1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-20 19:42:54 +02:00
llvm-mirror/include/llvm/Target/TargetSelectionDAG.td
Serge Pavlov b8ce9ec478 Add extra operand to CALLSEQ_START to keep frame part set up previously
Using arguments with attribute inalloca creates problems for verification
of machine representation. This attribute instructs the backend that the
argument is prepared in stack prior to  CALLSEQ_START..CALLSEQ_END
sequence (see http://llvm.org/docs/InAlloca.htm for details). Frame size
stored in CALLSEQ_START in this case does not count the size of this
argument. However CALLSEQ_END still keeps total frame size, as caller can
be responsible for cleanup of entire frame. So CALLSEQ_START and
CALLSEQ_END keep different frame size and the difference is treated by
MachineVerifier as stack error. Currently there is no way to distinguish
this case from actual errors.

This patch adds additional argument to CALLSEQ_START and its
target-specific counterparts to keep size of stack that is set up prior to
the call frame sequence. This argument allows MachineVerifier to calculate
actual frame size associated with frame setup instruction and correctly
process the case of inalloca arguments.

The changes made by the patch are:
- Frame setup instructions get the second mandatory argument. It
  affects all targets that use frame pseudo instructions and touched many
  files although the changes are uniform.
- Access to frame properties are implemented using special instructions
  rather than calls getOperand(N).getImm(). For X86 and ARM such
  replacement was made previously.
- Changes that reflect appearance of additional argument of frame setup
  instruction. These involve proper instruction initialization and
  methods that access instruction arguments.
- MachineVerifier retrieves frame size using method, which reports sum of
  frame parts initialized inside frame instruction pair and outside it.

The patch implements approach proposed by Quentin Colombet in
https://bugs.llvm.org/show_bug.cgi?id=27481#c1.
It fixes 9 tests failed with machine verifier enabled and listed
in PR27481.

Differential Revision: https://reviews.llvm.org/D32394

llvm-svn: 302527
2017-05-09 13:35:13 +00:00

1134 lines
49 KiB
TableGen

//===- TargetSelectionDAG.td - Common code for DAG isels ---*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the target-independent interfaces used by SelectionDAG
// instruction selection generators.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Selection DAG Type Constraint definitions.
//
// Note that the semantics of these constraints are hard coded into tblgen. To
// modify or add constraints, you have to hack tblgen.
//
class SDTypeConstraint<int opnum> {
int OperandNum = opnum;
}
// SDTCisVT - The specified operand has exactly this VT.
class SDTCisVT<int OpNum, ValueType vt> : SDTypeConstraint<OpNum> {
ValueType VT = vt;
}
class SDTCisPtrTy<int OpNum> : SDTypeConstraint<OpNum>;
// SDTCisInt - The specified operand has integer type.
class SDTCisInt<int OpNum> : SDTypeConstraint<OpNum>;
// SDTCisFP - The specified operand has floating-point type.
class SDTCisFP<int OpNum> : SDTypeConstraint<OpNum>;
// SDTCisVec - The specified operand has a vector type.
class SDTCisVec<int OpNum> : SDTypeConstraint<OpNum>;
// SDTCisSameAs - The two specified operands have identical types.
class SDTCisSameAs<int OpNum, int OtherOp> : SDTypeConstraint<OpNum> {
int OtherOperandNum = OtherOp;
}
// SDTCisVTSmallerThanOp - The specified operand is a VT SDNode, and its type is
// smaller than the 'Other' operand.
class SDTCisVTSmallerThanOp<int OpNum, int OtherOp> : SDTypeConstraint<OpNum> {
int OtherOperandNum = OtherOp;
}
class SDTCisOpSmallerThanOp<int SmallOp, int BigOp> : SDTypeConstraint<SmallOp>{
int BigOperandNum = BigOp;
}
/// SDTCisEltOfVec - This indicates that ThisOp is a scalar type of the same
/// type as the element type of OtherOp, which is a vector type.
class SDTCisEltOfVec<int ThisOp, int OtherOp>
: SDTypeConstraint<ThisOp> {
int OtherOpNum = OtherOp;
}
/// SDTCisSubVecOfVec - This indicates that ThisOp is a vector type
/// with length less that of OtherOp, which is a vector type.
class SDTCisSubVecOfVec<int ThisOp, int OtherOp>
: SDTypeConstraint<ThisOp> {
int OtherOpNum = OtherOp;
}
// SDTCVecEltisVT - The specified operand is vector type with element type
// of VT.
class SDTCVecEltisVT<int OpNum, ValueType vt> : SDTypeConstraint<OpNum> {
ValueType VT = vt;
}
// SDTCisSameNumEltsAs - The two specified operands have identical number
// of elements.
class SDTCisSameNumEltsAs<int OpNum, int OtherOp> : SDTypeConstraint<OpNum> {
int OtherOperandNum = OtherOp;
}
// SDTCisSameSizeAs - The two specified operands have identical size.
class SDTCisSameSizeAs<int OpNum, int OtherOp> : SDTypeConstraint<OpNum> {
int OtherOperandNum = OtherOp;
}
//===----------------------------------------------------------------------===//
// Selection DAG Type Profile definitions.
//
// These use the constraints defined above to describe the type requirements of
// the various nodes. These are not hard coded into tblgen, allowing targets to
// add their own if needed.
//
// SDTypeProfile - This profile describes the type requirements of a Selection
// DAG node.
class SDTypeProfile<int numresults, int numoperands,
list<SDTypeConstraint> constraints> {
int NumResults = numresults;
int NumOperands = numoperands;
list<SDTypeConstraint> Constraints = constraints;
}
// Builtin profiles.
def SDTIntLeaf: SDTypeProfile<1, 0, [SDTCisInt<0>]>; // for 'imm'.
def SDTFPLeaf : SDTypeProfile<1, 0, [SDTCisFP<0>]>; // for 'fpimm'.
def SDTPtrLeaf: SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>; // for '&g'.
def SDTOther : SDTypeProfile<1, 0, [SDTCisVT<0, OtherVT>]>; // for 'vt'.
def SDTUNDEF : SDTypeProfile<1, 0, []>; // for 'undef'.
def SDTUnaryOp : SDTypeProfile<1, 1, []>; // for bitconvert.
def SDTIntBinOp : SDTypeProfile<1, 2, [ // add, and, or, xor, udiv, etc.
SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisInt<0>
]>;
def SDTIntShiftOp : SDTypeProfile<1, 2, [ // shl, sra, srl
SDTCisSameAs<0, 1>, SDTCisInt<0>, SDTCisInt<2>
]>;
def SDTIntSatNoShOp : SDTypeProfile<1, 2, [ // ssat with no shift
SDTCisSameAs<0, 1>, SDTCisInt<2>
]>;
def SDTIntBinHiLoOp : SDTypeProfile<2, 2, [ // mulhi, mullo, sdivrem, udivrem
SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisSameAs<0, 3>,SDTCisInt<0>
]>;
def SDTFPBinOp : SDTypeProfile<1, 2, [ // fadd, fmul, etc.
SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisFP<0>
]>;
def SDTFPSignOp : SDTypeProfile<1, 2, [ // fcopysign.
SDTCisSameAs<0, 1>, SDTCisFP<0>, SDTCisFP<2>
]>;
def SDTFPTernaryOp : SDTypeProfile<1, 3, [ // fmadd, fnmsub, etc.
SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisSameAs<0, 3>, SDTCisFP<0>
]>;
def SDTIntUnaryOp : SDTypeProfile<1, 1, [ // ctlz
SDTCisSameAs<0, 1>, SDTCisInt<0>
]>;
def SDTIntExtendOp : SDTypeProfile<1, 1, [ // sext, zext, anyext
SDTCisInt<0>, SDTCisInt<1>, SDTCisOpSmallerThanOp<1, 0>, SDTCisSameNumEltsAs<0, 1>
]>;
def SDTIntTruncOp : SDTypeProfile<1, 1, [ // trunc
SDTCisInt<0>, SDTCisInt<1>, SDTCisOpSmallerThanOp<0, 1>, SDTCisSameNumEltsAs<0, 1>
]>;
def SDTFPUnaryOp : SDTypeProfile<1, 1, [ // fneg, fsqrt, etc
SDTCisSameAs<0, 1>, SDTCisFP<0>
]>;
def SDTFPRoundOp : SDTypeProfile<1, 1, [ // fround
SDTCisFP<0>, SDTCisFP<1>, SDTCisOpSmallerThanOp<0, 1>, SDTCisSameNumEltsAs<0, 1>
]>;
def SDTFPExtendOp : SDTypeProfile<1, 1, [ // fextend
SDTCisFP<0>, SDTCisFP<1>, SDTCisOpSmallerThanOp<1, 0>, SDTCisSameNumEltsAs<0, 1>
]>;
def SDTIntToFPOp : SDTypeProfile<1, 1, [ // [su]int_to_fp
SDTCisFP<0>, SDTCisInt<1>, SDTCisSameNumEltsAs<0, 1>
]>;
def SDTFPToIntOp : SDTypeProfile<1, 1, [ // fp_to_[su]int
SDTCisInt<0>, SDTCisFP<1>, SDTCisSameNumEltsAs<0, 1>
]>;
def SDTExtInreg : SDTypeProfile<1, 2, [ // sext_inreg
SDTCisSameAs<0, 1>, SDTCisInt<0>, SDTCisVT<2, OtherVT>,
SDTCisVTSmallerThanOp<2, 1>
]>;
def SDTExtInvec : SDTypeProfile<1, 1, [ // sext_invec
SDTCisInt<0>, SDTCisVec<0>, SDTCisInt<1>, SDTCisVec<1>,
SDTCisOpSmallerThanOp<1, 0>, SDTCisSameSizeAs<0,1>
]>;
def SDTSetCC : SDTypeProfile<1, 3, [ // setcc
SDTCisInt<0>, SDTCisSameAs<1, 2>, SDTCisVT<3, OtherVT>
]>;
def SDTSelect : SDTypeProfile<1, 3, [ // select
SDTCisInt<1>, SDTCisSameAs<0, 2>, SDTCisSameAs<2, 3>
]>;
def SDTVSelect : SDTypeProfile<1, 3, [ // vselect
SDTCisVec<0>, SDTCisInt<1>, SDTCisSameAs<0, 2>, SDTCisSameAs<2, 3>, SDTCisSameNumEltsAs<0, 1>
]>;
def SDTSelectCC : SDTypeProfile<1, 5, [ // select_cc
SDTCisSameAs<1, 2>, SDTCisSameAs<3, 4>, SDTCisSameAs<0, 3>,
SDTCisVT<5, OtherVT>
]>;
def SDTBr : SDTypeProfile<0, 1, [ // br
SDTCisVT<0, OtherVT>
]>;
def SDTBrCC : SDTypeProfile<0, 4, [ // brcc
SDTCisVT<0, OtherVT>, SDTCisSameAs<1, 2>, SDTCisVT<3, OtherVT>
]>;
def SDTBrcond : SDTypeProfile<0, 2, [ // brcond
SDTCisInt<0>, SDTCisVT<1, OtherVT>
]>;
def SDTBrind : SDTypeProfile<0, 1, [ // brind
SDTCisPtrTy<0>
]>;
def SDTCatchret : SDTypeProfile<0, 2, [ // catchret
SDTCisVT<0, OtherVT>, SDTCisVT<1, OtherVT>
]>;
def SDTNone : SDTypeProfile<0, 0, []>; // ret, trap
def SDTLoad : SDTypeProfile<1, 1, [ // load
SDTCisPtrTy<1>
]>;
def SDTStore : SDTypeProfile<0, 2, [ // store
SDTCisPtrTy<1>
]>;
def SDTIStore : SDTypeProfile<1, 3, [ // indexed store
SDTCisSameAs<0, 2>, SDTCisPtrTy<0>, SDTCisPtrTy<3>
]>;
def SDTMaskedStore: SDTypeProfile<0, 3, [ // masked store
SDTCisPtrTy<0>, SDTCisVec<1>, SDTCisVec<2>, SDTCisSameNumEltsAs<1, 2>
]>;
def SDTMaskedLoad: SDTypeProfile<1, 3, [ // masked load
SDTCisVec<0>, SDTCisPtrTy<1>, SDTCisVec<2>, SDTCisSameAs<0, 3>,
SDTCisSameNumEltsAs<0, 2>
]>;
def SDTMaskedGather: SDTypeProfile<2, 3, [ // masked gather
SDTCisVec<0>, SDTCisVec<1>, SDTCisSameAs<0, 2>, SDTCisSameAs<1, 3>,
SDTCisPtrTy<4>, SDTCVecEltisVT<1, i1>, SDTCisSameNumEltsAs<0, 1>
]>;
def SDTMaskedScatter: SDTypeProfile<1, 3, [ // masked scatter
SDTCisVec<0>, SDTCisVec<1>, SDTCisSameAs<0, 2>, SDTCisSameNumEltsAs<0, 1>,
SDTCVecEltisVT<0, i1>, SDTCisPtrTy<3>
]>;
def SDTVecShuffle : SDTypeProfile<1, 2, [
SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>
]>;
def SDTVecExtract : SDTypeProfile<1, 2, [ // vector extract
SDTCisEltOfVec<0, 1>, SDTCisPtrTy<2>
]>;
def SDTVecInsert : SDTypeProfile<1, 3, [ // vector insert
SDTCisEltOfVec<2, 1>, SDTCisSameAs<0, 1>, SDTCisPtrTy<3>
]>;
def SDTSubVecExtract : SDTypeProfile<1, 2, [// subvector extract
SDTCisSubVecOfVec<0,1>, SDTCisInt<2>
]>;
def SDTSubVecInsert : SDTypeProfile<1, 3, [ // subvector insert
SDTCisSubVecOfVec<2, 1>, SDTCisSameAs<0,1>, SDTCisInt<3>
]>;
def SDTPrefetch : SDTypeProfile<0, 4, [ // prefetch
SDTCisPtrTy<0>, SDTCisSameAs<1, 2>, SDTCisSameAs<1, 3>, SDTCisInt<1>
]>;
def SDTMemBarrier : SDTypeProfile<0, 5, [ // memory barrier
SDTCisSameAs<0,1>, SDTCisSameAs<0,2>, SDTCisSameAs<0,3>, SDTCisSameAs<0,4>,
SDTCisInt<0>
]>;
def SDTAtomicFence : SDTypeProfile<0, 2, [
SDTCisSameAs<0,1>, SDTCisPtrTy<0>
]>;
def SDTAtomic3 : SDTypeProfile<1, 3, [
SDTCisSameAs<0,2>, SDTCisSameAs<0,3>, SDTCisInt<0>, SDTCisPtrTy<1>
]>;
def SDTAtomic2 : SDTypeProfile<1, 2, [
SDTCisSameAs<0,2>, SDTCisInt<0>, SDTCisPtrTy<1>
]>;
def SDTAtomicStore : SDTypeProfile<0, 2, [
SDTCisPtrTy<0>, SDTCisInt<1>
]>;
def SDTAtomicLoad : SDTypeProfile<1, 1, [
SDTCisInt<0>, SDTCisPtrTy<1>
]>;
def SDTConvertOp : SDTypeProfile<1, 5, [ //cvtss, su, us, uu, ff, fs, fu, sf, su
SDTCisVT<2, OtherVT>, SDTCisVT<3, OtherVT>, SDTCisPtrTy<4>, SDTCisPtrTy<5>
]>;
class SDCallSeqStart<list<SDTypeConstraint> constraints> :
SDTypeProfile<0, 2, constraints>;
class SDCallSeqEnd<list<SDTypeConstraint> constraints> :
SDTypeProfile<0, 2, constraints>;
//===----------------------------------------------------------------------===//
// Selection DAG Node Properties.
//
// Note: These are hard coded into tblgen.
//
class SDNodeProperty;
def SDNPCommutative : SDNodeProperty; // X op Y == Y op X
def SDNPAssociative : SDNodeProperty; // (X op Y) op Z == X op (Y op Z)
def SDNPHasChain : SDNodeProperty; // R/W chain operand and result
def SDNPOutGlue : SDNodeProperty; // Write a flag result
def SDNPInGlue : SDNodeProperty; // Read a flag operand
def SDNPOptInGlue : SDNodeProperty; // Optionally read a flag operand
def SDNPMayStore : SDNodeProperty; // May write to memory, sets 'mayStore'.
def SDNPMayLoad : SDNodeProperty; // May read memory, sets 'mayLoad'.
def SDNPSideEffect : SDNodeProperty; // Sets 'HasUnmodelledSideEffects'.
def SDNPMemOperand : SDNodeProperty; // Touches memory, has assoc MemOperand
def SDNPVariadic : SDNodeProperty; // Node has variable arguments.
def SDNPWantRoot : SDNodeProperty; // ComplexPattern gets the root of match
def SDNPWantParent : SDNodeProperty; // ComplexPattern gets the parent
//===----------------------------------------------------------------------===//
// Selection DAG Pattern Operations
class SDPatternOperator {
list<SDNodeProperty> Properties = [];
}
//===----------------------------------------------------------------------===//
// Selection DAG Node definitions.
//
class SDNode<string opcode, SDTypeProfile typeprof,
list<SDNodeProperty> props = [], string sdclass = "SDNode">
: SDPatternOperator {
string Opcode = opcode;
string SDClass = sdclass;
let Properties = props;
SDTypeProfile TypeProfile = typeprof;
}
// Special TableGen-recognized dag nodes
def set;
def implicit;
def node;
def srcvalue;
def imm : SDNode<"ISD::Constant" , SDTIntLeaf , [], "ConstantSDNode">;
def timm : SDNode<"ISD::TargetConstant",SDTIntLeaf, [], "ConstantSDNode">;
def fpimm : SDNode<"ISD::ConstantFP", SDTFPLeaf , [], "ConstantFPSDNode">;
def vt : SDNode<"ISD::VALUETYPE" , SDTOther , [], "VTSDNode">;
def bb : SDNode<"ISD::BasicBlock", SDTOther , [], "BasicBlockSDNode">;
def cond : SDNode<"ISD::CONDCODE" , SDTOther , [], "CondCodeSDNode">;
def undef : SDNode<"ISD::UNDEF" , SDTUNDEF , []>;
def globaladdr : SDNode<"ISD::GlobalAddress", SDTPtrLeaf, [],
"GlobalAddressSDNode">;
def tglobaladdr : SDNode<"ISD::TargetGlobalAddress", SDTPtrLeaf, [],
"GlobalAddressSDNode">;
def globaltlsaddr : SDNode<"ISD::GlobalTLSAddress", SDTPtrLeaf, [],
"GlobalAddressSDNode">;
def tglobaltlsaddr : SDNode<"ISD::TargetGlobalTLSAddress", SDTPtrLeaf, [],
"GlobalAddressSDNode">;
def constpool : SDNode<"ISD::ConstantPool", SDTPtrLeaf, [],
"ConstantPoolSDNode">;
def tconstpool : SDNode<"ISD::TargetConstantPool", SDTPtrLeaf, [],
"ConstantPoolSDNode">;
def jumptable : SDNode<"ISD::JumpTable", SDTPtrLeaf, [],
"JumpTableSDNode">;
def tjumptable : SDNode<"ISD::TargetJumpTable", SDTPtrLeaf, [],
"JumpTableSDNode">;
def frameindex : SDNode<"ISD::FrameIndex", SDTPtrLeaf, [],
"FrameIndexSDNode">;
def tframeindex : SDNode<"ISD::TargetFrameIndex", SDTPtrLeaf, [],
"FrameIndexSDNode">;
def externalsym : SDNode<"ISD::ExternalSymbol", SDTPtrLeaf, [],
"ExternalSymbolSDNode">;
def texternalsym: SDNode<"ISD::TargetExternalSymbol", SDTPtrLeaf, [],
"ExternalSymbolSDNode">;
def mcsym: SDNode<"ISD::MCSymbol", SDTPtrLeaf, [], "MCSymbolSDNode">;
def blockaddress : SDNode<"ISD::BlockAddress", SDTPtrLeaf, [],
"BlockAddressSDNode">;
def tblockaddress: SDNode<"ISD::TargetBlockAddress", SDTPtrLeaf, [],
"BlockAddressSDNode">;
def add : SDNode<"ISD::ADD" , SDTIntBinOp ,
[SDNPCommutative, SDNPAssociative]>;
def sub : SDNode<"ISD::SUB" , SDTIntBinOp>;
def mul : SDNode<"ISD::MUL" , SDTIntBinOp,
[SDNPCommutative, SDNPAssociative]>;
def mulhs : SDNode<"ISD::MULHS" , SDTIntBinOp, [SDNPCommutative]>;
def mulhu : SDNode<"ISD::MULHU" , SDTIntBinOp, [SDNPCommutative]>;
def smullohi : SDNode<"ISD::SMUL_LOHI" , SDTIntBinHiLoOp, [SDNPCommutative]>;
def umullohi : SDNode<"ISD::UMUL_LOHI" , SDTIntBinHiLoOp, [SDNPCommutative]>;
def sdiv : SDNode<"ISD::SDIV" , SDTIntBinOp>;
def udiv : SDNode<"ISD::UDIV" , SDTIntBinOp>;
def srem : SDNode<"ISD::SREM" , SDTIntBinOp>;
def urem : SDNode<"ISD::UREM" , SDTIntBinOp>;
def sdivrem : SDNode<"ISD::SDIVREM" , SDTIntBinHiLoOp>;
def udivrem : SDNode<"ISD::UDIVREM" , SDTIntBinHiLoOp>;
def srl : SDNode<"ISD::SRL" , SDTIntShiftOp>;
def sra : SDNode<"ISD::SRA" , SDTIntShiftOp>;
def shl : SDNode<"ISD::SHL" , SDTIntShiftOp>;
def rotl : SDNode<"ISD::ROTL" , SDTIntShiftOp>;
def rotr : SDNode<"ISD::ROTR" , SDTIntShiftOp>;
def and : SDNode<"ISD::AND" , SDTIntBinOp,
[SDNPCommutative, SDNPAssociative]>;
def or : SDNode<"ISD::OR" , SDTIntBinOp,
[SDNPCommutative, SDNPAssociative]>;
def xor : SDNode<"ISD::XOR" , SDTIntBinOp,
[SDNPCommutative, SDNPAssociative]>;
def addc : SDNode<"ISD::ADDC" , SDTIntBinOp,
[SDNPCommutative, SDNPOutGlue]>;
def adde : SDNode<"ISD::ADDE" , SDTIntBinOp,
[SDNPCommutative, SDNPOutGlue, SDNPInGlue]>;
def subc : SDNode<"ISD::SUBC" , SDTIntBinOp,
[SDNPOutGlue]>;
def sube : SDNode<"ISD::SUBE" , SDTIntBinOp,
[SDNPOutGlue, SDNPInGlue]>;
def smin : SDNode<"ISD::SMIN" , SDTIntBinOp,
[SDNPCommutative, SDNPAssociative]>;
def smax : SDNode<"ISD::SMAX" , SDTIntBinOp,
[SDNPCommutative, SDNPAssociative]>;
def umin : SDNode<"ISD::UMIN" , SDTIntBinOp,
[SDNPCommutative, SDNPAssociative]>;
def umax : SDNode<"ISD::UMAX" , SDTIntBinOp,
[SDNPCommutative, SDNPAssociative]>;
def sext_inreg : SDNode<"ISD::SIGN_EXTEND_INREG", SDTExtInreg>;
def sext_invec : SDNode<"ISD::SIGN_EXTEND_VECTOR_INREG", SDTExtInvec>;
def zext_invec : SDNode<"ISD::ZERO_EXTEND_VECTOR_INREG", SDTExtInvec>;
def abs : SDNode<"ISD::ABS" , SDTIntUnaryOp>;
def bitreverse : SDNode<"ISD::BITREVERSE" , SDTIntUnaryOp>;
def bswap : SDNode<"ISD::BSWAP" , SDTIntUnaryOp>;
def ctlz : SDNode<"ISD::CTLZ" , SDTIntUnaryOp>;
def cttz : SDNode<"ISD::CTTZ" , SDTIntUnaryOp>;
def ctpop : SDNode<"ISD::CTPOP" , SDTIntUnaryOp>;
def ctlz_zero_undef : SDNode<"ISD::CTLZ_ZERO_UNDEF", SDTIntUnaryOp>;
def cttz_zero_undef : SDNode<"ISD::CTTZ_ZERO_UNDEF", SDTIntUnaryOp>;
def sext : SDNode<"ISD::SIGN_EXTEND", SDTIntExtendOp>;
def zext : SDNode<"ISD::ZERO_EXTEND", SDTIntExtendOp>;
def anyext : SDNode<"ISD::ANY_EXTEND" , SDTIntExtendOp>;
def trunc : SDNode<"ISD::TRUNCATE" , SDTIntTruncOp>;
def bitconvert : SDNode<"ISD::BITCAST" , SDTUnaryOp>;
def addrspacecast : SDNode<"ISD::ADDRSPACECAST", SDTUnaryOp>;
def extractelt : SDNode<"ISD::EXTRACT_VECTOR_ELT", SDTVecExtract>;
def insertelt : SDNode<"ISD::INSERT_VECTOR_ELT", SDTVecInsert>;
def fadd : SDNode<"ISD::FADD" , SDTFPBinOp, [SDNPCommutative]>;
def fsub : SDNode<"ISD::FSUB" , SDTFPBinOp>;
def fmul : SDNode<"ISD::FMUL" , SDTFPBinOp, [SDNPCommutative]>;
def fdiv : SDNode<"ISD::FDIV" , SDTFPBinOp>;
def frem : SDNode<"ISD::FREM" , SDTFPBinOp>;
def fma : SDNode<"ISD::FMA" , SDTFPTernaryOp>;
def fmad : SDNode<"ISD::FMAD" , SDTFPTernaryOp>;
def fabs : SDNode<"ISD::FABS" , SDTFPUnaryOp>;
def fminnum : SDNode<"ISD::FMINNUM" , SDTFPBinOp,
[SDNPCommutative, SDNPAssociative]>;
def fmaxnum : SDNode<"ISD::FMAXNUM" , SDTFPBinOp,
[SDNPCommutative, SDNPAssociative]>;
def fminnan : SDNode<"ISD::FMINNAN" , SDTFPBinOp>;
def fmaxnan : SDNode<"ISD::FMAXNAN" , SDTFPBinOp>;
def fgetsign : SDNode<"ISD::FGETSIGN" , SDTFPToIntOp>;
def fcanonicalize : SDNode<"ISD::FCANONICALIZE", SDTFPUnaryOp>;
def fneg : SDNode<"ISD::FNEG" , SDTFPUnaryOp>;
def fsqrt : SDNode<"ISD::FSQRT" , SDTFPUnaryOp>;
def fsin : SDNode<"ISD::FSIN" , SDTFPUnaryOp>;
def fcos : SDNode<"ISD::FCOS" , SDTFPUnaryOp>;
def fexp2 : SDNode<"ISD::FEXP2" , SDTFPUnaryOp>;
def fpow : SDNode<"ISD::FPOW" , SDTFPBinOp>;
def flog2 : SDNode<"ISD::FLOG2" , SDTFPUnaryOp>;
def frint : SDNode<"ISD::FRINT" , SDTFPUnaryOp>;
def ftrunc : SDNode<"ISD::FTRUNC" , SDTFPUnaryOp>;
def fceil : SDNode<"ISD::FCEIL" , SDTFPUnaryOp>;
def ffloor : SDNode<"ISD::FFLOOR" , SDTFPUnaryOp>;
def fnearbyint : SDNode<"ISD::FNEARBYINT" , SDTFPUnaryOp>;
def fround : SDNode<"ISD::FROUND" , SDTFPUnaryOp>;
def fpround : SDNode<"ISD::FP_ROUND" , SDTFPRoundOp>;
def fpextend : SDNode<"ISD::FP_EXTEND" , SDTFPExtendOp>;
def fcopysign : SDNode<"ISD::FCOPYSIGN" , SDTFPSignOp>;
def sint_to_fp : SDNode<"ISD::SINT_TO_FP" , SDTIntToFPOp>;
def uint_to_fp : SDNode<"ISD::UINT_TO_FP" , SDTIntToFPOp>;
def fp_to_sint : SDNode<"ISD::FP_TO_SINT" , SDTFPToIntOp>;
def fp_to_uint : SDNode<"ISD::FP_TO_UINT" , SDTFPToIntOp>;
def f16_to_fp : SDNode<"ISD::FP16_TO_FP" , SDTIntToFPOp>;
def fp_to_f16 : SDNode<"ISD::FP_TO_FP16" , SDTFPToIntOp>;
def setcc : SDNode<"ISD::SETCC" , SDTSetCC>;
def select : SDNode<"ISD::SELECT" , SDTSelect>;
def vselect : SDNode<"ISD::VSELECT" , SDTVSelect>;
def selectcc : SDNode<"ISD::SELECT_CC" , SDTSelectCC>;
def brcc : SDNode<"ISD::BR_CC" , SDTBrCC, [SDNPHasChain]>;
def brcond : SDNode<"ISD::BRCOND" , SDTBrcond, [SDNPHasChain]>;
def brind : SDNode<"ISD::BRIND" , SDTBrind, [SDNPHasChain]>;
def br : SDNode<"ISD::BR" , SDTBr, [SDNPHasChain]>;
def catchret : SDNode<"ISD::CATCHRET" , SDTCatchret,
[SDNPHasChain, SDNPSideEffect]>;
def cleanupret : SDNode<"ISD::CLEANUPRET" , SDTNone, [SDNPHasChain]>;
def catchpad : SDNode<"ISD::CATCHPAD" , SDTNone,
[SDNPHasChain, SDNPSideEffect]>;
def trap : SDNode<"ISD::TRAP" , SDTNone,
[SDNPHasChain, SDNPSideEffect]>;
def debugtrap : SDNode<"ISD::DEBUGTRAP" , SDTNone,
[SDNPHasChain, SDNPSideEffect]>;
def prefetch : SDNode<"ISD::PREFETCH" , SDTPrefetch,
[SDNPHasChain, SDNPMayLoad, SDNPMayStore,
SDNPMemOperand]>;
def readcyclecounter : SDNode<"ISD::READCYCLECOUNTER", SDTIntLeaf,
[SDNPHasChain, SDNPSideEffect]>;
def atomic_fence : SDNode<"ISD::ATOMIC_FENCE" , SDTAtomicFence,
[SDNPHasChain, SDNPSideEffect]>;
def atomic_cmp_swap : SDNode<"ISD::ATOMIC_CMP_SWAP" , SDTAtomic3,
[SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>;
def atomic_load_add : SDNode<"ISD::ATOMIC_LOAD_ADD" , SDTAtomic2,
[SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>;
def atomic_swap : SDNode<"ISD::ATOMIC_SWAP", SDTAtomic2,
[SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>;
def atomic_load_sub : SDNode<"ISD::ATOMIC_LOAD_SUB" , SDTAtomic2,
[SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>;
def atomic_load_and : SDNode<"ISD::ATOMIC_LOAD_AND" , SDTAtomic2,
[SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>;
def atomic_load_or : SDNode<"ISD::ATOMIC_LOAD_OR" , SDTAtomic2,
[SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>;
def atomic_load_xor : SDNode<"ISD::ATOMIC_LOAD_XOR" , SDTAtomic2,
[SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>;
def atomic_load_nand: SDNode<"ISD::ATOMIC_LOAD_NAND", SDTAtomic2,
[SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>;
def atomic_load_min : SDNode<"ISD::ATOMIC_LOAD_MIN", SDTAtomic2,
[SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>;
def atomic_load_max : SDNode<"ISD::ATOMIC_LOAD_MAX", SDTAtomic2,
[SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>;
def atomic_load_umin : SDNode<"ISD::ATOMIC_LOAD_UMIN", SDTAtomic2,
[SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>;
def atomic_load_umax : SDNode<"ISD::ATOMIC_LOAD_UMAX", SDTAtomic2,
[SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>;
def atomic_load : SDNode<"ISD::ATOMIC_LOAD", SDTAtomicLoad,
[SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
def atomic_store : SDNode<"ISD::ATOMIC_STORE", SDTAtomicStore,
[SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
def masked_store : SDNode<"ISD::MSTORE", SDTMaskedStore,
[SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
def masked_load : SDNode<"ISD::MLOAD", SDTMaskedLoad,
[SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
def masked_scatter : SDNode<"ISD::MSCATTER", SDTMaskedScatter,
[SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
def masked_gather : SDNode<"ISD::MGATHER", SDTMaskedGather,
[SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
// Do not use ld, st directly. Use load, extload, sextload, zextload, store,
// and truncst (see below).
def ld : SDNode<"ISD::LOAD" , SDTLoad,
[SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
def st : SDNode<"ISD::STORE" , SDTStore,
[SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
def ist : SDNode<"ISD::STORE" , SDTIStore,
[SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
def vector_shuffle : SDNode<"ISD::VECTOR_SHUFFLE", SDTVecShuffle, []>;
def build_vector : SDNode<"ISD::BUILD_VECTOR", SDTypeProfile<1, -1, []>, []>;
def scalar_to_vector : SDNode<"ISD::SCALAR_TO_VECTOR", SDTypeProfile<1, 1, []>,
[]>;
// vector_extract/vector_insert are deprecated. extractelt/insertelt
// are preferred.
def vector_extract : SDNode<"ISD::EXTRACT_VECTOR_ELT",
SDTypeProfile<1, 2, [SDTCisPtrTy<2>]>, []>;
def vector_insert : SDNode<"ISD::INSERT_VECTOR_ELT",
SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisPtrTy<3>]>, []>;
def concat_vectors : SDNode<"ISD::CONCAT_VECTORS",
SDTypeProfile<1, 2, [SDTCisSubVecOfVec<1, 0>, SDTCisSameAs<1, 2>]>,[]>;
// This operator does not do subvector type checking. The ARM
// backend, at least, needs it.
def vector_extract_subvec : SDNode<"ISD::EXTRACT_SUBVECTOR",
SDTypeProfile<1, 2, [SDTCisInt<2>, SDTCisVec<1>, SDTCisVec<0>]>,
[]>;
// This operator does subvector type checking.
def extract_subvector : SDNode<"ISD::EXTRACT_SUBVECTOR", SDTSubVecExtract, []>;
def insert_subvector : SDNode<"ISD::INSERT_SUBVECTOR", SDTSubVecInsert, []>;
// Nodes for intrinsics, you should use the intrinsic itself and let tblgen use
// these internally. Don't reference these directly.
def intrinsic_void : SDNode<"ISD::INTRINSIC_VOID",
SDTypeProfile<0, -1, [SDTCisPtrTy<0>]>,
[SDNPHasChain]>;
def intrinsic_w_chain : SDNode<"ISD::INTRINSIC_W_CHAIN",
SDTypeProfile<1, -1, [SDTCisPtrTy<1>]>,
[SDNPHasChain]>;
def intrinsic_wo_chain : SDNode<"ISD::INTRINSIC_WO_CHAIN",
SDTypeProfile<1, -1, [SDTCisPtrTy<1>]>, []>;
def SDT_assertext : SDTypeProfile<1, 1,
[SDTCisInt<0>, SDTCisInt<1>, SDTCisSameAs<1, 0>]>;
def assertsext : SDNode<"ISD::AssertSext", SDT_assertext>;
def assertzext : SDNode<"ISD::AssertZext", SDT_assertext>;
//===----------------------------------------------------------------------===//
// Selection DAG Condition Codes
class CondCode; // ISD::CondCode enums
def SETOEQ : CondCode; def SETOGT : CondCode;
def SETOGE : CondCode; def SETOLT : CondCode; def SETOLE : CondCode;
def SETONE : CondCode; def SETO : CondCode; def SETUO : CondCode;
def SETUEQ : CondCode; def SETUGT : CondCode; def SETUGE : CondCode;
def SETULT : CondCode; def SETULE : CondCode; def SETUNE : CondCode;
def SETEQ : CondCode; def SETGT : CondCode; def SETGE : CondCode;
def SETLT : CondCode; def SETLE : CondCode; def SETNE : CondCode;
//===----------------------------------------------------------------------===//
// Selection DAG Node Transformation Functions.
//
// This mechanism allows targets to manipulate nodes in the output DAG once a
// match has been formed. This is typically used to manipulate immediate
// values.
//
class SDNodeXForm<SDNode opc, code xformFunction> {
SDNode Opcode = opc;
code XFormFunction = xformFunction;
}
def NOOP_SDNodeXForm : SDNodeXForm<imm, [{}]>;
//===----------------------------------------------------------------------===//
// PatPred Subclasses.
//
// These allow specifying different sorts of predicates that control whether a
// node is matched.
//
class PatPred;
class CodePatPred<code predicate> : PatPred {
code PredicateCode = predicate;
}
//===----------------------------------------------------------------------===//
// Selection DAG Pattern Fragments.
//
// Pattern fragments are reusable chunks of dags that match specific things.
// They can take arguments and have C++ predicates that control whether they
// match. They are intended to make the patterns for common instructions more
// compact and readable.
//
/// PatFrag - Represents a pattern fragment. This can match something on the
/// DAG, from a single node to multiple nested other fragments.
///
class PatFrag<dag ops, dag frag, code pred = [{}],
SDNodeXForm xform = NOOP_SDNodeXForm> : SDPatternOperator {
dag Operands = ops;
dag Fragment = frag;
code PredicateCode = pred;
code ImmediateCode = [{}];
SDNodeXForm OperandTransform = xform;
}
// OutPatFrag is a pattern fragment that is used as part of an output pattern
// (not an input pattern). These do not have predicates or transforms, but are
// used to avoid repeated subexpressions in output patterns.
class OutPatFrag<dag ops, dag frag>
: PatFrag<ops, frag, [{}], NOOP_SDNodeXForm>;
// PatLeaf's are pattern fragments that have no operands. This is just a helper
// to define immediates and other common things concisely.
class PatLeaf<dag frag, code pred = [{}], SDNodeXForm xform = NOOP_SDNodeXForm>
: PatFrag<(ops), frag, pred, xform>;
// ImmLeaf is a pattern fragment with a constraint on the immediate. The
// constraint is a function that is run on the immediate (always with the value
// sign extended out to an int64_t) as Imm. For example:
//
// def immSExt8 : ImmLeaf<i16, [{ return (char)Imm == Imm; }]>;
//
// this is a more convenient form to match 'imm' nodes in than PatLeaf and also
// is preferred over using PatLeaf because it allows the code generator to
// reason more about the constraint.
//
// If FastIsel should ignore all instructions that have an operand of this type,
// the FastIselShouldIgnore flag can be set. This is an optimization to reduce
// the code size of the generated fast instruction selector.
class ImmLeaf<ValueType vt, code pred, SDNodeXForm xform = NOOP_SDNodeXForm>
: PatFrag<(ops), (vt imm), [{}], xform> {
let ImmediateCode = pred;
bit FastIselShouldIgnore = 0;
}
// Leaf fragments.
def vtInt : PatLeaf<(vt), [{ return N->getVT().isInteger(); }]>;
def vtFP : PatLeaf<(vt), [{ return N->getVT().isFloatingPoint(); }]>;
def immAllOnesV: PatLeaf<(build_vector), [{
return ISD::isBuildVectorAllOnes(N);
}]>;
def immAllZerosV: PatLeaf<(build_vector), [{
return ISD::isBuildVectorAllZeros(N);
}]>;
// Other helper fragments.
def not : PatFrag<(ops node:$in), (xor node:$in, -1)>;
def vnot : PatFrag<(ops node:$in), (xor node:$in, immAllOnesV)>;
def ineg : PatFrag<(ops node:$in), (sub 0, node:$in)>;
// null_frag - The null pattern operator is used in multiclass instantiations
// which accept an SDPatternOperator for use in matching patterns for internal
// definitions. When expanding a pattern, if the null fragment is referenced
// in the expansion, the pattern is discarded and it is as-if '[]' had been
// specified. This allows multiclasses to have the isel patterns be optional.
def null_frag : SDPatternOperator;
// load fragments.
def unindexedload : PatFrag<(ops node:$ptr), (ld node:$ptr), [{
return cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
}]>;
def load : PatFrag<(ops node:$ptr), (unindexedload node:$ptr), [{
return cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
}]>;
// extending load fragments.
def extload : PatFrag<(ops node:$ptr), (unindexedload node:$ptr), [{
return cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
}]>;
def sextload : PatFrag<(ops node:$ptr), (unindexedload node:$ptr), [{
return cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
}]>;
def zextload : PatFrag<(ops node:$ptr), (unindexedload node:$ptr), [{
return cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
}]>;
def extloadi1 : PatFrag<(ops node:$ptr), (extload node:$ptr), [{
return cast<LoadSDNode>(N)->getMemoryVT() == MVT::i1;
}]>;
def extloadi8 : PatFrag<(ops node:$ptr), (extload node:$ptr), [{
return cast<LoadSDNode>(N)->getMemoryVT() == MVT::i8;
}]>;
def extloadi16 : PatFrag<(ops node:$ptr), (extload node:$ptr), [{
return cast<LoadSDNode>(N)->getMemoryVT() == MVT::i16;
}]>;
def extloadi32 : PatFrag<(ops node:$ptr), (extload node:$ptr), [{
return cast<LoadSDNode>(N)->getMemoryVT() == MVT::i32;
}]>;
def extloadf32 : PatFrag<(ops node:$ptr), (extload node:$ptr), [{
return cast<LoadSDNode>(N)->getMemoryVT() == MVT::f32;
}]>;
def extloadf64 : PatFrag<(ops node:$ptr), (extload node:$ptr), [{
return cast<LoadSDNode>(N)->getMemoryVT() == MVT::f64;
}]>;
def sextloadi1 : PatFrag<(ops node:$ptr), (sextload node:$ptr), [{
return cast<LoadSDNode>(N)->getMemoryVT() == MVT::i1;
}]>;
def sextloadi8 : PatFrag<(ops node:$ptr), (sextload node:$ptr), [{
return cast<LoadSDNode>(N)->getMemoryVT() == MVT::i8;
}]>;
def sextloadi16 : PatFrag<(ops node:$ptr), (sextload node:$ptr), [{
return cast<LoadSDNode>(N)->getMemoryVT() == MVT::i16;
}]>;
def sextloadi32 : PatFrag<(ops node:$ptr), (sextload node:$ptr), [{
return cast<LoadSDNode>(N)->getMemoryVT() == MVT::i32;
}]>;
def zextloadi1 : PatFrag<(ops node:$ptr), (zextload node:$ptr), [{
return cast<LoadSDNode>(N)->getMemoryVT() == MVT::i1;
}]>;
def zextloadi8 : PatFrag<(ops node:$ptr), (zextload node:$ptr), [{
return cast<LoadSDNode>(N)->getMemoryVT() == MVT::i8;
}]>;
def zextloadi16 : PatFrag<(ops node:$ptr), (zextload node:$ptr), [{
return cast<LoadSDNode>(N)->getMemoryVT() == MVT::i16;
}]>;
def zextloadi32 : PatFrag<(ops node:$ptr), (zextload node:$ptr), [{
return cast<LoadSDNode>(N)->getMemoryVT() == MVT::i32;
}]>;
def extloadvi1 : PatFrag<(ops node:$ptr), (extload node:$ptr), [{
return cast<LoadSDNode>(N)->getMemoryVT().getScalarType() == MVT::i1;
}]>;
def extloadvi8 : PatFrag<(ops node:$ptr), (extload node:$ptr), [{
return cast<LoadSDNode>(N)->getMemoryVT().getScalarType() == MVT::i8;
}]>;
def extloadvi16 : PatFrag<(ops node:$ptr), (extload node:$ptr), [{
return cast<LoadSDNode>(N)->getMemoryVT().getScalarType() == MVT::i16;
}]>;
def extloadvi32 : PatFrag<(ops node:$ptr), (extload node:$ptr), [{
return cast<LoadSDNode>(N)->getMemoryVT().getScalarType() == MVT::i32;
}]>;
def extloadvf32 : PatFrag<(ops node:$ptr), (extload node:$ptr), [{
return cast<LoadSDNode>(N)->getMemoryVT().getScalarType() == MVT::f32;
}]>;
def extloadvf64 : PatFrag<(ops node:$ptr), (extload node:$ptr), [{
return cast<LoadSDNode>(N)->getMemoryVT().getScalarType() == MVT::f64;
}]>;
def sextloadvi1 : PatFrag<(ops node:$ptr), (sextload node:$ptr), [{
return cast<LoadSDNode>(N)->getMemoryVT().getScalarType() == MVT::i1;
}]>;
def sextloadvi8 : PatFrag<(ops node:$ptr), (sextload node:$ptr), [{
return cast<LoadSDNode>(N)->getMemoryVT().getScalarType() == MVT::i8;
}]>;
def sextloadvi16 : PatFrag<(ops node:$ptr), (sextload node:$ptr), [{
return cast<LoadSDNode>(N)->getMemoryVT().getScalarType() == MVT::i16;
}]>;
def sextloadvi32 : PatFrag<(ops node:$ptr), (sextload node:$ptr), [{
return cast<LoadSDNode>(N)->getMemoryVT().getScalarType() == MVT::i32;
}]>;
def zextloadvi1 : PatFrag<(ops node:$ptr), (zextload node:$ptr), [{
return cast<LoadSDNode>(N)->getMemoryVT().getScalarType() == MVT::i1;
}]>;
def zextloadvi8 : PatFrag<(ops node:$ptr), (zextload node:$ptr), [{
return cast<LoadSDNode>(N)->getMemoryVT().getScalarType() == MVT::i8;
}]>;
def zextloadvi16 : PatFrag<(ops node:$ptr), (zextload node:$ptr), [{
return cast<LoadSDNode>(N)->getMemoryVT().getScalarType() == MVT::i16;
}]>;
def zextloadvi32 : PatFrag<(ops node:$ptr), (zextload node:$ptr), [{
return cast<LoadSDNode>(N)->getMemoryVT().getScalarType() == MVT::i32;
}]>;
// store fragments.
def unindexedstore : PatFrag<(ops node:$val, node:$ptr),
(st node:$val, node:$ptr), [{
return cast<StoreSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
}]>;
def store : PatFrag<(ops node:$val, node:$ptr),
(unindexedstore node:$val, node:$ptr), [{
return !cast<StoreSDNode>(N)->isTruncatingStore();
}]>;
// truncstore fragments.
def truncstore : PatFrag<(ops node:$val, node:$ptr),
(unindexedstore node:$val, node:$ptr), [{
return cast<StoreSDNode>(N)->isTruncatingStore();
}]>;
def truncstorei8 : PatFrag<(ops node:$val, node:$ptr),
(truncstore node:$val, node:$ptr), [{
return cast<StoreSDNode>(N)->getMemoryVT() == MVT::i8;
}]>;
def truncstorei16 : PatFrag<(ops node:$val, node:$ptr),
(truncstore node:$val, node:$ptr), [{
return cast<StoreSDNode>(N)->getMemoryVT() == MVT::i16;
}]>;
def truncstorei32 : PatFrag<(ops node:$val, node:$ptr),
(truncstore node:$val, node:$ptr), [{
return cast<StoreSDNode>(N)->getMemoryVT() == MVT::i32;
}]>;
def truncstoref32 : PatFrag<(ops node:$val, node:$ptr),
(truncstore node:$val, node:$ptr), [{
return cast<StoreSDNode>(N)->getMemoryVT() == MVT::f32;
}]>;
def truncstoref64 : PatFrag<(ops node:$val, node:$ptr),
(truncstore node:$val, node:$ptr), [{
return cast<StoreSDNode>(N)->getMemoryVT() == MVT::f64;
}]>;
def truncstorevi8 : PatFrag<(ops node:$val, node:$ptr),
(truncstore node:$val, node:$ptr), [{
return cast<StoreSDNode>(N)->getMemoryVT().getScalarType() == MVT::i8;
}]>;
def truncstorevi16 : PatFrag<(ops node:$val, node:$ptr),
(truncstore node:$val, node:$ptr), [{
return cast<StoreSDNode>(N)->getMemoryVT().getScalarType() == MVT::i16;
}]>;
def truncstorevi32 : PatFrag<(ops node:$val, node:$ptr),
(truncstore node:$val, node:$ptr), [{
return cast<StoreSDNode>(N)->getMemoryVT().getScalarType() == MVT::i32;
}]>;
// indexed store fragments.
def istore : PatFrag<(ops node:$val, node:$base, node:$offset),
(ist node:$val, node:$base, node:$offset), [{
return !cast<StoreSDNode>(N)->isTruncatingStore();
}]>;
def pre_store : PatFrag<(ops node:$val, node:$base, node:$offset),
(istore node:$val, node:$base, node:$offset), [{
ISD::MemIndexedMode AM = cast<StoreSDNode>(N)->getAddressingMode();
return AM == ISD::PRE_INC || AM == ISD::PRE_DEC;
}]>;
def itruncstore : PatFrag<(ops node:$val, node:$base, node:$offset),
(ist node:$val, node:$base, node:$offset), [{
return cast<StoreSDNode>(N)->isTruncatingStore();
}]>;
def pre_truncst : PatFrag<(ops node:$val, node:$base, node:$offset),
(itruncstore node:$val, node:$base, node:$offset), [{
ISD::MemIndexedMode AM = cast<StoreSDNode>(N)->getAddressingMode();
return AM == ISD::PRE_INC || AM == ISD::PRE_DEC;
}]>;
def pre_truncsti1 : PatFrag<(ops node:$val, node:$base, node:$offset),
(pre_truncst node:$val, node:$base, node:$offset), [{
return cast<StoreSDNode>(N)->getMemoryVT() == MVT::i1;
}]>;
def pre_truncsti8 : PatFrag<(ops node:$val, node:$base, node:$offset),
(pre_truncst node:$val, node:$base, node:$offset), [{
return cast<StoreSDNode>(N)->getMemoryVT() == MVT::i8;
}]>;
def pre_truncsti16 : PatFrag<(ops node:$val, node:$base, node:$offset),
(pre_truncst node:$val, node:$base, node:$offset), [{
return cast<StoreSDNode>(N)->getMemoryVT() == MVT::i16;
}]>;
def pre_truncsti32 : PatFrag<(ops node:$val, node:$base, node:$offset),
(pre_truncst node:$val, node:$base, node:$offset), [{
return cast<StoreSDNode>(N)->getMemoryVT() == MVT::i32;
}]>;
def pre_truncstf32 : PatFrag<(ops node:$val, node:$base, node:$offset),
(pre_truncst node:$val, node:$base, node:$offset), [{
return cast<StoreSDNode>(N)->getMemoryVT() == MVT::f32;
}]>;
def post_store : PatFrag<(ops node:$val, node:$ptr, node:$offset),
(istore node:$val, node:$ptr, node:$offset), [{
ISD::MemIndexedMode AM = cast<StoreSDNode>(N)->getAddressingMode();
return AM == ISD::POST_INC || AM == ISD::POST_DEC;
}]>;
def post_truncst : PatFrag<(ops node:$val, node:$base, node:$offset),
(itruncstore node:$val, node:$base, node:$offset), [{
ISD::MemIndexedMode AM = cast<StoreSDNode>(N)->getAddressingMode();
return AM == ISD::POST_INC || AM == ISD::POST_DEC;
}]>;
def post_truncsti1 : PatFrag<(ops node:$val, node:$base, node:$offset),
(post_truncst node:$val, node:$base, node:$offset), [{
return cast<StoreSDNode>(N)->getMemoryVT() == MVT::i1;
}]>;
def post_truncsti8 : PatFrag<(ops node:$val, node:$base, node:$offset),
(post_truncst node:$val, node:$base, node:$offset), [{
return cast<StoreSDNode>(N)->getMemoryVT() == MVT::i8;
}]>;
def post_truncsti16 : PatFrag<(ops node:$val, node:$base, node:$offset),
(post_truncst node:$val, node:$base, node:$offset), [{
return cast<StoreSDNode>(N)->getMemoryVT() == MVT::i16;
}]>;
def post_truncsti32 : PatFrag<(ops node:$val, node:$base, node:$offset),
(post_truncst node:$val, node:$base, node:$offset), [{
return cast<StoreSDNode>(N)->getMemoryVT() == MVT::i32;
}]>;
def post_truncstf32 : PatFrag<(ops node:$val, node:$base, node:$offset),
(post_truncst node:$val, node:$base, node:$offset), [{
return cast<StoreSDNode>(N)->getMemoryVT() == MVT::f32;
}]>;
// nontemporal store fragments.
def nontemporalstore : PatFrag<(ops node:$val, node:$ptr),
(store node:$val, node:$ptr), [{
return cast<StoreSDNode>(N)->isNonTemporal();
}]>;
def alignednontemporalstore : PatFrag<(ops node:$val, node:$ptr),
(nontemporalstore node:$val, node:$ptr), [{
StoreSDNode *St = cast<StoreSDNode>(N);
return St->getAlignment() >= St->getMemoryVT().getStoreSize();
}]>;
def unalignednontemporalstore : PatFrag<(ops node:$val, node:$ptr),
(nontemporalstore node:$val, node:$ptr), [{
StoreSDNode *St = cast<StoreSDNode>(N);
return St->getAlignment() < St->getMemoryVT().getStoreSize();
}]>;
// nontemporal load fragments.
def nontemporalload : PatFrag<(ops node:$ptr),
(load node:$ptr), [{
return cast<LoadSDNode>(N)->isNonTemporal();
}]>;
def alignednontemporalload : PatFrag<(ops node:$ptr),
(nontemporalload node:$ptr), [{
LoadSDNode *Ld = cast<LoadSDNode>(N);
return Ld->getAlignment() >= Ld->getMemoryVT().getStoreSize();
}]>;
// setcc convenience fragments.
def setoeq : PatFrag<(ops node:$lhs, node:$rhs),
(setcc node:$lhs, node:$rhs, SETOEQ)>;
def setogt : PatFrag<(ops node:$lhs, node:$rhs),
(setcc node:$lhs, node:$rhs, SETOGT)>;
def setoge : PatFrag<(ops node:$lhs, node:$rhs),
(setcc node:$lhs, node:$rhs, SETOGE)>;
def setolt : PatFrag<(ops node:$lhs, node:$rhs),
(setcc node:$lhs, node:$rhs, SETOLT)>;
def setole : PatFrag<(ops node:$lhs, node:$rhs),
(setcc node:$lhs, node:$rhs, SETOLE)>;
def setone : PatFrag<(ops node:$lhs, node:$rhs),
(setcc node:$lhs, node:$rhs, SETONE)>;
def seto : PatFrag<(ops node:$lhs, node:$rhs),
(setcc node:$lhs, node:$rhs, SETO)>;
def setuo : PatFrag<(ops node:$lhs, node:$rhs),
(setcc node:$lhs, node:$rhs, SETUO)>;
def setueq : PatFrag<(ops node:$lhs, node:$rhs),
(setcc node:$lhs, node:$rhs, SETUEQ)>;
def setugt : PatFrag<(ops node:$lhs, node:$rhs),
(setcc node:$lhs, node:$rhs, SETUGT)>;
def setuge : PatFrag<(ops node:$lhs, node:$rhs),
(setcc node:$lhs, node:$rhs, SETUGE)>;
def setult : PatFrag<(ops node:$lhs, node:$rhs),
(setcc node:$lhs, node:$rhs, SETULT)>;
def setule : PatFrag<(ops node:$lhs, node:$rhs),
(setcc node:$lhs, node:$rhs, SETULE)>;
def setune : PatFrag<(ops node:$lhs, node:$rhs),
(setcc node:$lhs, node:$rhs, SETUNE)>;
def seteq : PatFrag<(ops node:$lhs, node:$rhs),
(setcc node:$lhs, node:$rhs, SETEQ)>;
def setgt : PatFrag<(ops node:$lhs, node:$rhs),
(setcc node:$lhs, node:$rhs, SETGT)>;
def setge : PatFrag<(ops node:$lhs, node:$rhs),
(setcc node:$lhs, node:$rhs, SETGE)>;
def setlt : PatFrag<(ops node:$lhs, node:$rhs),
(setcc node:$lhs, node:$rhs, SETLT)>;
def setle : PatFrag<(ops node:$lhs, node:$rhs),
(setcc node:$lhs, node:$rhs, SETLE)>;
def setne : PatFrag<(ops node:$lhs, node:$rhs),
(setcc node:$lhs, node:$rhs, SETNE)>;
def atomic_cmp_swap_8 :
PatFrag<(ops node:$ptr, node:$cmp, node:$swap),
(atomic_cmp_swap node:$ptr, node:$cmp, node:$swap), [{
return cast<AtomicSDNode>(N)->getMemoryVT() == MVT::i8;
}]>;
def atomic_cmp_swap_16 :
PatFrag<(ops node:$ptr, node:$cmp, node:$swap),
(atomic_cmp_swap node:$ptr, node:$cmp, node:$swap), [{
return cast<AtomicSDNode>(N)->getMemoryVT() == MVT::i16;
}]>;
def atomic_cmp_swap_32 :
PatFrag<(ops node:$ptr, node:$cmp, node:$swap),
(atomic_cmp_swap node:$ptr, node:$cmp, node:$swap), [{
return cast<AtomicSDNode>(N)->getMemoryVT() == MVT::i32;
}]>;
def atomic_cmp_swap_64 :
PatFrag<(ops node:$ptr, node:$cmp, node:$swap),
(atomic_cmp_swap node:$ptr, node:$cmp, node:$swap), [{
return cast<AtomicSDNode>(N)->getMemoryVT() == MVT::i64;
}]>;
multiclass binary_atomic_op<SDNode atomic_op> {
def _8 : PatFrag<(ops node:$ptr, node:$val),
(atomic_op node:$ptr, node:$val), [{
return cast<AtomicSDNode>(N)->getMemoryVT() == MVT::i8;
}]>;
def _16 : PatFrag<(ops node:$ptr, node:$val),
(atomic_op node:$ptr, node:$val), [{
return cast<AtomicSDNode>(N)->getMemoryVT() == MVT::i16;
}]>;
def _32 : PatFrag<(ops node:$ptr, node:$val),
(atomic_op node:$ptr, node:$val), [{
return cast<AtomicSDNode>(N)->getMemoryVT() == MVT::i32;
}]>;
def _64 : PatFrag<(ops node:$ptr, node:$val),
(atomic_op node:$ptr, node:$val), [{
return cast<AtomicSDNode>(N)->getMemoryVT() == MVT::i64;
}]>;
}
defm atomic_load_add : binary_atomic_op<atomic_load_add>;
defm atomic_swap : binary_atomic_op<atomic_swap>;
defm atomic_load_sub : binary_atomic_op<atomic_load_sub>;
defm atomic_load_and : binary_atomic_op<atomic_load_and>;
defm atomic_load_or : binary_atomic_op<atomic_load_or>;
defm atomic_load_xor : binary_atomic_op<atomic_load_xor>;
defm atomic_load_nand : binary_atomic_op<atomic_load_nand>;
defm atomic_load_min : binary_atomic_op<atomic_load_min>;
defm atomic_load_max : binary_atomic_op<atomic_load_max>;
defm atomic_load_umin : binary_atomic_op<atomic_load_umin>;
defm atomic_load_umax : binary_atomic_op<atomic_load_umax>;
defm atomic_store : binary_atomic_op<atomic_store>;
def atomic_load_8 :
PatFrag<(ops node:$ptr),
(atomic_load node:$ptr), [{
return cast<AtomicSDNode>(N)->getMemoryVT() == MVT::i8;
}]>;
def atomic_load_16 :
PatFrag<(ops node:$ptr),
(atomic_load node:$ptr), [{
return cast<AtomicSDNode>(N)->getMemoryVT() == MVT::i16;
}]>;
def atomic_load_32 :
PatFrag<(ops node:$ptr),
(atomic_load node:$ptr), [{
return cast<AtomicSDNode>(N)->getMemoryVT() == MVT::i32;
}]>;
def atomic_load_64 :
PatFrag<(ops node:$ptr),
(atomic_load node:$ptr), [{
return cast<AtomicSDNode>(N)->getMemoryVT() == MVT::i64;
}]>;
//===----------------------------------------------------------------------===//
// Selection DAG Pattern Support.
//
// Patterns are what are actually matched against by the target-flavored
// instruction selection DAG. Instructions defined by the target implicitly
// define patterns in most cases, but patterns can also be explicitly added when
// an operation is defined by a sequence of instructions (e.g. loading a large
// immediate value on RISC targets that do not support immediates as large as
// their GPRs).
//
class Pattern<dag patternToMatch, list<dag> resultInstrs> {
dag PatternToMatch = patternToMatch;
list<dag> ResultInstrs = resultInstrs;
list<Predicate> Predicates = []; // See class Instruction in Target.td.
int AddedComplexity = 0; // See class Instruction in Target.td.
}
// Pat - A simple (but common) form of a pattern, which produces a simple result
// not needing a full list.
class Pat<dag pattern, dag result> : Pattern<pattern, [result]>;
//===----------------------------------------------------------------------===//
// Complex pattern definitions.
//
// Complex patterns, e.g. X86 addressing mode, requires pattern matching code
// in C++. NumOperands is the number of operands returned by the select function;
// SelectFunc is the name of the function used to pattern match the max. pattern;
// RootNodes are the list of possible root nodes of the sub-dags to match.
// e.g. X86 addressing mode - def addr : ComplexPattern<4, "SelectAddr", [add]>;
//
class ComplexPattern<ValueType ty, int numops, string fn,
list<SDNode> roots = [], list<SDNodeProperty> props = [],
int complexity = -1> {
ValueType Ty = ty;
int NumOperands = numops;
string SelectFunc = fn;
list<SDNode> RootNodes = roots;
list<SDNodeProperty> Properties = props;
int Complexity = complexity;
}