1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-19 02:52:53 +02:00
llvm-mirror/lib/Target/X86/X86InstrExtension.td
Craig Topper 4581267dc8 [X86][Disassembler] Add bizarro versions of the MOVSXD instruction that sign extend from a GR32 to GR32 or GR16.
The 0x63 opcodes in 64-bit mode have a fixed source size of 32-bits, but the destination size is controlled by REX.W and the 0x66 opsize prefix. This instruction is normally used with a REX.W prefix which provides desired behavior. The other encodings are interpretted as valid by the processor, but aren't useful.

This patch makes us recognize them for the disassembler to match objdump.

llvm-svn: 343614
2018-10-02 18:16:19 +00:00

225 lines
11 KiB
TableGen

//===-- X86InstrExtension.td - Sign and Zero Extensions ----*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the sign and zero extension operations.
//
//===----------------------------------------------------------------------===//
let hasSideEffects = 0 in {
let Defs = [AX], Uses = [AL] in // AX = signext(AL)
def CBW : I<0x98, RawFrm, (outs), (ins),
"{cbtw|cbw}", []>, OpSize16, Sched<[WriteALU]>;
let Defs = [EAX], Uses = [AX] in // EAX = signext(AX)
def CWDE : I<0x98, RawFrm, (outs), (ins),
"{cwtl|cwde}", []>, OpSize32, Sched<[WriteALU]>;
let Defs = [AX,DX], Uses = [AX] in // DX:AX = signext(AX)
def CWD : I<0x99, RawFrm, (outs), (ins),
"{cwtd|cwd}", []>, OpSize16, Sched<[WriteALU]>;
let Defs = [EAX,EDX], Uses = [EAX] in // EDX:EAX = signext(EAX)
def CDQ : I<0x99, RawFrm, (outs), (ins),
"{cltd|cdq}", []>, OpSize32, Sched<[WriteALU]>;
let Defs = [RAX], Uses = [EAX] in // RAX = signext(EAX)
def CDQE : RI<0x98, RawFrm, (outs), (ins),
"{cltq|cdqe}", []>, Sched<[WriteALU]>;
let Defs = [RAX,RDX], Uses = [RAX] in // RDX:RAX = signext(RAX)
def CQO : RI<0x99, RawFrm, (outs), (ins),
"{cqto|cqo}", []>, Sched<[WriteALU]>;
}
// Sign/Zero extenders
let hasSideEffects = 0 in {
def MOVSX16rr8 : I<0xBE, MRMSrcReg, (outs GR16:$dst), (ins GR8:$src),
"movs{bw|x}\t{$src, $dst|$dst, $src}", []>,
TB, OpSize16, Sched<[WriteALU]>;
let mayLoad = 1 in
def MOVSX16rm8 : I<0xBE, MRMSrcMem, (outs GR16:$dst), (ins i8mem:$src),
"movs{bw|x}\t{$src, $dst|$dst, $src}", []>,
TB, OpSize16, Sched<[WriteALULd]>;
} // hasSideEffects = 0
def MOVSX32rr8 : I<0xBE, MRMSrcReg, (outs GR32:$dst), (ins GR8:$src),
"movs{bl|x}\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (sext GR8:$src))]>, TB,
OpSize32, Sched<[WriteALU]>;
def MOVSX32rm8 : I<0xBE, MRMSrcMem, (outs GR32:$dst), (ins i8mem :$src),
"movs{bl|x}\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (sextloadi32i8 addr:$src))]>, TB,
OpSize32, Sched<[WriteALULd]>;
def MOVSX32rr16: I<0xBF, MRMSrcReg, (outs GR32:$dst), (ins GR16:$src),
"movs{wl|x}\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (sext GR16:$src))]>, TB,
OpSize32, Sched<[WriteALU]>;
def MOVSX32rm16: I<0xBF, MRMSrcMem, (outs GR32:$dst), (ins i16mem:$src),
"movs{wl|x}\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (sextloadi32i16 addr:$src))]>,
OpSize32, TB, Sched<[WriteALULd]>;
let hasSideEffects = 0 in {
def MOVZX16rr8 : I<0xB6, MRMSrcReg, (outs GR16:$dst), (ins GR8:$src),
"movz{bw|x}\t{$src, $dst|$dst, $src}", []>,
TB, OpSize16, Sched<[WriteALU]>;
let mayLoad = 1 in
def MOVZX16rm8 : I<0xB6, MRMSrcMem, (outs GR16:$dst), (ins i8mem:$src),
"movz{bw|x}\t{$src, $dst|$dst, $src}", []>,
TB, OpSize16, Sched<[WriteALULd]>;
} // hasSideEffects = 0
def MOVZX32rr8 : I<0xB6, MRMSrcReg, (outs GR32:$dst), (ins GR8 :$src),
"movz{bl|x}\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (zext GR8:$src))]>, TB,
OpSize32, Sched<[WriteALU]>;
def MOVZX32rm8 : I<0xB6, MRMSrcMem, (outs GR32:$dst), (ins i8mem :$src),
"movz{bl|x}\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (zextloadi32i8 addr:$src))]>, TB,
OpSize32, Sched<[WriteALULd]>;
def MOVZX32rr16: I<0xB7, MRMSrcReg, (outs GR32:$dst), (ins GR16:$src),
"movz{wl|x}\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (zext GR16:$src))]>, TB,
OpSize32, Sched<[WriteALU]>;
def MOVZX32rm16: I<0xB7, MRMSrcMem, (outs GR32:$dst), (ins i16mem:$src),
"movz{wl|x}\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (zextloadi32i16 addr:$src))]>,
TB, OpSize32, Sched<[WriteALULd]>;
// These instructions exist as a consequence of operand size prefix having
// control of the destination size, but not the input size. Only support them
// for the disassembler.
let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0 in {
def MOVSX16rr16: I<0xBF, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src),
"movs{ww|x}\t{$src, $dst|$dst, $src}",
[]>, TB, OpSize16, Sched<[WriteALU]>, NotMemoryFoldable;
def MOVZX16rr16: I<0xB7, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src),
"movz{ww|x}\t{$src, $dst|$dst, $src}",
[]>, TB, OpSize16, Sched<[WriteALU]>, NotMemoryFoldable;
let mayLoad = 1 in {
def MOVSX16rm16: I<0xBF, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src),
"movs{ww|x}\t{$src, $dst|$dst, $src}",
[]>, OpSize16, TB, Sched<[WriteALULd]>, NotMemoryFoldable;
def MOVZX16rm16: I<0xB7, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src),
"movz{ww|x}\t{$src, $dst|$dst, $src}",
[]>, TB, OpSize16, Sched<[WriteALULd]>, NotMemoryFoldable;
} // mayLoad = 1
} // isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0
// These are the same as the regular MOVZX32rr8 and MOVZX32rm8
// except that they use GR32_NOREX for the output operand register class
// instead of GR32. This allows them to operate on h registers on x86-64.
let hasSideEffects = 0, isCodeGenOnly = 1 in {
def MOVZX32rr8_NOREX : I<0xB6, MRMSrcReg,
(outs GR32_NOREX:$dst), (ins GR8_NOREX:$src),
"movz{bl|x}\t{$src, $dst|$dst, $src}",
[]>, TB, OpSize32, Sched<[WriteALU]>;
let mayLoad = 1 in
def MOVZX32rm8_NOREX : I<0xB6, MRMSrcMem,
(outs GR32_NOREX:$dst), (ins i8mem_NOREX:$src),
"movz{bl|x}\t{$src, $dst|$dst, $src}",
[]>, TB, OpSize32, Sched<[WriteALULd]>;
def MOVSX32rr8_NOREX : I<0xBE, MRMSrcReg,
(outs GR32_NOREX:$dst), (ins GR8_NOREX:$src),
"movs{bl|x}\t{$src, $dst|$dst, $src}",
[]>, TB, OpSize32, Sched<[WriteALU]>;
let mayLoad = 1 in
def MOVSX32rm8_NOREX : I<0xBE, MRMSrcMem,
(outs GR32_NOREX:$dst), (ins i8mem_NOREX:$src),
"movs{bl|x}\t{$src, $dst|$dst, $src}",
[]>, TB, OpSize32, Sched<[WriteALULd]>;
}
// MOVSX64rr8 always has a REX prefix and it has an 8-bit register
// operand, which makes it a rare instruction with an 8-bit register
// operand that can never access an h register. If support for h registers
// were generalized, this would require a special register class.
def MOVSX64rr8 : RI<0xBE, MRMSrcReg, (outs GR64:$dst), (ins GR8 :$src),
"movs{bq|x}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (sext GR8:$src))]>, TB,
Sched<[WriteALU]>;
def MOVSX64rm8 : RI<0xBE, MRMSrcMem, (outs GR64:$dst), (ins i8mem :$src),
"movs{bq|x}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (sextloadi64i8 addr:$src))]>,
TB, Sched<[WriteALULd]>;
def MOVSX64rr16: RI<0xBF, MRMSrcReg, (outs GR64:$dst), (ins GR16:$src),
"movs{wq|x}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (sext GR16:$src))]>, TB,
Sched<[WriteALU]>;
def MOVSX64rm16: RI<0xBF, MRMSrcMem, (outs GR64:$dst), (ins i16mem:$src),
"movs{wq|x}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (sextloadi64i16 addr:$src))]>,
TB, Sched<[WriteALULd]>;
def MOVSX64rr32: RI<0x63, MRMSrcReg, (outs GR64:$dst), (ins GR32:$src),
"movs{lq|xd}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (sext GR32:$src))]>,
Sched<[WriteALU]>, Requires<[In64BitMode]>;
def MOVSX64rm32: RI<0x63, MRMSrcMem, (outs GR64:$dst), (ins i32mem:$src),
"movs{lq|xd}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (sextloadi64i32 addr:$src))]>,
Sched<[WriteALULd]>, Requires<[In64BitMode]>;
// These instructions exist as a consequence of operand size prefix having
// control of the destination size, but not the input size. Only support them
// for the disassembler.
let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0 in {
def MOVSX16rr32: I<0x63, MRMSrcReg, (outs GR16:$dst), (ins GR32:$src),
"movs{lq|xd}\t{$src, $dst|$dst, $src}", []>,
Sched<[WriteALU]>, OpSize16, Requires<[In64BitMode]>;
def MOVSX32rr32: I<0x63, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src),
"movs{lq|xd}\t{$src, $dst|$dst, $src}", []>,
Sched<[WriteALU]>, OpSize32, Requires<[In64BitMode]>;
let mayLoad = 1 in {
def MOVSX16rm32: I<0x63, MRMSrcMem, (outs GR16:$dst), (ins i32mem:$src),
"movs{lq|xd}\t{$src, $dst|$dst, $src}", []>,
Sched<[WriteALULd]>, OpSize16, Requires<[In64BitMode]>;
def MOVSX32rm32: I<0x63, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src),
"movs{lq|xd}\t{$src, $dst|$dst, $src}", []>,
Sched<[WriteALULd]>, OpSize32, Requires<[In64BitMode]>;
} // mayLoad = 1
} // isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0
// movzbq and movzwq encodings for the disassembler
let hasSideEffects = 0 in {
def MOVZX64rr8 : RI<0xB6, MRMSrcReg, (outs GR64:$dst), (ins GR8:$src),
"movz{bq|x}\t{$src, $dst|$dst, $src}", []>,
TB, Sched<[WriteALU]>;
let mayLoad = 1 in
def MOVZX64rm8 : RI<0xB6, MRMSrcMem, (outs GR64:$dst), (ins i8mem:$src),
"movz{bq|x}\t{$src, $dst|$dst, $src}", []>,
TB, Sched<[WriteALULd]>;
def MOVZX64rr16 : RI<0xB7, MRMSrcReg, (outs GR64:$dst), (ins GR16:$src),
"movz{wq|x}\t{$src, $dst|$dst, $src}", []>,
TB, Sched<[WriteALU]>;
let mayLoad = 1 in
def MOVZX64rm16 : RI<0xB7, MRMSrcMem, (outs GR64:$dst), (ins i16mem:$src),
"movz{wq|x}\t{$src, $dst|$dst, $src}", []>,
TB, Sched<[WriteALULd]>;
}
// 64-bit zero-extension patterns use SUBREG_TO_REG and an operation writing a
// 32-bit register.
def : Pat<(i64 (zext GR8:$src)),
(SUBREG_TO_REG (i64 0), (MOVZX32rr8 GR8:$src), sub_32bit)>;
def : Pat<(zextloadi64i8 addr:$src),
(SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
def : Pat<(i64 (zext GR16:$src)),
(SUBREG_TO_REG (i64 0), (MOVZX32rr16 GR16:$src), sub_32bit)>;
def : Pat<(zextloadi64i16 addr:$src),
(SUBREG_TO_REG (i64 0), (MOVZX32rm16 addr:$src), sub_32bit)>;
// The preferred way to do 32-bit-to-64-bit zero extension on x86-64 is to use a
// SUBREG_TO_REG to utilize implicit zero-extension, however this isn't possible
// when the 32-bit value is defined by a truncate or is copied from something
// where the high bits aren't necessarily all zero. In such cases, we fall back
// to these explicit zext instructions.
def : Pat<(i64 (zext GR32:$src)),
(SUBREG_TO_REG (i64 0), (MOV32rr GR32:$src), sub_32bit)>;
def : Pat<(i64 (zextloadi64i32 addr:$src)),
(SUBREG_TO_REG (i64 0), (MOV32rm addr:$src), sub_32bit)>;