1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 20:23:11 +01:00
llvm-mirror/test/CodeGen/SystemZ/int-uadd-10.ll
Ulrich Weigand 0c16dcd701 [SystemZ] Handle SADDO et.al. and ADD/SUBCARRY
This provides an optimized implementation of SADDO/SSUBO/UADDO/USUBO
as well as ADDCARRY/SUBCARRY on top of the new CC implementation.

In particular, multi-word arithmetic now uses UADDO/ADDCARRY instead
of the old ADDC/ADDE logic, which means we no longer need to use
"glue" links for those instructions.  This also allows making full
use of the memory-based instructions like ALSI, which couldn't be
recognized due to limitations in the DAG matcher previously.

Also, the llvm.sadd.with.overflow et.al. intrinsincs now expand to
directly using the ADD instructions and checking for a CC 3 result.

llvm-svn: 331203
2018-04-30 17:54:28 +00:00

481 lines
17 KiB
LLVM

; Test 32-bit additions of constants to memory.
;
; RUN: llc < %s -mtriple=s390x-linux-gnu | FileCheck %s
declare i32 @foo()
; Check addition of 1.
define zeroext i1 @f1(i32 *%ptr) {
; CHECK-LABEL: f1:
; CHECK: alsi 0(%r2), 1
; CHECK: ipm [[REG:%r[0-5]]]
; CHECK: risbg %r2, [[REG]], 63, 191, 35
; CHECK: br %r14
%a = load i32, i32 *%ptr
%t = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 1)
%val = extractvalue {i32, i1} %t, 0
%obit = extractvalue {i32, i1} %t, 1
store i32 %val, i32 *%ptr
ret i1 %obit
}
; Check the high end of the constant range.
define zeroext i1 @f2(i32 *%ptr) {
; CHECK-LABEL: f2:
; CHECK: alsi 0(%r2), 127
; CHECK: ipm [[REG:%r[0-5]]]
; CHECK: risbg %r2, [[REG]], 63, 191, 35
; CHECK: br %r14
%a = load i32, i32 *%ptr
%t = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 127)
%val = extractvalue {i32, i1} %t, 0
%obit = extractvalue {i32, i1} %t, 1
store i32 %val, i32 *%ptr
ret i1 %obit
}
; Check the next constant up, which must use an addition and a store.
define zeroext i1 @f3(i32 %dummy, i32 *%ptr) {
; CHECK-LABEL: f3:
; CHECK: l [[VAL:%r[0-5]]], 0(%r3)
; CHECK: alfi [[VAL]], 128
; CHECK-DAG: st [[VAL]], 0(%r3)
; CHECK-DAG: ipm [[REG:%r[0-5]]]
; CHECK-DAG: risbg %r2, [[REG]], 63, 191, 35
; CHECK: br %r14
%a = load i32, i32 *%ptr
%t = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 128)
%val = extractvalue {i32, i1} %t, 0
%obit = extractvalue {i32, i1} %t, 1
store i32 %val, i32 *%ptr
ret i1 %obit
}
; Check the low end of the constant range.
define zeroext i1 @f4(i32 *%ptr) {
; CHECK-LABEL: f4:
; CHECK: alsi 0(%r2), -128
; CHECK: ipm [[REG:%r[0-5]]]
; CHECK: risbg %r2, [[REG]], 63, 191, 35
; CHECK: br %r14
%a = load i32, i32 *%ptr
%t = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 -128)
%val = extractvalue {i32, i1} %t, 0
%obit = extractvalue {i32, i1} %t, 1
store i32 %val, i32 *%ptr
ret i1 %obit
}
; Check the next value down, with the same comment as f3.
define zeroext i1 @f5(i32 %dummy, i32 *%ptr) {
; CHECK-LABEL: f5:
; CHECK: l [[VAL:%r[0-5]]], 0(%r3)
; CHECK: alfi [[VAL]], 4294967167
; CHECK-DAG: st [[VAL]], 0(%r3)
; CHECK-DAG: ipm [[REG:%r[0-5]]]
; CHECK-DAG: risbg %r2, [[REG]], 63, 191, 35
; CHECK: br %r14
%a = load i32, i32 *%ptr
%t = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 -129)
%val = extractvalue {i32, i1} %t, 0
%obit = extractvalue {i32, i1} %t, 1
store i32 %val, i32 *%ptr
ret i1 %obit
}
; Check the high end of the aligned ALSI range.
define zeroext i1 @f6(i32 *%base) {
; CHECK-LABEL: f6:
; CHECK: alsi 524284(%r2), 1
; CHECK: ipm [[REG:%r[0-5]]]
; CHECK: risbg %r2, [[REG]], 63, 191, 35
; CHECK: br %r14
%ptr = getelementptr i32, i32 *%base, i64 131071
%a = load i32, i32 *%ptr
%t = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 1)
%val = extractvalue {i32, i1} %t, 0
%obit = extractvalue {i32, i1} %t, 1
store i32 %val, i32 *%ptr
ret i1 %obit
}
; Check the next word up, which must use separate address logic.
; Other sequences besides this one would be OK.
define zeroext i1 @f7(i32 *%base) {
; CHECK-LABEL: f7:
; CHECK: agfi %r2, 524288
; CHECK: alsi 0(%r2), 1
; CHECK: ipm [[REG:%r[0-5]]]
; CHECK: risbg %r2, [[REG]], 63, 191, 35
; CHECK: br %r14
%ptr = getelementptr i32, i32 *%base, i64 131072
%a = load i32, i32 *%ptr
%t = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 1)
%val = extractvalue {i32, i1} %t, 0
%obit = extractvalue {i32, i1} %t, 1
store i32 %val, i32 *%ptr
ret i1 %obit
}
; Check the low end of the ALSI range.
define zeroext i1 @f8(i32 *%base) {
; CHECK-LABEL: f8:
; CHECK: alsi -524288(%r2), 1
; CHECK: ipm [[REG:%r[0-5]]]
; CHECK: risbg %r2, [[REG]], 63, 191, 35
; CHECK: br %r14
%ptr = getelementptr i32, i32 *%base, i64 -131072
%a = load i32, i32 *%ptr
%t = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 1)
%val = extractvalue {i32, i1} %t, 0
%obit = extractvalue {i32, i1} %t, 1
store i32 %val, i32 *%ptr
ret i1 %obit
}
; Check the next word down, which must use separate address logic.
; Other sequences besides this one would be OK.
define zeroext i1 @f9(i32 *%base) {
; CHECK-LABEL: f9:
; CHECK: agfi %r2, -524292
; CHECK: alsi 0(%r2), 1
; CHECK: ipm [[REG:%r[0-5]]]
; CHECK: risbg %r2, [[REG]], 63, 191, 35
; CHECK: br %r14
%ptr = getelementptr i32, i32 *%base, i64 -131073
%a = load i32, i32 *%ptr
%t = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 1)
%val = extractvalue {i32, i1} %t, 0
%obit = extractvalue {i32, i1} %t, 1
store i32 %val, i32 *%ptr
ret i1 %obit
}
; Check that ALSI does not allow indices.
define zeroext i1 @f10(i64 %base, i64 %index) {
; CHECK-LABEL: f10:
; CHECK: agr %r2, %r3
; CHECK: alsi 4(%r2), 1
; CHECK: ipm [[REG:%r[0-5]]]
; CHECK: risbg %r2, [[REG]], 63, 191, 35
; CHECK: br %r14
%add1 = add i64 %base, %index
%add2 = add i64 %add1, 4
%ptr = inttoptr i64 %add2 to i32 *
%a = load i32, i32 *%ptr
%t = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 1)
%val = extractvalue {i32, i1} %t, 0
%obit = extractvalue {i32, i1} %t, 1
store i32 %val, i32 *%ptr
ret i1 %obit
}
; Check that adding 127 to a spilled value can use ALSI.
define zeroext i1 @f11(i32 *%ptr, i32 %sel) {
; CHECK-LABEL: f11:
; CHECK: alsi {{[0-9]+}}(%r15), 127
; CHECK: br %r14
entry:
%val0 = load volatile i32, i32 *%ptr
%val1 = load volatile i32, i32 *%ptr
%val2 = load volatile i32, i32 *%ptr
%val3 = load volatile i32, i32 *%ptr
%val4 = load volatile i32, i32 *%ptr
%val5 = load volatile i32, i32 *%ptr
%val6 = load volatile i32, i32 *%ptr
%val7 = load volatile i32, i32 *%ptr
%val8 = load volatile i32, i32 *%ptr
%val9 = load volatile i32, i32 *%ptr
%val10 = load volatile i32, i32 *%ptr
%val11 = load volatile i32, i32 *%ptr
%val12 = load volatile i32, i32 *%ptr
%val13 = load volatile i32, i32 *%ptr
%val14 = load volatile i32, i32 *%ptr
%val15 = load volatile i32, i32 *%ptr
%test = icmp ne i32 %sel, 0
br i1 %test, label %add, label %store
add:
%t0 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %val0, i32 127)
%add0 = extractvalue {i32, i1} %t0, 0
%obit0 = extractvalue {i32, i1} %t0, 1
%t1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %val1, i32 127)
%add1 = extractvalue {i32, i1} %t1, 0
%obit1 = extractvalue {i32, i1} %t1, 1
%res1 = or i1 %obit0, %obit1
%t2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %val2, i32 127)
%add2 = extractvalue {i32, i1} %t2, 0
%obit2 = extractvalue {i32, i1} %t2, 1
%res2 = or i1 %res1, %obit2
%t3 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %val3, i32 127)
%add3 = extractvalue {i32, i1} %t3, 0
%obit3 = extractvalue {i32, i1} %t3, 1
%res3 = or i1 %res2, %obit3
%t4 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %val4, i32 127)
%add4 = extractvalue {i32, i1} %t4, 0
%obit4 = extractvalue {i32, i1} %t4, 1
%res4 = or i1 %res3, %obit4
%t5 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %val5, i32 127)
%add5 = extractvalue {i32, i1} %t5, 0
%obit5 = extractvalue {i32, i1} %t5, 1
%res5 = or i1 %res4, %obit5
%t6 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %val6, i32 127)
%add6 = extractvalue {i32, i1} %t6, 0
%obit6 = extractvalue {i32, i1} %t6, 1
%res6 = or i1 %res5, %obit6
%t7 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %val7, i32 127)
%add7 = extractvalue {i32, i1} %t7, 0
%obit7 = extractvalue {i32, i1} %t7, 1
%res7 = or i1 %res6, %obit7
%t8 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %val8, i32 127)
%add8 = extractvalue {i32, i1} %t8, 0
%obit8 = extractvalue {i32, i1} %t8, 1
%res8 = or i1 %res7, %obit8
%t9 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %val9, i32 127)
%add9 = extractvalue {i32, i1} %t9, 0
%obit9 = extractvalue {i32, i1} %t9, 1
%res9 = or i1 %res8, %obit9
%t10 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %val10, i32 127)
%add10 = extractvalue {i32, i1} %t10, 0
%obit10 = extractvalue {i32, i1} %t10, 1
%res10 = or i1 %res9, %obit10
%t11 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %val11, i32 127)
%add11 = extractvalue {i32, i1} %t11, 0
%obit11 = extractvalue {i32, i1} %t11, 1
%res11 = or i1 %res10, %obit11
%t12 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %val12, i32 127)
%add12 = extractvalue {i32, i1} %t12, 0
%obit12 = extractvalue {i32, i1} %t12, 1
%res12 = or i1 %res11, %obit12
%t13 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %val13, i32 127)
%add13 = extractvalue {i32, i1} %t13, 0
%obit13 = extractvalue {i32, i1} %t13, 1
%res13 = or i1 %res12, %obit13
%t14 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %val14, i32 127)
%add14 = extractvalue {i32, i1} %t14, 0
%obit14 = extractvalue {i32, i1} %t14, 1
%res14 = or i1 %res13, %obit14
%t15 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %val15, i32 127)
%add15 = extractvalue {i32, i1} %t15, 0
%obit15 = extractvalue {i32, i1} %t15, 1
%res15 = or i1 %res14, %obit15
br label %store
store:
%new0 = phi i32 [ %val0, %entry ], [ %add0, %add ]
%new1 = phi i32 [ %val1, %entry ], [ %add1, %add ]
%new2 = phi i32 [ %val2, %entry ], [ %add2, %add ]
%new3 = phi i32 [ %val3, %entry ], [ %add3, %add ]
%new4 = phi i32 [ %val4, %entry ], [ %add4, %add ]
%new5 = phi i32 [ %val5, %entry ], [ %add5, %add ]
%new6 = phi i32 [ %val6, %entry ], [ %add6, %add ]
%new7 = phi i32 [ %val7, %entry ], [ %add7, %add ]
%new8 = phi i32 [ %val8, %entry ], [ %add8, %add ]
%new9 = phi i32 [ %val9, %entry ], [ %add9, %add ]
%new10 = phi i32 [ %val10, %entry ], [ %add10, %add ]
%new11 = phi i32 [ %val11, %entry ], [ %add11, %add ]
%new12 = phi i32 [ %val12, %entry ], [ %add12, %add ]
%new13 = phi i32 [ %val13, %entry ], [ %add13, %add ]
%new14 = phi i32 [ %val14, %entry ], [ %add14, %add ]
%new15 = phi i32 [ %val15, %entry ], [ %add15, %add ]
%res = phi i1 [ 0, %entry ], [ %res15, %add ]
store volatile i32 %new0, i32 *%ptr
store volatile i32 %new1, i32 *%ptr
store volatile i32 %new2, i32 *%ptr
store volatile i32 %new3, i32 *%ptr
store volatile i32 %new4, i32 *%ptr
store volatile i32 %new5, i32 *%ptr
store volatile i32 %new6, i32 *%ptr
store volatile i32 %new7, i32 *%ptr
store volatile i32 %new8, i32 *%ptr
store volatile i32 %new9, i32 *%ptr
store volatile i32 %new10, i32 *%ptr
store volatile i32 %new11, i32 *%ptr
store volatile i32 %new12, i32 *%ptr
store volatile i32 %new13, i32 *%ptr
store volatile i32 %new14, i32 *%ptr
store volatile i32 %new15, i32 *%ptr
ret i1 %res
}
; Check that adding -128 to a spilled value can use ALSI.
define zeroext i1 @f12(i32 *%ptr, i32 %sel) {
; CHECK-LABEL: f12:
; CHECK: alsi {{[0-9]+}}(%r15), -128
; CHECK: br %r14
entry:
%val0 = load volatile i32, i32 *%ptr
%val1 = load volatile i32, i32 *%ptr
%val2 = load volatile i32, i32 *%ptr
%val3 = load volatile i32, i32 *%ptr
%val4 = load volatile i32, i32 *%ptr
%val5 = load volatile i32, i32 *%ptr
%val6 = load volatile i32, i32 *%ptr
%val7 = load volatile i32, i32 *%ptr
%val8 = load volatile i32, i32 *%ptr
%val9 = load volatile i32, i32 *%ptr
%val10 = load volatile i32, i32 *%ptr
%val11 = load volatile i32, i32 *%ptr
%val12 = load volatile i32, i32 *%ptr
%val13 = load volatile i32, i32 *%ptr
%val14 = load volatile i32, i32 *%ptr
%val15 = load volatile i32, i32 *%ptr
%test = icmp ne i32 %sel, 0
br i1 %test, label %add, label %store
add:
%t0 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %val0, i32 -128)
%add0 = extractvalue {i32, i1} %t0, 0
%obit0 = extractvalue {i32, i1} %t0, 1
%t1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %val1, i32 -128)
%add1 = extractvalue {i32, i1} %t1, 0
%obit1 = extractvalue {i32, i1} %t1, 1
%res1 = or i1 %obit0, %obit1
%t2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %val2, i32 -128)
%add2 = extractvalue {i32, i1} %t2, 0
%obit2 = extractvalue {i32, i1} %t2, 1
%res2 = or i1 %res1, %obit2
%t3 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %val3, i32 -128)
%add3 = extractvalue {i32, i1} %t3, 0
%obit3 = extractvalue {i32, i1} %t3, 1
%res3 = or i1 %res2, %obit3
%t4 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %val4, i32 -128)
%add4 = extractvalue {i32, i1} %t4, 0
%obit4 = extractvalue {i32, i1} %t4, 1
%res4 = or i1 %res3, %obit4
%t5 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %val5, i32 -128)
%add5 = extractvalue {i32, i1} %t5, 0
%obit5 = extractvalue {i32, i1} %t5, 1
%res5 = or i1 %res4, %obit5
%t6 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %val6, i32 -128)
%add6 = extractvalue {i32, i1} %t6, 0
%obit6 = extractvalue {i32, i1} %t6, 1
%res6 = or i1 %res5, %obit6
%t7 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %val7, i32 -128)
%add7 = extractvalue {i32, i1} %t7, 0
%obit7 = extractvalue {i32, i1} %t7, 1
%res7 = or i1 %res6, %obit7
%t8 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %val8, i32 -128)
%add8 = extractvalue {i32, i1} %t8, 0
%obit8 = extractvalue {i32, i1} %t8, 1
%res8 = or i1 %res7, %obit8
%t9 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %val9, i32 -128)
%add9 = extractvalue {i32, i1} %t9, 0
%obit9 = extractvalue {i32, i1} %t9, 1
%res9 = or i1 %res8, %obit9
%t10 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %val10, i32 -128)
%add10 = extractvalue {i32, i1} %t10, 0
%obit10 = extractvalue {i32, i1} %t10, 1
%res10 = or i1 %res9, %obit10
%t11 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %val11, i32 -128)
%add11 = extractvalue {i32, i1} %t11, 0
%obit11 = extractvalue {i32, i1} %t11, 1
%res11 = or i1 %res10, %obit11
%t12 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %val12, i32 -128)
%add12 = extractvalue {i32, i1} %t12, 0
%obit12 = extractvalue {i32, i1} %t12, 1
%res12 = or i1 %res11, %obit12
%t13 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %val13, i32 -128)
%add13 = extractvalue {i32, i1} %t13, 0
%obit13 = extractvalue {i32, i1} %t13, 1
%res13 = or i1 %res12, %obit13
%t14 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %val14, i32 -128)
%add14 = extractvalue {i32, i1} %t14, 0
%obit14 = extractvalue {i32, i1} %t14, 1
%res14 = or i1 %res13, %obit14
%t15 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %val15, i32 -128)
%add15 = extractvalue {i32, i1} %t15, 0
%obit15 = extractvalue {i32, i1} %t15, 1
%res15 = or i1 %res14, %obit15
br label %store
store:
%new0 = phi i32 [ %val0, %entry ], [ %add0, %add ]
%new1 = phi i32 [ %val1, %entry ], [ %add1, %add ]
%new2 = phi i32 [ %val2, %entry ], [ %add2, %add ]
%new3 = phi i32 [ %val3, %entry ], [ %add3, %add ]
%new4 = phi i32 [ %val4, %entry ], [ %add4, %add ]
%new5 = phi i32 [ %val5, %entry ], [ %add5, %add ]
%new6 = phi i32 [ %val6, %entry ], [ %add6, %add ]
%new7 = phi i32 [ %val7, %entry ], [ %add7, %add ]
%new8 = phi i32 [ %val8, %entry ], [ %add8, %add ]
%new9 = phi i32 [ %val9, %entry ], [ %add9, %add ]
%new10 = phi i32 [ %val10, %entry ], [ %add10, %add ]
%new11 = phi i32 [ %val11, %entry ], [ %add11, %add ]
%new12 = phi i32 [ %val12, %entry ], [ %add12, %add ]
%new13 = phi i32 [ %val13, %entry ], [ %add13, %add ]
%new14 = phi i32 [ %val14, %entry ], [ %add14, %add ]
%new15 = phi i32 [ %val15, %entry ], [ %add15, %add ]
%res = phi i1 [ 0, %entry ], [ %res15, %add ]
store volatile i32 %new0, i32 *%ptr
store volatile i32 %new1, i32 *%ptr
store volatile i32 %new2, i32 *%ptr
store volatile i32 %new3, i32 *%ptr
store volatile i32 %new4, i32 *%ptr
store volatile i32 %new5, i32 *%ptr
store volatile i32 %new6, i32 *%ptr
store volatile i32 %new7, i32 *%ptr
store volatile i32 %new8, i32 *%ptr
store volatile i32 %new9, i32 *%ptr
store volatile i32 %new10, i32 *%ptr
store volatile i32 %new11, i32 *%ptr
store volatile i32 %new12, i32 *%ptr
store volatile i32 %new13, i32 *%ptr
store volatile i32 %new14, i32 *%ptr
store volatile i32 %new15, i32 *%ptr
ret i1 %res
}
; Check using the overflow result for a branch.
define void @f13(i32 *%ptr) {
; CHECK-LABEL: f13:
; CHECK: alsi 0(%r2), 1
; CHECK: jgnle foo@PLT
; CHECK: br %r14
%a = load i32, i32 *%ptr
%t = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 1)
%val = extractvalue {i32, i1} %t, 0
%obit = extractvalue {i32, i1} %t, 1
store i32 %val, i32 *%ptr
br i1 %obit, label %call, label %exit
call:
tail call i32 @foo()
br label %exit
exit:
ret void
}
; ... and the same with the inverted direction.
define void @f14(i32 *%ptr) {
; CHECK-LABEL: f14:
; CHECK: alsi 0(%r2), 1
; CHECK: jgle foo@PLT
; CHECK: br %r14
%a = load i32, i32 *%ptr
%t = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 1)
%val = extractvalue {i32, i1} %t, 0
%obit = extractvalue {i32, i1} %t, 1
store i32 %val, i32 *%ptr
br i1 %obit, label %exit, label %call
call:
tail call i32 @foo()
br label %exit
exit:
ret void
}
declare {i32, i1} @llvm.uadd.with.overflow.i32(i32, i32) nounwind readnone