mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 12:12:47 +01:00
7fbb587058
As a follow-up to https://reviews.llvm.org/D104129, I'm cleaning up the danling probe related code in both the compiler and llvm-profgen. I'm seeing a 5% size win for the pseudo_probe section for SPEC2017 and 10% for Ciner. Certain benchmark such as 602.gcc has a 20% size win. No obvious difference seen on build time for SPEC2017 and Cinder. Reviewed By: wenlei Differential Revision: https://reviews.llvm.org/D104477
460 lines
16 KiB
C++
460 lines
16 KiB
C++
//===- SampleProfileProbe.cpp - Pseudo probe Instrumentation -------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the SampleProfileProber transformation.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/IPO/SampleProfileProbe.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/BlockFrequencyInfo.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/CFG.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DebugInfoMetadata.h"
|
|
#include "llvm/IR/GlobalValue.h"
|
|
#include "llvm/IR/GlobalVariable.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/MDBuilder.h"
|
|
#include "llvm/ProfileData/SampleProf.h"
|
|
#include "llvm/Support/CRC.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Transforms/Instrumentation.h"
|
|
#include "llvm/Transforms/Utils/ModuleUtils.h"
|
|
#include <unordered_set>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
#define DEBUG_TYPE "sample-profile-probe"
|
|
|
|
STATISTIC(ArtificialDbgLine,
|
|
"Number of probes that have an artificial debug line");
|
|
|
|
static cl::opt<bool>
|
|
VerifyPseudoProbe("verify-pseudo-probe", cl::init(false), cl::Hidden,
|
|
cl::desc("Do pseudo probe verification"));
|
|
|
|
static cl::list<std::string> VerifyPseudoProbeFuncList(
|
|
"verify-pseudo-probe-funcs", cl::Hidden,
|
|
cl::desc("The option to specify the name of the functions to verify."));
|
|
|
|
static cl::opt<bool>
|
|
UpdatePseudoProbe("update-pseudo-probe", cl::init(true), cl::Hidden,
|
|
cl::desc("Update pseudo probe distribution factor"));
|
|
|
|
static uint64_t getCallStackHash(const DILocation *DIL) {
|
|
uint64_t Hash = 0;
|
|
const DILocation *InlinedAt = DIL ? DIL->getInlinedAt() : nullptr;
|
|
while (InlinedAt) {
|
|
Hash ^= MD5Hash(std::to_string(InlinedAt->getLine()));
|
|
Hash ^= MD5Hash(std::to_string(InlinedAt->getColumn()));
|
|
const DISubprogram *SP = InlinedAt->getScope()->getSubprogram();
|
|
// Use linkage name for C++ if possible.
|
|
auto Name = SP->getLinkageName();
|
|
if (Name.empty())
|
|
Name = SP->getName();
|
|
Hash ^= MD5Hash(Name);
|
|
InlinedAt = InlinedAt->getInlinedAt();
|
|
}
|
|
return Hash;
|
|
}
|
|
|
|
static uint64_t computeCallStackHash(const Instruction &Inst) {
|
|
return getCallStackHash(Inst.getDebugLoc());
|
|
}
|
|
|
|
bool PseudoProbeVerifier::shouldVerifyFunction(const Function *F) {
|
|
// Skip function declaration.
|
|
if (F->isDeclaration())
|
|
return false;
|
|
// Skip function that will not be emitted into object file. The prevailing
|
|
// defintion will be verified instead.
|
|
if (F->hasAvailableExternallyLinkage())
|
|
return false;
|
|
// Do a name matching.
|
|
static std::unordered_set<std::string> VerifyFuncNames(
|
|
VerifyPseudoProbeFuncList.begin(), VerifyPseudoProbeFuncList.end());
|
|
return VerifyFuncNames.empty() || VerifyFuncNames.count(F->getName().str());
|
|
}
|
|
|
|
void PseudoProbeVerifier::registerCallbacks(PassInstrumentationCallbacks &PIC) {
|
|
if (VerifyPseudoProbe) {
|
|
PIC.registerAfterPassCallback(
|
|
[this](StringRef P, Any IR, const PreservedAnalyses &) {
|
|
this->runAfterPass(P, IR);
|
|
});
|
|
}
|
|
}
|
|
|
|
// Callback to run after each transformation for the new pass manager.
|
|
void PseudoProbeVerifier::runAfterPass(StringRef PassID, Any IR) {
|
|
std::string Banner =
|
|
"\n*** Pseudo Probe Verification After " + PassID.str() + " ***\n";
|
|
dbgs() << Banner;
|
|
if (any_isa<const Module *>(IR))
|
|
runAfterPass(any_cast<const Module *>(IR));
|
|
else if (any_isa<const Function *>(IR))
|
|
runAfterPass(any_cast<const Function *>(IR));
|
|
else if (any_isa<const LazyCallGraph::SCC *>(IR))
|
|
runAfterPass(any_cast<const LazyCallGraph::SCC *>(IR));
|
|
else if (any_isa<const Loop *>(IR))
|
|
runAfterPass(any_cast<const Loop *>(IR));
|
|
else
|
|
llvm_unreachable("Unknown IR unit");
|
|
}
|
|
|
|
void PseudoProbeVerifier::runAfterPass(const Module *M) {
|
|
for (const Function &F : *M)
|
|
runAfterPass(&F);
|
|
}
|
|
|
|
void PseudoProbeVerifier::runAfterPass(const LazyCallGraph::SCC *C) {
|
|
for (const LazyCallGraph::Node &N : *C)
|
|
runAfterPass(&N.getFunction());
|
|
}
|
|
|
|
void PseudoProbeVerifier::runAfterPass(const Function *F) {
|
|
if (!shouldVerifyFunction(F))
|
|
return;
|
|
ProbeFactorMap ProbeFactors;
|
|
for (const auto &BB : *F)
|
|
collectProbeFactors(&BB, ProbeFactors);
|
|
verifyProbeFactors(F, ProbeFactors);
|
|
}
|
|
|
|
void PseudoProbeVerifier::runAfterPass(const Loop *L) {
|
|
const Function *F = L->getHeader()->getParent();
|
|
runAfterPass(F);
|
|
}
|
|
|
|
void PseudoProbeVerifier::collectProbeFactors(const BasicBlock *Block,
|
|
ProbeFactorMap &ProbeFactors) {
|
|
for (const auto &I : *Block) {
|
|
if (Optional<PseudoProbe> Probe = extractProbe(I)) {
|
|
uint64_t Hash = computeCallStackHash(I);
|
|
ProbeFactors[{Probe->Id, Hash}] += Probe->Factor;
|
|
}
|
|
}
|
|
}
|
|
|
|
void PseudoProbeVerifier::verifyProbeFactors(
|
|
const Function *F, const ProbeFactorMap &ProbeFactors) {
|
|
bool BannerPrinted = false;
|
|
auto &PrevProbeFactors = FunctionProbeFactors[F->getName()];
|
|
for (const auto &I : ProbeFactors) {
|
|
float CurProbeFactor = I.second;
|
|
if (PrevProbeFactors.count(I.first)) {
|
|
float PrevProbeFactor = PrevProbeFactors[I.first];
|
|
if (std::abs(CurProbeFactor - PrevProbeFactor) >
|
|
DistributionFactorVariance) {
|
|
if (!BannerPrinted) {
|
|
dbgs() << "Function " << F->getName() << ":\n";
|
|
BannerPrinted = true;
|
|
}
|
|
dbgs() << "Probe " << I.first.first << "\tprevious factor "
|
|
<< format("%0.2f", PrevProbeFactor) << "\tcurrent factor "
|
|
<< format("%0.2f", CurProbeFactor) << "\n";
|
|
}
|
|
}
|
|
|
|
// Update
|
|
PrevProbeFactors[I.first] = I.second;
|
|
}
|
|
}
|
|
|
|
PseudoProbeManager::PseudoProbeManager(const Module &M) {
|
|
if (NamedMDNode *FuncInfo = M.getNamedMetadata(PseudoProbeDescMetadataName)) {
|
|
for (const auto *Operand : FuncInfo->operands()) {
|
|
const auto *MD = cast<MDNode>(Operand);
|
|
auto GUID =
|
|
mdconst::dyn_extract<ConstantInt>(MD->getOperand(0))->getZExtValue();
|
|
auto Hash =
|
|
mdconst::dyn_extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
|
|
GUIDToProbeDescMap.try_emplace(GUID, PseudoProbeDescriptor(GUID, Hash));
|
|
}
|
|
}
|
|
}
|
|
|
|
const PseudoProbeDescriptor *
|
|
PseudoProbeManager::getDesc(const Function &F) const {
|
|
auto I = GUIDToProbeDescMap.find(
|
|
Function::getGUID(FunctionSamples::getCanonicalFnName(F)));
|
|
return I == GUIDToProbeDescMap.end() ? nullptr : &I->second;
|
|
}
|
|
|
|
bool PseudoProbeManager::moduleIsProbed(const Module &M) const {
|
|
return M.getNamedMetadata(PseudoProbeDescMetadataName);
|
|
}
|
|
|
|
bool PseudoProbeManager::profileIsValid(const Function &F,
|
|
const FunctionSamples &Samples) const {
|
|
const auto *Desc = getDesc(F);
|
|
if (!Desc) {
|
|
LLVM_DEBUG(dbgs() << "Probe descriptor missing for Function " << F.getName()
|
|
<< "\n");
|
|
return false;
|
|
} else {
|
|
if (Desc->getFunctionHash() != Samples.getFunctionHash()) {
|
|
LLVM_DEBUG(dbgs() << "Hash mismatch for Function " << F.getName()
|
|
<< "\n");
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
SampleProfileProber::SampleProfileProber(Function &Func,
|
|
const std::string &CurModuleUniqueId)
|
|
: F(&Func), CurModuleUniqueId(CurModuleUniqueId) {
|
|
BlockProbeIds.clear();
|
|
CallProbeIds.clear();
|
|
LastProbeId = (uint32_t)PseudoProbeReservedId::Last;
|
|
computeProbeIdForBlocks();
|
|
computeProbeIdForCallsites();
|
|
computeCFGHash();
|
|
}
|
|
|
|
// Compute Hash value for the CFG: the lower 32 bits are CRC32 of the index
|
|
// value of each BB in the CFG. The higher 32 bits record the number of edges
|
|
// preceded by the number of indirect calls.
|
|
// This is derived from FuncPGOInstrumentation<Edge, BBInfo>::computeCFGHash().
|
|
void SampleProfileProber::computeCFGHash() {
|
|
std::vector<uint8_t> Indexes;
|
|
JamCRC JC;
|
|
for (auto &BB : *F) {
|
|
auto *TI = BB.getTerminator();
|
|
for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) {
|
|
auto *Succ = TI->getSuccessor(I);
|
|
auto Index = getBlockId(Succ);
|
|
for (int J = 0; J < 4; J++)
|
|
Indexes.push_back((uint8_t)(Index >> (J * 8)));
|
|
}
|
|
}
|
|
|
|
JC.update(Indexes);
|
|
|
|
FunctionHash = (uint64_t)CallProbeIds.size() << 48 |
|
|
(uint64_t)Indexes.size() << 32 | JC.getCRC();
|
|
// Reserve bit 60-63 for other information purpose.
|
|
FunctionHash &= 0x0FFFFFFFFFFFFFFF;
|
|
assert(FunctionHash && "Function checksum should not be zero");
|
|
LLVM_DEBUG(dbgs() << "\nFunction Hash Computation for " << F->getName()
|
|
<< ":\n"
|
|
<< " CRC = " << JC.getCRC() << ", Edges = "
|
|
<< Indexes.size() << ", ICSites = " << CallProbeIds.size()
|
|
<< ", Hash = " << FunctionHash << "\n");
|
|
}
|
|
|
|
void SampleProfileProber::computeProbeIdForBlocks() {
|
|
for (auto &BB : *F) {
|
|
BlockProbeIds[&BB] = ++LastProbeId;
|
|
}
|
|
}
|
|
|
|
void SampleProfileProber::computeProbeIdForCallsites() {
|
|
for (auto &BB : *F) {
|
|
for (auto &I : BB) {
|
|
if (!isa<CallBase>(I))
|
|
continue;
|
|
if (isa<IntrinsicInst>(&I))
|
|
continue;
|
|
CallProbeIds[&I] = ++LastProbeId;
|
|
}
|
|
}
|
|
}
|
|
|
|
uint32_t SampleProfileProber::getBlockId(const BasicBlock *BB) const {
|
|
auto I = BlockProbeIds.find(const_cast<BasicBlock *>(BB));
|
|
return I == BlockProbeIds.end() ? 0 : I->second;
|
|
}
|
|
|
|
uint32_t SampleProfileProber::getCallsiteId(const Instruction *Call) const {
|
|
auto Iter = CallProbeIds.find(const_cast<Instruction *>(Call));
|
|
return Iter == CallProbeIds.end() ? 0 : Iter->second;
|
|
}
|
|
|
|
void SampleProfileProber::instrumentOneFunc(Function &F, TargetMachine *TM) {
|
|
Module *M = F.getParent();
|
|
MDBuilder MDB(F.getContext());
|
|
// Compute a GUID without considering the function's linkage type. This is
|
|
// fine since function name is the only key in the profile database.
|
|
uint64_t Guid = Function::getGUID(F.getName());
|
|
|
|
// Assign an artificial debug line to a probe that doesn't come with a real
|
|
// line. A probe not having a debug line will get an incomplete inline
|
|
// context. This will cause samples collected on the probe to be counted
|
|
// into the base profile instead of a context profile. The line number
|
|
// itself is not important though.
|
|
auto AssignDebugLoc = [&](Instruction *I) {
|
|
assert((isa<PseudoProbeInst>(I) || isa<CallBase>(I)) &&
|
|
"Expecting pseudo probe or call instructions");
|
|
if (!I->getDebugLoc()) {
|
|
if (auto *SP = F.getSubprogram()) {
|
|
auto DIL = DILocation::get(SP->getContext(), 0, 0, SP);
|
|
I->setDebugLoc(DIL);
|
|
ArtificialDbgLine++;
|
|
LLVM_DEBUG({
|
|
dbgs() << "\nIn Function " << F.getName()
|
|
<< " Probe gets an artificial debug line\n";
|
|
I->dump();
|
|
});
|
|
}
|
|
}
|
|
};
|
|
|
|
// Probe basic blocks.
|
|
for (auto &I : BlockProbeIds) {
|
|
BasicBlock *BB = I.first;
|
|
uint32_t Index = I.second;
|
|
// Insert a probe before an instruction with a valid debug line number which
|
|
// will be assigned to the probe. The line number will be used later to
|
|
// model the inline context when the probe is inlined into other functions.
|
|
// Debug instructions, phi nodes and lifetime markers do not have an valid
|
|
// line number. Real instructions generated by optimizations may not come
|
|
// with a line number either.
|
|
auto HasValidDbgLine = [](Instruction *J) {
|
|
return !isa<PHINode>(J) && !isa<DbgInfoIntrinsic>(J) &&
|
|
!J->isLifetimeStartOrEnd() && J->getDebugLoc();
|
|
};
|
|
|
|
Instruction *J = &*BB->getFirstInsertionPt();
|
|
while (J != BB->getTerminator() && !HasValidDbgLine(J)) {
|
|
J = J->getNextNode();
|
|
}
|
|
|
|
IRBuilder<> Builder(J);
|
|
assert(Builder.GetInsertPoint() != BB->end() &&
|
|
"Cannot get the probing point");
|
|
Function *ProbeFn =
|
|
llvm::Intrinsic::getDeclaration(M, Intrinsic::pseudoprobe);
|
|
Value *Args[] = {Builder.getInt64(Guid), Builder.getInt64(Index),
|
|
Builder.getInt32(0),
|
|
Builder.getInt64(PseudoProbeFullDistributionFactor)};
|
|
auto *Probe = Builder.CreateCall(ProbeFn, Args);
|
|
AssignDebugLoc(Probe);
|
|
}
|
|
|
|
// Probe both direct calls and indirect calls. Direct calls are probed so that
|
|
// their probe ID can be used as an call site identifier to represent a
|
|
// calling context.
|
|
for (auto &I : CallProbeIds) {
|
|
auto *Call = I.first;
|
|
uint32_t Index = I.second;
|
|
uint32_t Type = cast<CallBase>(Call)->getCalledFunction()
|
|
? (uint32_t)PseudoProbeType::DirectCall
|
|
: (uint32_t)PseudoProbeType::IndirectCall;
|
|
AssignDebugLoc(Call);
|
|
// Levarge the 32-bit discriminator field of debug data to store the ID and
|
|
// type of a callsite probe. This gets rid of the dependency on plumbing a
|
|
// customized metadata through the codegen pipeline.
|
|
uint32_t V = PseudoProbeDwarfDiscriminator::packProbeData(
|
|
Index, Type, 0, PseudoProbeDwarfDiscriminator::FullDistributionFactor);
|
|
if (auto DIL = Call->getDebugLoc()) {
|
|
DIL = DIL->cloneWithDiscriminator(V);
|
|
Call->setDebugLoc(DIL);
|
|
}
|
|
}
|
|
|
|
// Create module-level metadata that contains function info necessary to
|
|
// synthesize probe-based sample counts, which are
|
|
// - FunctionGUID
|
|
// - FunctionHash.
|
|
// - FunctionName
|
|
auto Hash = getFunctionHash();
|
|
auto *MD = MDB.createPseudoProbeDesc(Guid, Hash, &F);
|
|
auto *NMD = M->getNamedMetadata(PseudoProbeDescMetadataName);
|
|
assert(NMD && "llvm.pseudo_probe_desc should be pre-created");
|
|
NMD->addOperand(MD);
|
|
|
|
// Preserve a comdat group to hold all probes materialized later. This
|
|
// allows that when the function is considered dead and removed, the
|
|
// materialized probes are disposed too.
|
|
// Imported functions are defined in another module. They do not need
|
|
// the following handling since same care will be taken for them in their
|
|
// original module. The pseudo probes inserted into an imported functions
|
|
// above will naturally not be emitted since the imported function is free
|
|
// from object emission. However they will be emitted together with the
|
|
// inliner functions that the imported function is inlined into. We are not
|
|
// creating a comdat group for an import function since it's useless anyway.
|
|
if (!F.isDeclarationForLinker()) {
|
|
if (TM) {
|
|
auto Triple = TM->getTargetTriple();
|
|
if (Triple.supportsCOMDAT() && TM->getFunctionSections())
|
|
getOrCreateFunctionComdat(F, Triple);
|
|
}
|
|
}
|
|
}
|
|
|
|
PreservedAnalyses SampleProfileProbePass::run(Module &M,
|
|
ModuleAnalysisManager &AM) {
|
|
auto ModuleId = getUniqueModuleId(&M);
|
|
// Create the pseudo probe desc metadata beforehand.
|
|
// Note that modules with only data but no functions will require this to
|
|
// be set up so that they will be known as probed later.
|
|
M.getOrInsertNamedMetadata(PseudoProbeDescMetadataName);
|
|
|
|
for (auto &F : M) {
|
|
if (F.isDeclaration())
|
|
continue;
|
|
SampleProfileProber ProbeManager(F, ModuleId);
|
|
ProbeManager.instrumentOneFunc(F, TM);
|
|
}
|
|
|
|
return PreservedAnalyses::none();
|
|
}
|
|
|
|
void PseudoProbeUpdatePass::runOnFunction(Function &F,
|
|
FunctionAnalysisManager &FAM) {
|
|
BlockFrequencyInfo &BFI = FAM.getResult<BlockFrequencyAnalysis>(F);
|
|
auto BBProfileCount = [&BFI](BasicBlock *BB) {
|
|
return BFI.getBlockProfileCount(BB)
|
|
? BFI.getBlockProfileCount(BB).getValue()
|
|
: 0;
|
|
};
|
|
|
|
// Collect the sum of execution weight for each probe.
|
|
ProbeFactorMap ProbeFactors;
|
|
for (auto &Block : F) {
|
|
for (auto &I : Block) {
|
|
if (Optional<PseudoProbe> Probe = extractProbe(I)) {
|
|
uint64_t Hash = computeCallStackHash(I);
|
|
ProbeFactors[{Probe->Id, Hash}] += BBProfileCount(&Block);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Fix up over-counted probes.
|
|
for (auto &Block : F) {
|
|
for (auto &I : Block) {
|
|
if (Optional<PseudoProbe> Probe = extractProbe(I)) {
|
|
uint64_t Hash = computeCallStackHash(I);
|
|
float Sum = ProbeFactors[{Probe->Id, Hash}];
|
|
if (Sum != 0)
|
|
setProbeDistributionFactor(I, BBProfileCount(&Block) / Sum);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
PreservedAnalyses PseudoProbeUpdatePass::run(Module &M,
|
|
ModuleAnalysisManager &AM) {
|
|
if (UpdatePseudoProbe) {
|
|
for (auto &F : M) {
|
|
if (F.isDeclaration())
|
|
continue;
|
|
FunctionAnalysisManager &FAM =
|
|
AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
|
|
runOnFunction(F, FAM);
|
|
}
|
|
}
|
|
return PreservedAnalyses::none();
|
|
}
|