dependency breaking instructions.
///////////////////////////////////////////////////////////////////////////////
def : IsZeroIdiomFunction<[
// GPR Zero-idioms.
DepBreakingClass<[ SUB32rr, SUB64rr, XOR32rr, XOR64rr ], ZeroIdiomPredicate>,
// MMX Zero-idioms.
DepBreakingClass<[
MMX_PXORirr, MMX_PANDNirr, MMX_PSUBBirr,
MMX_PSUBDirr, MMX_PSUBQirr, MMX_PSUBWirr,
MMX_PSUBSBirr, MMX_PSUBSWirr, MMX_PSUBUSBirr, MMX_PSUBUSWirr,
MMX_PCMPGTBirr, MMX_PCMPGTDirr, MMX_PCMPGTWirr
], ZeroIdiomPredicate>,
// SSE Zero-idioms.
DepBreakingClass<[
// fp variants.
XORPSrr, XORPDrr, ANDNPSrr, ANDNPDrr,
// int variants.
PXORrr, PANDNrr,
PSUBBrr, PSUBWrr, PSUBDrr, PSUBQrr,
PSUBSBrr, PSUBSWrr, PSUBUSBrr, PSUBUSWrr,
PCMPGTBrr, PCMPGTDrr, PCMPGTQrr, PCMPGTWrr
], ZeroIdiomPredicate>,
// AVX Zero-idioms.
DepBreakingClass<[
// xmm fp variants.
VXORPSrr, VXORPDrr, VANDNPSrr, VANDNPDrr,
// xmm int variants.
VPXORrr, VPANDNrr,
VPSUBBrr, VPSUBWrr, VPSUBDrr, VPSUBQrr,
VPSUBSBrr, VPSUBSWrr, VPSUBUSBrr, VPSUBUSWrr,
VPCMPGTBrr, VPCMPGTWrr, VPCMPGTDrr, VPCMPGTQrr,
// ymm variants.
VXORPSYrr, VXORPDYrr, VANDNPSYrr, VANDNPDYrr
], ZeroIdiomPredicate>,
DepBreakingClass<[ VPERM2F128rr ], ZeroIdiomVPERMPredicate>
]>;
def : IsDepBreakingFunction<[
// GPR
DepBreakingClass<[ SBB32rr, SBB64rr ], ZeroIdiomPredicate>,
DepBreakingClass<[ CMP32rr, CMP64rr ], CheckSameRegOperand<0, 1> >,
// MMX
DepBreakingClass<[
MMX_PCMPEQBirr, MMX_PCMPEQDirr, MMX_PCMPEQWirr
], ZeroIdiomPredicate>,
// SSE
DepBreakingClass<[
PCMPEQBrr, PCMPEQWrr, PCMPEQDrr, PCMPEQQrr
], ZeroIdiomPredicate>,
// AVX
DepBreakingClass<[
VPCMPEQBrr, VPCMPEQWrr, VPCMPEQDrr, VPCMPEQQrr
], ZeroIdiomPredicate>
]>;
def : IsOptimizableRegisterMove<[
InstructionEquivalenceClass<[
// GPR variants.
MOV32rr, MOV64rr,
// MMX variants.
MMX_MOVQ64rr,
// SSE variants.
MOVAPSrr, MOVUPSrr,
MOVAPDrr, MOVUPDrr,
MOVDQArr, MOVDQUrr,
// AVX variants.
VMOVAPSrr, VMOVUPSrr,
VMOVAPDrr, VMOVUPDrr,
VMOVDQArr, VMOVDQUrr
], TruePred >
]>;
} // SchedModel