1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-22 04:22:57 +02:00
llvm-mirror/lib/IR/IRBuilder.cpp
Pete Cooper aca4c5cdc6 Change memcpy/memset/memmove to have dest and source alignments.
Note, this was reviewed (and more details are in) http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html

These intrinsics currently have an explicit alignment argument which is
required to be a constant integer.  It represents the alignment of the
source and dest, and so must be the minimum of those.

This change allows source and dest to each have their own alignments
by using the alignment attribute on their arguments.  The alignment
argument itself is removed.

There are a few places in the code for which the code needs to be
checked by an expert as to whether using only src/dest alignment is
safe.  For those places, they currently take the minimum of src/dest
alignments which matches the current behaviour.

For example, code which used to read:
  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 500, i32 8, i1 false)
will now read:
  call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 8 %dest, i8* align 8 %src, i32 500, i1 false)

For out of tree owners, I was able to strip alignment from calls using sed by replacing:
  (call.*llvm\.memset.*)i32\ [0-9]*\,\ i1 false\)
with:
  $1i1 false)

and similarly for memmove and memcpy.

I then added back in alignment to test cases which needed it.

A similar commit will be made to clang which actually has many differences in alignment as now
IRBuilder can generate different source/dest alignments on calls.

In IRBuilder itself, a new argument was added.  Instead of calling:
  CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, /* isVolatile */ false)
you now call
  CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, SrcAlign, /* isVolatile */ false)

There is a temporary class (IntegerAlignment) which takes the source alignment and rejects
implicit conversion from bool.  This is to prevent isVolatile here from passing its default
parameter to the source alignment.

Note, changes in future can now be made to codegen.  I didn't change anything here, but this
change should enable better memcpy code sequences.

Reviewed by Hal Finkel.

llvm-svn: 253511
2015-11-18 22:17:24 +00:00

417 lines
17 KiB
C++

//===---- IRBuilder.cpp - Builder for LLVM Instrs -------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the IRBuilder class, which is used as a convenient way
// to create LLVM instructions with a consistent and simplified interface.
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Statepoint.h"
using namespace llvm;
/// CreateGlobalString - Make a new global variable with an initializer that
/// has array of i8 type filled in with the nul terminated string value
/// specified. If Name is specified, it is the name of the global variable
/// created.
GlobalVariable *IRBuilderBase::CreateGlobalString(StringRef Str,
const Twine &Name,
unsigned AddressSpace) {
Constant *StrConstant = ConstantDataArray::getString(Context, Str);
Module &M = *BB->getParent()->getParent();
GlobalVariable *GV = new GlobalVariable(M, StrConstant->getType(),
true, GlobalValue::PrivateLinkage,
StrConstant, Name, nullptr,
GlobalVariable::NotThreadLocal,
AddressSpace);
GV->setUnnamedAddr(true);
return GV;
}
Type *IRBuilderBase::getCurrentFunctionReturnType() const {
assert(BB && BB->getParent() && "No current function!");
return BB->getParent()->getReturnType();
}
Value *IRBuilderBase::getCastedInt8PtrValue(Value *Ptr) {
PointerType *PT = cast<PointerType>(Ptr->getType());
if (PT->getElementType()->isIntegerTy(8))
return Ptr;
// Otherwise, we need to insert a bitcast.
PT = getInt8PtrTy(PT->getAddressSpace());
BitCastInst *BCI = new BitCastInst(Ptr, PT, "");
BB->getInstList().insert(InsertPt, BCI);
SetInstDebugLocation(BCI);
return BCI;
}
static CallInst *createCallHelper(Value *Callee, ArrayRef<Value *> Ops,
IRBuilderBase *Builder,
const Twine& Name="") {
CallInst *CI = CallInst::Create(Callee, Ops, Name);
Builder->GetInsertBlock()->getInstList().insert(Builder->GetInsertPoint(),CI);
Builder->SetInstDebugLocation(CI);
return CI;
}
static InvokeInst *createInvokeHelper(Value *Invokee, BasicBlock *NormalDest,
BasicBlock *UnwindDest,
ArrayRef<Value *> Ops,
IRBuilderBase *Builder,
const Twine &Name = "") {
InvokeInst *II =
InvokeInst::Create(Invokee, NormalDest, UnwindDest, Ops, Name);
Builder->GetInsertBlock()->getInstList().insert(Builder->GetInsertPoint(),
II);
Builder->SetInstDebugLocation(II);
return II;
}
CallInst *IRBuilderBase::
CreateMemSet(Value *Ptr, Value *Val, Value *Size, unsigned DstAlign,
bool isVolatile, MDNode *TBAATag, MDNode *ScopeTag,
MDNode *NoAliasTag) {
Ptr = getCastedInt8PtrValue(Ptr);
Value *Ops[] = { Ptr, Val, Size, getInt1(isVolatile) };
Type *Tys[] = { Ptr->getType(), Size->getType() };
Module *M = BB->getParent()->getParent();
Value *TheFn = Intrinsic::getDeclaration(M, Intrinsic::memset, Tys);
CallInst *CI = createCallHelper(TheFn, Ops, this);
// Set the TBAA info if present.
if (TBAATag)
CI->setMetadata(LLVMContext::MD_tbaa, TBAATag);
if (ScopeTag)
CI->setMetadata(LLVMContext::MD_alias_scope, ScopeTag);
if (NoAliasTag)
CI->setMetadata(LLVMContext::MD_noalias, NoAliasTag);
cast<MemSetInst>(CI)->setDestAlignment(DstAlign);
return CI;
}
CallInst *IRBuilderBase::
CreateMemCpy(Value *Dst, Value *Src, Value *Size, unsigned DstAlign,
IntegerAlignment SrcAlign,
bool isVolatile, MDNode *TBAATag, MDNode *TBAAStructTag,
MDNode *ScopeTag, MDNode *NoAliasTag) {
Dst = getCastedInt8PtrValue(Dst);
Src = getCastedInt8PtrValue(Src);
Value *Ops[] = { Dst, Src, Size, getInt1(isVolatile) };
Type *Tys[] = { Dst->getType(), Src->getType(), Size->getType() };
Module *M = BB->getParent()->getParent();
Value *TheFn = Intrinsic::getDeclaration(M, Intrinsic::memcpy, Tys);
CallInst *CI = createCallHelper(TheFn, Ops, this);
// Set the TBAA info if present.
if (TBAATag)
CI->setMetadata(LLVMContext::MD_tbaa, TBAATag);
// Set the TBAA Struct info if present.
if (TBAAStructTag)
CI->setMetadata(LLVMContext::MD_tbaa_struct, TBAAStructTag);
if (ScopeTag)
CI->setMetadata(LLVMContext::MD_alias_scope, ScopeTag);
if (NoAliasTag)
CI->setMetadata(LLVMContext::MD_noalias, NoAliasTag);
auto *MCI = cast<MemCpyInst>(CI);
MCI->setDestAlignment(DstAlign);
MCI->setSrcAlignment(SrcAlign);
return CI;
}
CallInst *IRBuilderBase::
CreateMemMove(Value *Dst, Value *Src, Value *Size, unsigned DstAlign,
IntegerAlignment SrcAlign,
bool isVolatile, MDNode *TBAATag, MDNode *ScopeTag,
MDNode *NoAliasTag) {
Dst = getCastedInt8PtrValue(Dst);
Src = getCastedInt8PtrValue(Src);
Value *Ops[] = { Dst, Src, Size, getInt1(isVolatile) };
Type *Tys[] = { Dst->getType(), Src->getType(), Size->getType() };
Module *M = BB->getParent()->getParent();
Value *TheFn = Intrinsic::getDeclaration(M, Intrinsic::memmove, Tys);
CallInst *CI = createCallHelper(TheFn, Ops, this);
// Set the TBAA info if present.
if (TBAATag)
CI->setMetadata(LLVMContext::MD_tbaa, TBAATag);
if (ScopeTag)
CI->setMetadata(LLVMContext::MD_alias_scope, ScopeTag);
if (NoAliasTag)
CI->setMetadata(LLVMContext::MD_noalias, NoAliasTag);
auto *MMI = cast<MemMoveInst>(CI);
MMI->setDestAlignment(DstAlign);
MMI->setSrcAlignment(SrcAlign);
return CI;
}
CallInst *IRBuilderBase::CreateLifetimeStart(Value *Ptr, ConstantInt *Size) {
assert(isa<PointerType>(Ptr->getType()) &&
"lifetime.start only applies to pointers.");
Ptr = getCastedInt8PtrValue(Ptr);
if (!Size)
Size = getInt64(-1);
else
assert(Size->getType() == getInt64Ty() &&
"lifetime.start requires the size to be an i64");
Value *Ops[] = { Size, Ptr };
Module *M = BB->getParent()->getParent();
Value *TheFn = Intrinsic::getDeclaration(M, Intrinsic::lifetime_start);
return createCallHelper(TheFn, Ops, this);
}
CallInst *IRBuilderBase::CreateLifetimeEnd(Value *Ptr, ConstantInt *Size) {
assert(isa<PointerType>(Ptr->getType()) &&
"lifetime.end only applies to pointers.");
Ptr = getCastedInt8PtrValue(Ptr);
if (!Size)
Size = getInt64(-1);
else
assert(Size->getType() == getInt64Ty() &&
"lifetime.end requires the size to be an i64");
Value *Ops[] = { Size, Ptr };
Module *M = BB->getParent()->getParent();
Value *TheFn = Intrinsic::getDeclaration(M, Intrinsic::lifetime_end);
return createCallHelper(TheFn, Ops, this);
}
CallInst *IRBuilderBase::CreateAssumption(Value *Cond) {
assert(Cond->getType() == getInt1Ty() &&
"an assumption condition must be of type i1");
Value *Ops[] = { Cond };
Module *M = BB->getParent()->getParent();
Value *FnAssume = Intrinsic::getDeclaration(M, Intrinsic::assume);
return createCallHelper(FnAssume, Ops, this);
}
/// Create a call to a Masked Load intrinsic.
/// Ptr - the base pointer for the load
/// Align - alignment of the source location
/// Mask - an vector of booleans which indicates what vector lanes should
/// be accessed in memory
/// PassThru - a pass-through value that is used to fill the masked-off lanes
/// of the result
/// Name - name of the result variable
CallInst *IRBuilderBase::CreateMaskedLoad(Value *Ptr, unsigned Align,
Value *Mask, Value *PassThru,
const Twine &Name) {
assert(Ptr->getType()->isPointerTy() && "Ptr must be of pointer type");
// DataTy is the overloaded type
Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
assert(DataTy->isVectorTy() && "Ptr should point to a vector");
if (!PassThru)
PassThru = UndefValue::get(DataTy);
Value *Ops[] = { Ptr, getInt32(Align), Mask, PassThru};
return CreateMaskedIntrinsic(Intrinsic::masked_load, Ops, DataTy, Name);
}
/// Create a call to a Masked Store intrinsic.
/// Val - the data to be stored,
/// Ptr - the base pointer for the store
/// Align - alignment of the destination location
/// Mask - an vector of booleans which indicates what vector lanes should
/// be accessed in memory
CallInst *IRBuilderBase::CreateMaskedStore(Value *Val, Value *Ptr,
unsigned Align, Value *Mask) {
Value *Ops[] = { Val, Ptr, getInt32(Align), Mask };
// Type of the data to be stored - the only one overloaded type
return CreateMaskedIntrinsic(Intrinsic::masked_store, Ops, Val->getType());
}
/// Create a call to a Masked intrinsic, with given intrinsic Id,
/// an array of operands - Ops, and one overloaded type - DataTy
CallInst *IRBuilderBase::CreateMaskedIntrinsic(Intrinsic::ID Id,
ArrayRef<Value *> Ops,
Type *DataTy,
const Twine &Name) {
Module *M = BB->getParent()->getParent();
Type *OverloadedTypes[] = { DataTy };
Value *TheFn = Intrinsic::getDeclaration(M, Id, OverloadedTypes);
return createCallHelper(TheFn, Ops, this, Name);
}
template <typename T0, typename T1, typename T2, typename T3>
static std::vector<Value *>
getStatepointArgs(IRBuilderBase &B, uint64_t ID, uint32_t NumPatchBytes,
Value *ActualCallee, uint32_t Flags, ArrayRef<T0> CallArgs,
ArrayRef<T1> TransitionArgs, ArrayRef<T2> DeoptArgs,
ArrayRef<T3> GCArgs) {
std::vector<Value *> Args;
Args.push_back(B.getInt64(ID));
Args.push_back(B.getInt32(NumPatchBytes));
Args.push_back(ActualCallee);
Args.push_back(B.getInt32(CallArgs.size()));
Args.push_back(B.getInt32(Flags));
Args.insert(Args.end(), CallArgs.begin(), CallArgs.end());
Args.push_back(B.getInt32(TransitionArgs.size()));
Args.insert(Args.end(), TransitionArgs.begin(), TransitionArgs.end());
Args.push_back(B.getInt32(DeoptArgs.size()));
Args.insert(Args.end(), DeoptArgs.begin(), DeoptArgs.end());
Args.insert(Args.end(), GCArgs.begin(), GCArgs.end());
return Args;
}
template <typename T0, typename T1, typename T2, typename T3>
static CallInst *CreateGCStatepointCallCommon(
IRBuilderBase *Builder, uint64_t ID, uint32_t NumPatchBytes,
Value *ActualCallee, uint32_t Flags, ArrayRef<T0> CallArgs,
ArrayRef<T1> TransitionArgs, ArrayRef<T2> DeoptArgs, ArrayRef<T3> GCArgs,
const Twine &Name) {
// Extract out the type of the callee.
PointerType *FuncPtrType = cast<PointerType>(ActualCallee->getType());
assert(isa<FunctionType>(FuncPtrType->getElementType()) &&
"actual callee must be a callable value");
Module *M = Builder->GetInsertBlock()->getParent()->getParent();
// Fill in the one generic type'd argument (the function is also vararg)
Type *ArgTypes[] = { FuncPtrType };
Function *FnStatepoint =
Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_statepoint,
ArgTypes);
std::vector<llvm::Value *> Args =
getStatepointArgs(*Builder, ID, NumPatchBytes, ActualCallee, Flags,
CallArgs, TransitionArgs, DeoptArgs, GCArgs);
return createCallHelper(FnStatepoint, Args, Builder, Name);
}
CallInst *IRBuilderBase::CreateGCStatepointCall(
uint64_t ID, uint32_t NumPatchBytes, Value *ActualCallee,
ArrayRef<Value *> CallArgs, ArrayRef<Value *> DeoptArgs,
ArrayRef<Value *> GCArgs, const Twine &Name) {
return CreateGCStatepointCallCommon<Value *, Value *, Value *, Value *>(
this, ID, NumPatchBytes, ActualCallee, uint32_t(StatepointFlags::None),
CallArgs, None /* No Transition Args */, DeoptArgs, GCArgs, Name);
}
CallInst *IRBuilderBase::CreateGCStatepointCall(
uint64_t ID, uint32_t NumPatchBytes, Value *ActualCallee, uint32_t Flags,
ArrayRef<Use> CallArgs, ArrayRef<Use> TransitionArgs,
ArrayRef<Use> DeoptArgs, ArrayRef<Value *> GCArgs, const Twine &Name) {
return CreateGCStatepointCallCommon<Use, Use, Use, Value *>(
this, ID, NumPatchBytes, ActualCallee, Flags, CallArgs, TransitionArgs,
DeoptArgs, GCArgs, Name);
}
CallInst *IRBuilderBase::CreateGCStatepointCall(
uint64_t ID, uint32_t NumPatchBytes, Value *ActualCallee,
ArrayRef<Use> CallArgs, ArrayRef<Value *> DeoptArgs,
ArrayRef<Value *> GCArgs, const Twine &Name) {
return CreateGCStatepointCallCommon<Use, Value *, Value *, Value *>(
this, ID, NumPatchBytes, ActualCallee, uint32_t(StatepointFlags::None),
CallArgs, None, DeoptArgs, GCArgs, Name);
}
template <typename T0, typename T1, typename T2, typename T3>
static InvokeInst *CreateGCStatepointInvokeCommon(
IRBuilderBase *Builder, uint64_t ID, uint32_t NumPatchBytes,
Value *ActualInvokee, BasicBlock *NormalDest, BasicBlock *UnwindDest,
uint32_t Flags, ArrayRef<T0> InvokeArgs, ArrayRef<T1> TransitionArgs,
ArrayRef<T2> DeoptArgs, ArrayRef<T3> GCArgs, const Twine &Name) {
// Extract out the type of the callee.
PointerType *FuncPtrType = cast<PointerType>(ActualInvokee->getType());
assert(isa<FunctionType>(FuncPtrType->getElementType()) &&
"actual callee must be a callable value");
Module *M = Builder->GetInsertBlock()->getParent()->getParent();
// Fill in the one generic type'd argument (the function is also vararg)
Function *FnStatepoint = Intrinsic::getDeclaration(
M, Intrinsic::experimental_gc_statepoint, {FuncPtrType});
std::vector<llvm::Value *> Args =
getStatepointArgs(*Builder, ID, NumPatchBytes, ActualInvokee, Flags,
InvokeArgs, TransitionArgs, DeoptArgs, GCArgs);
return createInvokeHelper(FnStatepoint, NormalDest, UnwindDest, Args, Builder,
Name);
}
InvokeInst *IRBuilderBase::CreateGCStatepointInvoke(
uint64_t ID, uint32_t NumPatchBytes, Value *ActualInvokee,
BasicBlock *NormalDest, BasicBlock *UnwindDest,
ArrayRef<Value *> InvokeArgs, ArrayRef<Value *> DeoptArgs,
ArrayRef<Value *> GCArgs, const Twine &Name) {
return CreateGCStatepointInvokeCommon<Value *, Value *, Value *, Value *>(
this, ID, NumPatchBytes, ActualInvokee, NormalDest, UnwindDest,
uint32_t(StatepointFlags::None), InvokeArgs, None /* No Transition Args*/,
DeoptArgs, GCArgs, Name);
}
InvokeInst *IRBuilderBase::CreateGCStatepointInvoke(
uint64_t ID, uint32_t NumPatchBytes, Value *ActualInvokee,
BasicBlock *NormalDest, BasicBlock *UnwindDest, uint32_t Flags,
ArrayRef<Use> InvokeArgs, ArrayRef<Use> TransitionArgs,
ArrayRef<Use> DeoptArgs, ArrayRef<Value *> GCArgs, const Twine &Name) {
return CreateGCStatepointInvokeCommon<Use, Use, Use, Value *>(
this, ID, NumPatchBytes, ActualInvokee, NormalDest, UnwindDest, Flags,
InvokeArgs, TransitionArgs, DeoptArgs, GCArgs, Name);
}
InvokeInst *IRBuilderBase::CreateGCStatepointInvoke(
uint64_t ID, uint32_t NumPatchBytes, Value *ActualInvokee,
BasicBlock *NormalDest, BasicBlock *UnwindDest, ArrayRef<Use> InvokeArgs,
ArrayRef<Value *> DeoptArgs, ArrayRef<Value *> GCArgs, const Twine &Name) {
return CreateGCStatepointInvokeCommon<Use, Value *, Value *, Value *>(
this, ID, NumPatchBytes, ActualInvokee, NormalDest, UnwindDest,
uint32_t(StatepointFlags::None), InvokeArgs, None, DeoptArgs, GCArgs,
Name);
}
CallInst *IRBuilderBase::CreateGCResult(Instruction *Statepoint,
Type *ResultType,
const Twine &Name) {
Intrinsic::ID ID = Intrinsic::experimental_gc_result;
Module *M = BB->getParent()->getParent();
Type *Types[] = {ResultType};
Value *FnGCResult = Intrinsic::getDeclaration(M, ID, Types);
Value *Args[] = {Statepoint};
return createCallHelper(FnGCResult, Args, this, Name);
}
CallInst *IRBuilderBase::CreateGCRelocate(Instruction *Statepoint,
int BaseOffset,
int DerivedOffset,
Type *ResultType,
const Twine &Name) {
Module *M = BB->getParent()->getParent();
Type *Types[] = {ResultType};
Value *FnGCRelocate =
Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, Types);
Value *Args[] = {Statepoint,
getInt32(BaseOffset),
getInt32(DerivedOffset)};
return createCallHelper(FnGCRelocate, Args, this, Name);
}