1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 04:02:41 +01:00
llvm-mirror/lib/CodeGen/CalcSpillWeights.cpp
Owen Anderson 63f757463c Begin adding static dependence information to passes, which will allow us to
perform initialization without static constructors AND without explicit initialization
by the client.  For the moment, passes are required to initialize both their
(potential) dependencies and any passes they preserve.  I hope to be able to relax
the latter requirement in the future.

llvm-svn: 116334
2010-10-12 19:48:12 +00:00

229 lines
7.8 KiB
C++

//===------------------------ CalcSpillWeights.cpp ------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "calcspillweights"
#include "llvm/Function.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/CodeGen/CalcSpillWeights.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
using namespace llvm;
char CalculateSpillWeights::ID = 0;
INITIALIZE_PASS_BEGIN(CalculateSpillWeights, "calcspillweights",
"Calculate spill weights", false, false)
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_END(CalculateSpillWeights, "calcspillweights",
"Calculate spill weights", false, false)
void CalculateSpillWeights::getAnalysisUsage(AnalysisUsage &au) const {
au.addRequired<LiveIntervals>();
au.addRequired<MachineLoopInfo>();
au.setPreservesAll();
MachineFunctionPass::getAnalysisUsage(au);
}
bool CalculateSpillWeights::runOnMachineFunction(MachineFunction &fn) {
DEBUG(dbgs() << "********** Compute Spill Weights **********\n"
<< "********** Function: "
<< fn.getFunction()->getName() << '\n');
LiveIntervals &lis = getAnalysis<LiveIntervals>();
VirtRegAuxInfo vrai(fn, lis, getAnalysis<MachineLoopInfo>());
for (LiveIntervals::iterator I = lis.begin(), E = lis.end(); I != E; ++I) {
LiveInterval &li = *I->second;
if (TargetRegisterInfo::isVirtualRegister(li.reg))
vrai.CalculateWeightAndHint(li);
}
return false;
}
// Return the preferred allocation register for reg, given a COPY instruction.
static unsigned copyHint(const MachineInstr *mi, unsigned reg,
const TargetRegisterInfo &tri,
const MachineRegisterInfo &mri) {
unsigned sub, hreg, hsub;
if (mi->getOperand(0).getReg() == reg) {
sub = mi->getOperand(0).getSubReg();
hreg = mi->getOperand(1).getReg();
hsub = mi->getOperand(1).getSubReg();
} else {
sub = mi->getOperand(1).getSubReg();
hreg = mi->getOperand(0).getReg();
hsub = mi->getOperand(0).getSubReg();
}
if (!hreg)
return 0;
if (TargetRegisterInfo::isVirtualRegister(hreg))
return sub == hsub ? hreg : 0;
const TargetRegisterClass *rc = mri.getRegClass(reg);
// Only allow physreg hints in rc.
if (sub == 0)
return rc->contains(hreg) ? hreg : 0;
// reg:sub should match the physreg hreg.
return tri.getMatchingSuperReg(hreg, sub, rc);
}
void VirtRegAuxInfo::CalculateWeightAndHint(LiveInterval &li) {
MachineRegisterInfo &mri = mf_.getRegInfo();
const TargetRegisterInfo &tri = *mf_.getTarget().getRegisterInfo();
MachineBasicBlock *mbb = 0;
MachineLoop *loop = 0;
unsigned loopDepth = 0;
bool isExiting = false;
float totalWeight = 0;
SmallPtrSet<MachineInstr*, 8> visited;
// Find the best physreg hist and the best virtreg hint.
float bestPhys = 0, bestVirt = 0;
unsigned hintPhys = 0, hintVirt = 0;
// Don't recompute a target specific hint.
bool noHint = mri.getRegAllocationHint(li.reg).first != 0;
for (MachineRegisterInfo::reg_iterator I = mri.reg_begin(li.reg);
MachineInstr *mi = I.skipInstruction();) {
if (mi->isIdentityCopy() || mi->isImplicitDef() || mi->isDebugValue())
continue;
if (!visited.insert(mi))
continue;
// Get loop info for mi.
if (mi->getParent() != mbb) {
mbb = mi->getParent();
loop = loops_.getLoopFor(mbb);
loopDepth = loop ? loop->getLoopDepth() : 0;
isExiting = loop ? loop->isLoopExiting(mbb) : false;
}
// Calculate instr weight.
bool reads, writes;
tie(reads, writes) = mi->readsWritesVirtualRegister(li.reg);
float weight = LiveIntervals::getSpillWeight(writes, reads, loopDepth);
// Give extra weight to what looks like a loop induction variable update.
if (writes && isExiting && lis_.isLiveOutOfMBB(li, mbb))
weight *= 3;
totalWeight += weight;
// Get allocation hints from copies.
if (noHint || !mi->isCopy())
continue;
unsigned hint = copyHint(mi, li.reg, tri, mri);
if (!hint)
continue;
float hweight = hint_[hint] += weight;
if (TargetRegisterInfo::isPhysicalRegister(hint)) {
if (hweight > bestPhys && lis_.isAllocatable(hint))
bestPhys = hweight, hintPhys = hint;
} else {
if (hweight > bestVirt)
bestVirt = hweight, hintVirt = hint;
}
}
hint_.clear();
// Always prefer the physreg hint.
if (unsigned hint = hintPhys ? hintPhys : hintVirt) {
mri.setRegAllocationHint(li.reg, 0, hint);
// Weakly boost the spill weifght of hinted registers.
totalWeight *= 1.01F;
}
// Mark li as unspillable if all live ranges are tiny.
if (li.isZeroLength()) {
li.markNotSpillable();
return;
}
// If all of the definitions of the interval are re-materializable,
// it is a preferred candidate for spilling. If none of the defs are
// loads, then it's potentially very cheap to re-materialize.
// FIXME: this gets much more complicated once we support non-trivial
// re-materialization.
bool isLoad = false;
SmallVector<LiveInterval*, 4> spillIs;
if (lis_.isReMaterializable(li, spillIs, isLoad)) {
if (isLoad)
totalWeight *= 0.9F;
else
totalWeight *= 0.5F;
}
li.weight = totalWeight;
lis_.normalizeSpillWeight(li);
}
void VirtRegAuxInfo::CalculateRegClass(unsigned reg) {
MachineRegisterInfo &mri = mf_.getRegInfo();
const TargetRegisterInfo *tri = mf_.getTarget().getRegisterInfo();
const TargetRegisterClass *orc = mri.getRegClass(reg);
SmallPtrSet<const TargetRegisterClass*,8> rcs;
for (MachineRegisterInfo::reg_nodbg_iterator I = mri.reg_nodbg_begin(reg),
E = mri.reg_nodbg_end(); I != E; ++I) {
// The targets don't have accurate enough regclass descriptions that we can
// handle subregs. We need something similar to
// TRI::getMatchingSuperRegClass, but returning a super class instead of a
// sub class.
if (I.getOperand().getSubReg()) {
DEBUG(dbgs() << "Cannot handle subregs: " << I.getOperand() << '\n');
return;
}
if (const TargetRegisterClass *rc =
I->getDesc().getRegClass(I.getOperandNo(), tri))
rcs.insert(rc);
}
// If we found no regclass constraints, just leave reg as is.
// In theory, we could inflate to the largest superclass of reg's existing
// class, but that might not be legal for the current cpu setting.
// This could happen if reg is only used by COPY instructions, so we may need
// to improve on this.
if (rcs.empty()) {
return;
}
// Compute the intersection of all classes in rcs.
// This ought to be independent of iteration order, but if the target register
// classes don't form a proper algebra, it is possible to get different
// results. The solution is to make sure the intersection of any two register
// classes is also a register class or the null set.
const TargetRegisterClass *rc = 0;
for (SmallPtrSet<const TargetRegisterClass*,8>::iterator I = rcs.begin(),
E = rcs.end(); I != E; ++I) {
rc = rc ? getCommonSubClass(rc, *I) : *I;
assert(rc && "Incompatible regclass constraints found");
}
if (rc == orc)
return;
DEBUG(dbgs() << "Inflating " << orc->getName() << ":%reg" << reg << " to "
<< rc->getName() <<".\n");
mri.setRegClass(reg, rc);
}