1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 03:02:36 +01:00
llvm-mirror/lib/Analysis/ConstantFolding.cpp
Nikita Popov dca0f3abd1 [ConstantFold] Delay fetching pointer element type
Don't do this while stipping pointer casts, instead fetch it at
the end. This improves compatibility with opaque pointers for the
case where the base object is not opaque.
2021-06-22 15:51:00 +02:00

3205 lines
113 KiB
C++

//===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines routines for folding instructions into constants.
//
// Also, to supplement the basic IR ConstantExpr simplifications,
// this file defines some additional folding routines that can make use of
// DataLayout information. These functions cannot go in IR due to library
// dependency issues.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/TargetFolder.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/Config/config.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicsAArch64.h"
#include "llvm/IR/IntrinsicsAMDGPU.h"
#include "llvm/IR/IntrinsicsARM.h"
#include "llvm/IR/IntrinsicsWebAssembly.h"
#include "llvm/IR/IntrinsicsX86.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/MathExtras.h"
#include <cassert>
#include <cerrno>
#include <cfenv>
#include <cmath>
#include <cstddef>
#include <cstdint>
using namespace llvm;
namespace {
Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP,
ArrayRef<Constant *> Ops,
const DataLayout &DL,
const TargetLibraryInfo *TLI,
bool ForLoadOperand);
//===----------------------------------------------------------------------===//
// Constant Folding internal helper functions
//===----------------------------------------------------------------------===//
static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy,
Constant *C, Type *SrcEltTy,
unsigned NumSrcElts,
const DataLayout &DL) {
// Now that we know that the input value is a vector of integers, just shift
// and insert them into our result.
unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy);
for (unsigned i = 0; i != NumSrcElts; ++i) {
Constant *Element;
if (DL.isLittleEndian())
Element = C->getAggregateElement(NumSrcElts - i - 1);
else
Element = C->getAggregateElement(i);
if (Element && isa<UndefValue>(Element)) {
Result <<= BitShift;
continue;
}
auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
if (!ElementCI)
return ConstantExpr::getBitCast(C, DestTy);
Result <<= BitShift;
Result |= ElementCI->getValue().zextOrSelf(Result.getBitWidth());
}
return nullptr;
}
/// Constant fold bitcast, symbolically evaluating it with DataLayout.
/// This always returns a non-null constant, but it may be a
/// ConstantExpr if unfoldable.
Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) {
assert(CastInst::castIsValid(Instruction::BitCast, C, DestTy) &&
"Invalid constantexpr bitcast!");
// Catch the obvious splat cases.
if (C->isNullValue() && !DestTy->isX86_MMXTy() && !DestTy->isX86_AMXTy())
return Constant::getNullValue(DestTy);
if (C->isAllOnesValue() && !DestTy->isX86_MMXTy() && !DestTy->isX86_AMXTy() &&
!DestTy->isPtrOrPtrVectorTy()) // Don't get ones for ptr types!
return Constant::getAllOnesValue(DestTy);
if (auto *VTy = dyn_cast<VectorType>(C->getType())) {
// Handle a vector->scalar integer/fp cast.
if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) {
unsigned NumSrcElts = cast<FixedVectorType>(VTy)->getNumElements();
Type *SrcEltTy = VTy->getElementType();
// If the vector is a vector of floating point, convert it to vector of int
// to simplify things.
if (SrcEltTy->isFloatingPointTy()) {
unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
auto *SrcIVTy = FixedVectorType::get(
IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
// Ask IR to do the conversion now that #elts line up.
C = ConstantExpr::getBitCast(C, SrcIVTy);
}
APInt Result(DL.getTypeSizeInBits(DestTy), 0);
if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C,
SrcEltTy, NumSrcElts, DL))
return CE;
if (isa<IntegerType>(DestTy))
return ConstantInt::get(DestTy, Result);
APFloat FP(DestTy->getFltSemantics(), Result);
return ConstantFP::get(DestTy->getContext(), FP);
}
}
// The code below only handles casts to vectors currently.
auto *DestVTy = dyn_cast<VectorType>(DestTy);
if (!DestVTy)
return ConstantExpr::getBitCast(C, DestTy);
// If this is a scalar -> vector cast, convert the input into a <1 x scalar>
// vector so the code below can handle it uniformly.
if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
Constant *Ops = C; // don't take the address of C!
return FoldBitCast(ConstantVector::get(Ops), DestTy, DL);
}
// If this is a bitcast from constant vector -> vector, fold it.
if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
return ConstantExpr::getBitCast(C, DestTy);
// If the element types match, IR can fold it.
unsigned NumDstElt = cast<FixedVectorType>(DestVTy)->getNumElements();
unsigned NumSrcElt = cast<FixedVectorType>(C->getType())->getNumElements();
if (NumDstElt == NumSrcElt)
return ConstantExpr::getBitCast(C, DestTy);
Type *SrcEltTy = cast<VectorType>(C->getType())->getElementType();
Type *DstEltTy = DestVTy->getElementType();
// Otherwise, we're changing the number of elements in a vector, which
// requires endianness information to do the right thing. For example,
// bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
// folds to (little endian):
// <4 x i32> <i32 0, i32 0, i32 1, i32 0>
// and to (big endian):
// <4 x i32> <i32 0, i32 0, i32 0, i32 1>
// First thing is first. We only want to think about integer here, so if
// we have something in FP form, recast it as integer.
if (DstEltTy->isFloatingPointTy()) {
// Fold to an vector of integers with same size as our FP type.
unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
auto *DestIVTy = FixedVectorType::get(
IntegerType::get(C->getContext(), FPWidth), NumDstElt);
// Recursively handle this integer conversion, if possible.
C = FoldBitCast(C, DestIVTy, DL);
// Finally, IR can handle this now that #elts line up.
return ConstantExpr::getBitCast(C, DestTy);
}
// Okay, we know the destination is integer, if the input is FP, convert
// it to integer first.
if (SrcEltTy->isFloatingPointTy()) {
unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
auto *SrcIVTy = FixedVectorType::get(
IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
// Ask IR to do the conversion now that #elts line up.
C = ConstantExpr::getBitCast(C, SrcIVTy);
// If IR wasn't able to fold it, bail out.
if (!isa<ConstantVector>(C) && // FIXME: Remove ConstantVector.
!isa<ConstantDataVector>(C))
return C;
}
// Now we know that the input and output vectors are both integer vectors
// of the same size, and that their #elements is not the same. Do the
// conversion here, which depends on whether the input or output has
// more elements.
bool isLittleEndian = DL.isLittleEndian();
SmallVector<Constant*, 32> Result;
if (NumDstElt < NumSrcElt) {
// Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
Constant *Zero = Constant::getNullValue(DstEltTy);
unsigned Ratio = NumSrcElt/NumDstElt;
unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
unsigned SrcElt = 0;
for (unsigned i = 0; i != NumDstElt; ++i) {
// Build each element of the result.
Constant *Elt = Zero;
unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
for (unsigned j = 0; j != Ratio; ++j) {
Constant *Src = C->getAggregateElement(SrcElt++);
if (Src && isa<UndefValue>(Src))
Src = Constant::getNullValue(
cast<VectorType>(C->getType())->getElementType());
else
Src = dyn_cast_or_null<ConstantInt>(Src);
if (!Src) // Reject constantexpr elements.
return ConstantExpr::getBitCast(C, DestTy);
// Zero extend the element to the right size.
Src = ConstantExpr::getZExt(Src, Elt->getType());
// Shift it to the right place, depending on endianness.
Src = ConstantExpr::getShl(Src,
ConstantInt::get(Src->getType(), ShiftAmt));
ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
// Mix it in.
Elt = ConstantExpr::getOr(Elt, Src);
}
Result.push_back(Elt);
}
return ConstantVector::get(Result);
}
// Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
unsigned Ratio = NumDstElt/NumSrcElt;
unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy);
// Loop over each source value, expanding into multiple results.
for (unsigned i = 0; i != NumSrcElt; ++i) {
auto *Element = C->getAggregateElement(i);
if (!Element) // Reject constantexpr elements.
return ConstantExpr::getBitCast(C, DestTy);
if (isa<UndefValue>(Element)) {
// Correctly Propagate undef values.
Result.append(Ratio, UndefValue::get(DstEltTy));
continue;
}
auto *Src = dyn_cast<ConstantInt>(Element);
if (!Src)
return ConstantExpr::getBitCast(C, DestTy);
unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
for (unsigned j = 0; j != Ratio; ++j) {
// Shift the piece of the value into the right place, depending on
// endianness.
Constant *Elt = ConstantExpr::getLShr(Src,
ConstantInt::get(Src->getType(), ShiftAmt));
ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
// Truncate the element to an integer with the same pointer size and
// convert the element back to a pointer using a inttoptr.
if (DstEltTy->isPointerTy()) {
IntegerType *DstIntTy = Type::getIntNTy(C->getContext(), DstBitSize);
Constant *CE = ConstantExpr::getTrunc(Elt, DstIntTy);
Result.push_back(ConstantExpr::getIntToPtr(CE, DstEltTy));
continue;
}
// Truncate and remember this piece.
Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
}
}
return ConstantVector::get(Result);
}
} // end anonymous namespace
/// If this constant is a constant offset from a global, return the global and
/// the constant. Because of constantexprs, this function is recursive.
bool llvm::IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
APInt &Offset, const DataLayout &DL,
DSOLocalEquivalent **DSOEquiv) {
if (DSOEquiv)
*DSOEquiv = nullptr;
// Trivial case, constant is the global.
if ((GV = dyn_cast<GlobalValue>(C))) {
unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
Offset = APInt(BitWidth, 0);
return true;
}
if (auto *FoundDSOEquiv = dyn_cast<DSOLocalEquivalent>(C)) {
if (DSOEquiv)
*DSOEquiv = FoundDSOEquiv;
GV = FoundDSOEquiv->getGlobalValue();
unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
Offset = APInt(BitWidth, 0);
return true;
}
// Otherwise, if this isn't a constant expr, bail out.
auto *CE = dyn_cast<ConstantExpr>(C);
if (!CE) return false;
// Look through ptr->int and ptr->ptr casts.
if (CE->getOpcode() == Instruction::PtrToInt ||
CE->getOpcode() == Instruction::BitCast)
return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL,
DSOEquiv);
// i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
auto *GEP = dyn_cast<GEPOperator>(CE);
if (!GEP)
return false;
unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
APInt TmpOffset(BitWidth, 0);
// If the base isn't a global+constant, we aren't either.
if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL,
DSOEquiv))
return false;
// Otherwise, add any offset that our operands provide.
if (!GEP->accumulateConstantOffset(DL, TmpOffset))
return false;
Offset = TmpOffset;
return true;
}
Constant *llvm::ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy,
const DataLayout &DL) {
do {
Type *SrcTy = C->getType();
uint64_t DestSize = DL.getTypeSizeInBits(DestTy);
uint64_t SrcSize = DL.getTypeSizeInBits(SrcTy);
if (SrcSize < DestSize)
return nullptr;
// Catch the obvious splat cases (since all-zeros can coerce non-integral
// pointers legally).
if (C->isNullValue() && !DestTy->isX86_MMXTy() && !DestTy->isX86_AMXTy())
return Constant::getNullValue(DestTy);
if (C->isAllOnesValue() &&
(DestTy->isIntegerTy() || DestTy->isFloatingPointTy() ||
DestTy->isVectorTy()) &&
!DestTy->isX86_AMXTy() && !DestTy->isX86_MMXTy() &&
!DestTy->isPtrOrPtrVectorTy())
// Get ones when the input is trivial, but
// only for supported types inside getAllOnesValue.
return Constant::getAllOnesValue(DestTy);
// If the type sizes are the same and a cast is legal, just directly
// cast the constant.
// But be careful not to coerce non-integral pointers illegally.
if (SrcSize == DestSize &&
DL.isNonIntegralPointerType(SrcTy->getScalarType()) ==
DL.isNonIntegralPointerType(DestTy->getScalarType())) {
Instruction::CastOps Cast = Instruction::BitCast;
// If we are going from a pointer to int or vice versa, we spell the cast
// differently.
if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
Cast = Instruction::IntToPtr;
else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
Cast = Instruction::PtrToInt;
if (CastInst::castIsValid(Cast, C, DestTy))
return ConstantExpr::getCast(Cast, C, DestTy);
}
// If this isn't an aggregate type, there is nothing we can do to drill down
// and find a bitcastable constant.
if (!SrcTy->isAggregateType() && !SrcTy->isVectorTy())
return nullptr;
// We're simulating a load through a pointer that was bitcast to point to
// a different type, so we can try to walk down through the initial
// elements of an aggregate to see if some part of the aggregate is
// castable to implement the "load" semantic model.
if (SrcTy->isStructTy()) {
// Struct types might have leading zero-length elements like [0 x i32],
// which are certainly not what we are looking for, so skip them.
unsigned Elem = 0;
Constant *ElemC;
do {
ElemC = C->getAggregateElement(Elem++);
} while (ElemC && DL.getTypeSizeInBits(ElemC->getType()).isZero());
C = ElemC;
} else {
C = C->getAggregateElement(0u);
}
} while (C);
return nullptr;
}
namespace {
/// Recursive helper to read bits out of global. C is the constant being copied
/// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy
/// results into and BytesLeft is the number of bytes left in
/// the CurPtr buffer. DL is the DataLayout.
bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr,
unsigned BytesLeft, const DataLayout &DL) {
assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) &&
"Out of range access");
// If this element is zero or undefined, we can just return since *CurPtr is
// zero initialized.
if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
return true;
if (auto *CI = dyn_cast<ConstantInt>(C)) {
if (CI->getBitWidth() > 64 ||
(CI->getBitWidth() & 7) != 0)
return false;
uint64_t Val = CI->getZExtValue();
unsigned IntBytes = unsigned(CI->getBitWidth()/8);
for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
int n = ByteOffset;
if (!DL.isLittleEndian())
n = IntBytes - n - 1;
CurPtr[i] = (unsigned char)(Val >> (n * 8));
++ByteOffset;
}
return true;
}
if (auto *CFP = dyn_cast<ConstantFP>(C)) {
if (CFP->getType()->isDoubleTy()) {
C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL);
return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
}
if (CFP->getType()->isFloatTy()){
C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL);
return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
}
if (CFP->getType()->isHalfTy()){
C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL);
return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
}
return false;
}
if (auto *CS = dyn_cast<ConstantStruct>(C)) {
const StructLayout *SL = DL.getStructLayout(CS->getType());
unsigned Index = SL->getElementContainingOffset(ByteOffset);
uint64_t CurEltOffset = SL->getElementOffset(Index);
ByteOffset -= CurEltOffset;
while (true) {
// If the element access is to the element itself and not to tail padding,
// read the bytes from the element.
uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType());
if (ByteOffset < EltSize &&
!ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
BytesLeft, DL))
return false;
++Index;
// Check to see if we read from the last struct element, if so we're done.
if (Index == CS->getType()->getNumElements())
return true;
// If we read all of the bytes we needed from this element we're done.
uint64_t NextEltOffset = SL->getElementOffset(Index);
if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
return true;
// Move to the next element of the struct.
CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
ByteOffset = 0;
CurEltOffset = NextEltOffset;
}
// not reached.
}
if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
isa<ConstantDataSequential>(C)) {
uint64_t NumElts;
Type *EltTy;
if (auto *AT = dyn_cast<ArrayType>(C->getType())) {
NumElts = AT->getNumElements();
EltTy = AT->getElementType();
} else {
NumElts = cast<FixedVectorType>(C->getType())->getNumElements();
EltTy = cast<FixedVectorType>(C->getType())->getElementType();
}
uint64_t EltSize = DL.getTypeAllocSize(EltTy);
uint64_t Index = ByteOffset / EltSize;
uint64_t Offset = ByteOffset - Index * EltSize;
for (; Index != NumElts; ++Index) {
if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
BytesLeft, DL))
return false;
uint64_t BytesWritten = EltSize - Offset;
assert(BytesWritten <= EltSize && "Not indexing into this element?");
if (BytesWritten >= BytesLeft)
return true;
Offset = 0;
BytesLeft -= BytesWritten;
CurPtr += BytesWritten;
}
return true;
}
if (auto *CE = dyn_cast<ConstantExpr>(C)) {
if (CE->getOpcode() == Instruction::IntToPtr &&
CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) {
return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
BytesLeft, DL);
}
}
// Otherwise, unknown initializer type.
return false;
}
Constant *FoldReinterpretLoadFromConstPtr(Constant *C, Type *LoadTy,
const DataLayout &DL) {
// Bail out early. Not expect to load from scalable global variable.
if (isa<ScalableVectorType>(LoadTy))
return nullptr;
auto *PTy = cast<PointerType>(C->getType());
auto *IntType = dyn_cast<IntegerType>(LoadTy);
// If this isn't an integer load we can't fold it directly.
if (!IntType) {
unsigned AS = PTy->getAddressSpace();
// If this is a float/double load, we can try folding it as an int32/64 load
// and then bitcast the result. This can be useful for union cases. Note
// that address spaces don't matter here since we're not going to result in
// an actual new load.
Type *MapTy;
if (LoadTy->isHalfTy())
MapTy = Type::getInt16Ty(C->getContext());
else if (LoadTy->isFloatTy())
MapTy = Type::getInt32Ty(C->getContext());
else if (LoadTy->isDoubleTy())
MapTy = Type::getInt64Ty(C->getContext());
else if (LoadTy->isVectorTy()) {
MapTy = PointerType::getIntNTy(
C->getContext(), DL.getTypeSizeInBits(LoadTy).getFixedSize());
} else
return nullptr;
C = FoldBitCast(C, MapTy->getPointerTo(AS), DL);
if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, MapTy, DL)) {
if (Res->isNullValue() && !LoadTy->isX86_MMXTy() &&
!LoadTy->isX86_AMXTy())
// Materializing a zero can be done trivially without a bitcast
return Constant::getNullValue(LoadTy);
Type *CastTy = LoadTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(LoadTy) : LoadTy;
Res = FoldBitCast(Res, CastTy, DL);
if (LoadTy->isPtrOrPtrVectorTy()) {
// For vector of pointer, we needed to first convert to a vector of integer, then do vector inttoptr
if (Res->isNullValue() && !LoadTy->isX86_MMXTy() &&
!LoadTy->isX86_AMXTy())
return Constant::getNullValue(LoadTy);
if (DL.isNonIntegralPointerType(LoadTy->getScalarType()))
// Be careful not to replace a load of an addrspace value with an inttoptr here
return nullptr;
Res = ConstantExpr::getCast(Instruction::IntToPtr, Res, LoadTy);
}
return Res;
}
return nullptr;
}
unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
if (BytesLoaded > 32 || BytesLoaded == 0)
return nullptr;
GlobalValue *GVal;
APInt OffsetAI;
if (!IsConstantOffsetFromGlobal(C, GVal, OffsetAI, DL))
return nullptr;
auto *GV = dyn_cast<GlobalVariable>(GVal);
if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
!GV->getInitializer()->getType()->isSized())
return nullptr;
int64_t Offset = OffsetAI.getSExtValue();
int64_t InitializerSize =
DL.getTypeAllocSize(GV->getInitializer()->getType()).getFixedSize();
// If we're not accessing anything in this constant, the result is undefined.
if (Offset <= -1 * static_cast<int64_t>(BytesLoaded))
return UndefValue::get(IntType);
// If we're not accessing anything in this constant, the result is undefined.
if (Offset >= InitializerSize)
return UndefValue::get(IntType);
unsigned char RawBytes[32] = {0};
unsigned char *CurPtr = RawBytes;
unsigned BytesLeft = BytesLoaded;
// If we're loading off the beginning of the global, some bytes may be valid.
if (Offset < 0) {
CurPtr += -Offset;
BytesLeft += Offset;
Offset = 0;
}
if (!ReadDataFromGlobal(GV->getInitializer(), Offset, CurPtr, BytesLeft, DL))
return nullptr;
APInt ResultVal = APInt(IntType->getBitWidth(), 0);
if (DL.isLittleEndian()) {
ResultVal = RawBytes[BytesLoaded - 1];
for (unsigned i = 1; i != BytesLoaded; ++i) {
ResultVal <<= 8;
ResultVal |= RawBytes[BytesLoaded - 1 - i];
}
} else {
ResultVal = RawBytes[0];
for (unsigned i = 1; i != BytesLoaded; ++i) {
ResultVal <<= 8;
ResultVal |= RawBytes[i];
}
}
return ConstantInt::get(IntType->getContext(), ResultVal);
}
Constant *ConstantFoldLoadThroughBitcastExpr(ConstantExpr *CE, Type *DestTy,
const DataLayout &DL) {
auto *SrcPtr = CE->getOperand(0);
if (!SrcPtr->getType()->isPointerTy())
return nullptr;
return ConstantFoldLoadFromConstPtr(SrcPtr, DestTy, DL);
}
} // end anonymous namespace
Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty,
const DataLayout &DL) {
// First, try the easy cases:
if (auto *GV = dyn_cast<GlobalVariable>(C))
if (GV->isConstant() && GV->hasDefinitiveInitializer())
return ConstantFoldLoadThroughBitcast(GV->getInitializer(), Ty, DL);
if (auto *GA = dyn_cast<GlobalAlias>(C))
if (GA->getAliasee() && !GA->isInterposable())
return ConstantFoldLoadFromConstPtr(GA->getAliasee(), Ty, DL);
// If the loaded value isn't a constant expr, we can't handle it.
auto *CE = dyn_cast<ConstantExpr>(C);
if (!CE)
return nullptr;
if (CE->getOpcode() == Instruction::GetElementPtr) {
if (auto *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) {
if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
if (Constant *V = ConstantFoldLoadThroughGEPConstantExpr(
GV->getInitializer(), CE, Ty, DL))
return V;
}
} else {
// Try to simplify GEP if the pointer operand wasn't a GlobalVariable.
// SymbolicallyEvaluateGEP() with `ForLoadOperand = true` can potentially
// simplify the GEP more than it normally would have been, but should only
// be used for const folding loads.
SmallVector<Constant *> Ops;
for (unsigned I = 0, E = CE->getNumOperands(); I != E; ++I)
Ops.push_back(cast<Constant>(CE->getOperand(I)));
if (auto *Simplified = dyn_cast_or_null<ConstantExpr>(
SymbolicallyEvaluateGEP(cast<GEPOperator>(CE), Ops, DL, nullptr,
/*ForLoadOperand*/ true))) {
// If the symbolically evaluated GEP is another GEP, we can only const
// fold it if the resulting pointer operand is a GlobalValue. Otherwise
// there is nothing else to simplify since the GEP is already in the
// most simplified form.
if (isa<GEPOperator>(Simplified)) {
if (auto *GV = dyn_cast<GlobalVariable>(Simplified->getOperand(0))) {
if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
if (Constant *V = ConstantFoldLoadThroughGEPConstantExpr(
GV->getInitializer(), Simplified, Ty, DL))
return V;
}
}
} else {
return ConstantFoldLoadFromConstPtr(Simplified, Ty, DL);
}
}
}
}
if (CE->getOpcode() == Instruction::BitCast)
if (Constant *LoadedC = ConstantFoldLoadThroughBitcastExpr(CE, Ty, DL))
return LoadedC;
// Instead of loading constant c string, use corresponding integer value
// directly if string length is small enough.
StringRef Str;
if (getConstantStringInfo(CE, Str) && !Str.empty()) {
size_t StrLen = Str.size();
unsigned NumBits = Ty->getPrimitiveSizeInBits();
// Replace load with immediate integer if the result is an integer or fp
// value.
if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 &&
(isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) {
APInt StrVal(NumBits, 0);
APInt SingleChar(NumBits, 0);
if (DL.isLittleEndian()) {
for (unsigned char C : reverse(Str.bytes())) {
SingleChar = static_cast<uint64_t>(C);
StrVal = (StrVal << 8) | SingleChar;
}
} else {
for (unsigned char C : Str.bytes()) {
SingleChar = static_cast<uint64_t>(C);
StrVal = (StrVal << 8) | SingleChar;
}
// Append NULL at the end.
SingleChar = 0;
StrVal = (StrVal << 8) | SingleChar;
}
Constant *Res = ConstantInt::get(CE->getContext(), StrVal);
if (Ty->isFloatingPointTy())
Res = ConstantExpr::getBitCast(Res, Ty);
return Res;
}
}
// If this load comes from anywhere in a constant global, and if the global
// is all undef or zero, we know what it loads.
if (auto *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(CE))) {
if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
if (GV->getInitializer()->isNullValue())
return Constant::getNullValue(Ty);
if (isa<UndefValue>(GV->getInitializer()))
return UndefValue::get(Ty);
}
}
// Try hard to fold loads from bitcasted strange and non-type-safe things.
return FoldReinterpretLoadFromConstPtr(CE, Ty, DL);
}
namespace {
/// One of Op0/Op1 is a constant expression.
/// Attempt to symbolically evaluate the result of a binary operator merging
/// these together. If target data info is available, it is provided as DL,
/// otherwise DL is null.
Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1,
const DataLayout &DL) {
// SROA
// Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
// Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
// bits.
if (Opc == Instruction::And) {
KnownBits Known0 = computeKnownBits(Op0, DL);
KnownBits Known1 = computeKnownBits(Op1, DL);
if ((Known1.One | Known0.Zero).isAllOnesValue()) {
// All the bits of Op0 that the 'and' could be masking are already zero.
return Op0;
}
if ((Known0.One | Known1.Zero).isAllOnesValue()) {
// All the bits of Op1 that the 'and' could be masking are already zero.
return Op1;
}
Known0 &= Known1;
if (Known0.isConstant())
return ConstantInt::get(Op0->getType(), Known0.getConstant());
}
// If the constant expr is something like &A[123] - &A[4].f, fold this into a
// constant. This happens frequently when iterating over a global array.
if (Opc == Instruction::Sub) {
GlobalValue *GV1, *GV2;
APInt Offs1, Offs2;
if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL))
if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) {
unsigned OpSize = DL.getTypeSizeInBits(Op0->getType());
// (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
// PtrToInt may change the bitwidth so we have convert to the right size
// first.
return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) -
Offs2.zextOrTrunc(OpSize));
}
}
return nullptr;
}
/// If array indices are not pointer-sized integers, explicitly cast them so
/// that they aren't implicitly casted by the getelementptr.
Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops,
Type *ResultTy, Optional<unsigned> InRangeIndex,
const DataLayout &DL, const TargetLibraryInfo *TLI) {
Type *IntIdxTy = DL.getIndexType(ResultTy);
Type *IntIdxScalarTy = IntIdxTy->getScalarType();
bool Any = false;
SmallVector<Constant*, 32> NewIdxs;
for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
if ((i == 1 ||
!isa<StructType>(GetElementPtrInst::getIndexedType(
SrcElemTy, Ops.slice(1, i - 1)))) &&
Ops[i]->getType()->getScalarType() != IntIdxScalarTy) {
Any = true;
Type *NewType = Ops[i]->getType()->isVectorTy()
? IntIdxTy
: IntIdxScalarTy;
NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
true,
NewType,
true),
Ops[i], NewType));
} else
NewIdxs.push_back(Ops[i]);
}
if (!Any)
return nullptr;
Constant *C = ConstantExpr::getGetElementPtr(
SrcElemTy, Ops[0], NewIdxs, /*InBounds=*/false, InRangeIndex);
return ConstantFoldConstant(C, DL, TLI);
}
/// Strip the pointer casts, but preserve the address space information.
Constant *StripPtrCastKeepAS(Constant *Ptr, bool ForLoadOperand) {
assert(Ptr->getType()->isPointerTy() && "Not a pointer type");
auto *OldPtrTy = cast<PointerType>(Ptr->getType());
Ptr = cast<Constant>(Ptr->stripPointerCasts());
if (ForLoadOperand) {
while (isa<GlobalAlias>(Ptr) && !cast<GlobalAlias>(Ptr)->isInterposable() &&
!cast<GlobalAlias>(Ptr)->getBaseObject()->isInterposable()) {
Ptr = cast<GlobalAlias>(Ptr)->getAliasee();
}
}
auto *NewPtrTy = cast<PointerType>(Ptr->getType());
// Preserve the address space number of the pointer.
if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) {
Ptr = ConstantExpr::getPointerCast(
Ptr, PointerType::getWithSamePointeeType(NewPtrTy,
OldPtrTy->getAddressSpace()));
}
return Ptr;
}
/// If we can symbolically evaluate the GEP constant expression, do so.
Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP,
ArrayRef<Constant *> Ops,
const DataLayout &DL,
const TargetLibraryInfo *TLI,
bool ForLoadOperand) {
const GEPOperator *InnermostGEP = GEP;
bool InBounds = GEP->isInBounds();
Type *SrcElemTy = GEP->getSourceElementType();
Type *ResElemTy = GEP->getResultElementType();
Type *ResTy = GEP->getType();
if (!SrcElemTy->isSized() || isa<ScalableVectorType>(SrcElemTy))
return nullptr;
if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy,
GEP->getInRangeIndex(), DL, TLI))
return C;
Constant *Ptr = Ops[0];
if (!Ptr->getType()->isPointerTy())
return nullptr;
Type *IntIdxTy = DL.getIndexType(Ptr->getType());
// If this is "gep i8* Ptr, (sub 0, V)", fold this as:
// "inttoptr (sub (ptrtoint Ptr), V)"
if (Ops.size() == 2 && ResElemTy->isIntegerTy(8)) {
auto *CE = dyn_cast<ConstantExpr>(Ops[1]);
assert((!CE || CE->getType() == IntIdxTy) &&
"CastGEPIndices didn't canonicalize index types!");
if (CE && CE->getOpcode() == Instruction::Sub &&
CE->getOperand(0)->isNullValue()) {
Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType());
Res = ConstantExpr::getSub(Res, CE->getOperand(1));
Res = ConstantExpr::getIntToPtr(Res, ResTy);
return ConstantFoldConstant(Res, DL, TLI);
}
}
for (unsigned i = 1, e = Ops.size(); i != e; ++i)
if (!isa<ConstantInt>(Ops[i]))
return nullptr;
unsigned BitWidth = DL.getTypeSizeInBits(IntIdxTy);
APInt Offset =
APInt(BitWidth,
DL.getIndexedOffsetInType(
SrcElemTy,
makeArrayRef((Value * const *)Ops.data() + 1, Ops.size() - 1)));
Ptr = StripPtrCastKeepAS(Ptr, ForLoadOperand);
// If this is a GEP of a GEP, fold it all into a single GEP.
while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
InnermostGEP = GEP;
InBounds &= GEP->isInBounds();
SmallVector<Value *, 4> NestedOps(GEP->op_begin() + 1, GEP->op_end());
// Do not try the incorporate the sub-GEP if some index is not a number.
bool AllConstantInt = true;
for (Value *NestedOp : NestedOps)
if (!isa<ConstantInt>(NestedOp)) {
AllConstantInt = false;
break;
}
if (!AllConstantInt)
break;
Ptr = cast<Constant>(GEP->getOperand(0));
SrcElemTy = GEP->getSourceElementType();
Offset += APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps));
Ptr = StripPtrCastKeepAS(Ptr, ForLoadOperand);
}
// If the base value for this address is a literal integer value, fold the
// getelementptr to the resulting integer value casted to the pointer type.
APInt BasePtr(BitWidth, 0);
if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) {
if (CE->getOpcode() == Instruction::IntToPtr) {
if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
BasePtr = Base->getValue().zextOrTrunc(BitWidth);
}
}
auto *PTy = cast<PointerType>(Ptr->getType());
if ((Ptr->isNullValue() || BasePtr != 0) &&
!DL.isNonIntegralPointerType(PTy)) {
Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr);
return ConstantExpr::getIntToPtr(C, ResTy);
}
// Otherwise form a regular getelementptr. Recompute the indices so that
// we eliminate over-indexing of the notional static type array bounds.
// This makes it easy to determine if the getelementptr is "inbounds".
// Also, this helps GlobalOpt do SROA on GlobalVariables.
SmallVector<Constant *, 32> NewIdxs;
Type *Ty = PTy;
SrcElemTy = PTy->getElementType();
do {
if (!Ty->isStructTy()) {
if (Ty->isPointerTy()) {
// The only pointer indexing we'll do is on the first index of the GEP.
if (!NewIdxs.empty())
break;
Ty = SrcElemTy;
// Only handle pointers to sized types, not pointers to functions.
if (!Ty->isSized())
return nullptr;
} else {
Type *NextTy = GetElementPtrInst::getTypeAtIndex(Ty, (uint64_t)0);
if (!NextTy)
break;
Ty = NextTy;
}
// Determine which element of the array the offset points into.
APInt ElemSize(BitWidth, DL.getTypeAllocSize(Ty));
if (ElemSize == 0) {
// The element size is 0. This may be [0 x Ty]*, so just use a zero
// index for this level and proceed to the next level to see if it can
// accommodate the offset.
NewIdxs.push_back(ConstantInt::get(IntIdxTy, 0));
} else {
// The element size is non-zero divide the offset by the element
// size (rounding down), to compute the index at this level.
bool Overflow;
APInt NewIdx = Offset.sdiv_ov(ElemSize, Overflow);
if (Overflow)
break;
Offset -= NewIdx * ElemSize;
NewIdxs.push_back(ConstantInt::get(IntIdxTy, NewIdx));
}
} else {
auto *STy = cast<StructType>(Ty);
// If we end up with an offset that isn't valid for this struct type, we
// can't re-form this GEP in a regular form, so bail out. The pointer
// operand likely went through casts that are necessary to make the GEP
// sensible.
const StructLayout &SL = *DL.getStructLayout(STy);
if (Offset.isNegative() || Offset.uge(SL.getSizeInBytes()))
break;
// Determine which field of the struct the offset points into. The
// getZExtValue is fine as we've already ensured that the offset is
// within the range representable by the StructLayout API.
unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
ElIdx));
Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
Ty = STy->getTypeAtIndex(ElIdx);
}
} while (Ty != ResElemTy);
// If we haven't used up the entire offset by descending the static
// type, then the offset is pointing into the middle of an indivisible
// member, so we can't simplify it.
if (Offset != 0)
return nullptr;
// Preserve the inrange index from the innermost GEP if possible. We must
// have calculated the same indices up to and including the inrange index.
Optional<unsigned> InRangeIndex;
if (Optional<unsigned> LastIRIndex = InnermostGEP->getInRangeIndex())
if (SrcElemTy == InnermostGEP->getSourceElementType() &&
NewIdxs.size() > *LastIRIndex) {
InRangeIndex = LastIRIndex;
for (unsigned I = 0; I <= *LastIRIndex; ++I)
if (NewIdxs[I] != InnermostGEP->getOperand(I + 1))
return nullptr;
}
// Create a GEP.
Constant *C = ConstantExpr::getGetElementPtr(SrcElemTy, Ptr, NewIdxs,
InBounds, InRangeIndex);
assert(C->getType()->getPointerElementType() == Ty &&
"Computed GetElementPtr has unexpected type!");
// If we ended up indexing a member with a type that doesn't match
// the type of what the original indices indexed, add a cast.
if (C->getType() != ResTy)
C = FoldBitCast(C, ResTy, DL);
return C;
}
/// Attempt to constant fold an instruction with the
/// specified opcode and operands. If successful, the constant result is
/// returned, if not, null is returned. Note that this function can fail when
/// attempting to fold instructions like loads and stores, which have no
/// constant expression form.
Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode,
ArrayRef<Constant *> Ops,
const DataLayout &DL,
const TargetLibraryInfo *TLI) {
Type *DestTy = InstOrCE->getType();
if (Instruction::isUnaryOp(Opcode))
return ConstantFoldUnaryOpOperand(Opcode, Ops[0], DL);
if (Instruction::isBinaryOp(Opcode))
return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL);
if (Instruction::isCast(Opcode))
return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL);
if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) {
if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI,
/*ForLoadOperand*/ false))
return C;
return ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), Ops[0],
Ops.slice(1), GEP->isInBounds(),
GEP->getInRangeIndex());
}
if (auto *CE = dyn_cast<ConstantExpr>(InstOrCE))
return CE->getWithOperands(Ops);
switch (Opcode) {
default: return nullptr;
case Instruction::ICmp:
case Instruction::FCmp: llvm_unreachable("Invalid for compares");
case Instruction::Freeze:
return isGuaranteedNotToBeUndefOrPoison(Ops[0]) ? Ops[0] : nullptr;
case Instruction::Call:
if (auto *F = dyn_cast<Function>(Ops.back())) {
const auto *Call = cast<CallBase>(InstOrCE);
if (canConstantFoldCallTo(Call, F))
return ConstantFoldCall(Call, F, Ops.slice(0, Ops.size() - 1), TLI);
}
return nullptr;
case Instruction::Select:
return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
case Instruction::ExtractElement:
return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
case Instruction::ExtractValue:
return ConstantExpr::getExtractValue(
Ops[0], cast<ExtractValueInst>(InstOrCE)->getIndices());
case Instruction::InsertElement:
return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
case Instruction::ShuffleVector:
return ConstantExpr::getShuffleVector(
Ops[0], Ops[1], cast<ShuffleVectorInst>(InstOrCE)->getShuffleMask());
}
}
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// Constant Folding public APIs
//===----------------------------------------------------------------------===//
namespace {
Constant *
ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL,
const TargetLibraryInfo *TLI,
SmallDenseMap<Constant *, Constant *> &FoldedOps) {
if (!isa<ConstantVector>(C) && !isa<ConstantExpr>(C))
return const_cast<Constant *>(C);
SmallVector<Constant *, 8> Ops;
for (const Use &OldU : C->operands()) {
Constant *OldC = cast<Constant>(&OldU);
Constant *NewC = OldC;
// Recursively fold the ConstantExpr's operands. If we have already folded
// a ConstantExpr, we don't have to process it again.
if (isa<ConstantVector>(OldC) || isa<ConstantExpr>(OldC)) {
auto It = FoldedOps.find(OldC);
if (It == FoldedOps.end()) {
NewC = ConstantFoldConstantImpl(OldC, DL, TLI, FoldedOps);
FoldedOps.insert({OldC, NewC});
} else {
NewC = It->second;
}
}
Ops.push_back(NewC);
}
if (auto *CE = dyn_cast<ConstantExpr>(C)) {
if (CE->isCompare())
return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
DL, TLI);
return ConstantFoldInstOperandsImpl(CE, CE->getOpcode(), Ops, DL, TLI);
}
assert(isa<ConstantVector>(C));
return ConstantVector::get(Ops);
}
} // end anonymous namespace
Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL,
const TargetLibraryInfo *TLI) {
// Handle PHI nodes quickly here...
if (auto *PN = dyn_cast<PHINode>(I)) {
Constant *CommonValue = nullptr;
SmallDenseMap<Constant *, Constant *> FoldedOps;
for (Value *Incoming : PN->incoming_values()) {
// If the incoming value is undef then skip it. Note that while we could
// skip the value if it is equal to the phi node itself we choose not to
// because that would break the rule that constant folding only applies if
// all operands are constants.
if (isa<UndefValue>(Incoming))
continue;
// If the incoming value is not a constant, then give up.
auto *C = dyn_cast<Constant>(Incoming);
if (!C)
return nullptr;
// Fold the PHI's operands.
C = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
// If the incoming value is a different constant to
// the one we saw previously, then give up.
if (CommonValue && C != CommonValue)
return nullptr;
CommonValue = C;
}
// If we reach here, all incoming values are the same constant or undef.
return CommonValue ? CommonValue : UndefValue::get(PN->getType());
}
// Scan the operand list, checking to see if they are all constants, if so,
// hand off to ConstantFoldInstOperandsImpl.
if (!all_of(I->operands(), [](Use &U) { return isa<Constant>(U); }))
return nullptr;
SmallDenseMap<Constant *, Constant *> FoldedOps;
SmallVector<Constant *, 8> Ops;
for (const Use &OpU : I->operands()) {
auto *Op = cast<Constant>(&OpU);
// Fold the Instruction's operands.
Op = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps);
Ops.push_back(Op);
}
if (const auto *CI = dyn_cast<CmpInst>(I))
return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
DL, TLI);
if (const auto *LI = dyn_cast<LoadInst>(I)) {
if (LI->isVolatile())
return nullptr;
return ConstantFoldLoadFromConstPtr(Ops[0], LI->getType(), DL);
}
if (auto *IVI = dyn_cast<InsertValueInst>(I))
return ConstantExpr::getInsertValue(Ops[0], Ops[1], IVI->getIndices());
if (auto *EVI = dyn_cast<ExtractValueInst>(I))
return ConstantExpr::getExtractValue(Ops[0], EVI->getIndices());
return ConstantFoldInstOperands(I, Ops, DL, TLI);
}
Constant *llvm::ConstantFoldConstant(const Constant *C, const DataLayout &DL,
const TargetLibraryInfo *TLI) {
SmallDenseMap<Constant *, Constant *> FoldedOps;
return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
}
Constant *llvm::ConstantFoldInstOperands(Instruction *I,
ArrayRef<Constant *> Ops,
const DataLayout &DL,
const TargetLibraryInfo *TLI) {
return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI);
}
Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
Constant *Ops0, Constant *Ops1,
const DataLayout &DL,
const TargetLibraryInfo *TLI) {
// fold: icmp (inttoptr x), null -> icmp x, 0
// fold: icmp null, (inttoptr x) -> icmp 0, x
// fold: icmp (ptrtoint x), 0 -> icmp x, null
// fold: icmp 0, (ptrtoint x) -> icmp null, x
// fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
// fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
//
// FIXME: The following comment is out of data and the DataLayout is here now.
// ConstantExpr::getCompare cannot do this, because it doesn't have DL
// around to know if bit truncation is happening.
if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
if (Ops1->isNullValue()) {
if (CE0->getOpcode() == Instruction::IntToPtr) {
Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
// Convert the integer value to the right size to ensure we get the
// proper extension or truncation.
Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
IntPtrTy, false);
Constant *Null = Constant::getNullValue(C->getType());
return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
}
// Only do this transformation if the int is intptrty in size, otherwise
// there is a truncation or extension that we aren't modeling.
if (CE0->getOpcode() == Instruction::PtrToInt) {
Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
if (CE0->getType() == IntPtrTy) {
Constant *C = CE0->getOperand(0);
Constant *Null = Constant::getNullValue(C->getType());
return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
}
}
}
if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
if (CE0->getOpcode() == CE1->getOpcode()) {
if (CE0->getOpcode() == Instruction::IntToPtr) {
Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
// Convert the integer value to the right size to ensure we get the
// proper extension or truncation.
Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
IntPtrTy, false);
Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
IntPtrTy, false);
return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI);
}
// Only do this transformation if the int is intptrty in size, otherwise
// there is a truncation or extension that we aren't modeling.
if (CE0->getOpcode() == Instruction::PtrToInt) {
Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
if (CE0->getType() == IntPtrTy &&
CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
return ConstantFoldCompareInstOperands(
Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI);
}
}
}
}
// icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
// icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
Constant *LHS = ConstantFoldCompareInstOperands(
Predicate, CE0->getOperand(0), Ops1, DL, TLI);
Constant *RHS = ConstantFoldCompareInstOperands(
Predicate, CE0->getOperand(1), Ops1, DL, TLI);
unsigned OpC =
Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
return ConstantFoldBinaryOpOperands(OpC, LHS, RHS, DL);
}
} else if (isa<ConstantExpr>(Ops1)) {
// If RHS is a constant expression, but the left side isn't, swap the
// operands and try again.
Predicate = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)Predicate);
return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI);
}
return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
}
Constant *llvm::ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op,
const DataLayout &DL) {
assert(Instruction::isUnaryOp(Opcode));
return ConstantExpr::get(Opcode, Op);
}
Constant *llvm::ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS,
Constant *RHS,
const DataLayout &DL) {
assert(Instruction::isBinaryOp(Opcode));
if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS))
if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL))
return C;
return ConstantExpr::get(Opcode, LHS, RHS);
}
Constant *llvm::ConstantFoldCastOperand(unsigned Opcode, Constant *C,
Type *DestTy, const DataLayout &DL) {
assert(Instruction::isCast(Opcode));
switch (Opcode) {
default:
llvm_unreachable("Missing case");
case Instruction::PtrToInt:
// If the input is a inttoptr, eliminate the pair. This requires knowing
// the width of a pointer, so it can't be done in ConstantExpr::getCast.
if (auto *CE = dyn_cast<ConstantExpr>(C)) {
if (CE->getOpcode() == Instruction::IntToPtr) {
Constant *Input = CE->getOperand(0);
unsigned InWidth = Input->getType()->getScalarSizeInBits();
unsigned PtrWidth = DL.getPointerTypeSizeInBits(CE->getType());
if (PtrWidth < InWidth) {
Constant *Mask =
ConstantInt::get(CE->getContext(),
APInt::getLowBitsSet(InWidth, PtrWidth));
Input = ConstantExpr::getAnd(Input, Mask);
}
// Do a zext or trunc to get to the dest size.
return ConstantExpr::getIntegerCast(Input, DestTy, false);
}
}
return ConstantExpr::getCast(Opcode, C, DestTy);
case Instruction::IntToPtr:
// If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
// the int size is >= the ptr size and the address spaces are the same.
// This requires knowing the width of a pointer, so it can't be done in
// ConstantExpr::getCast.
if (auto *CE = dyn_cast<ConstantExpr>(C)) {
if (CE->getOpcode() == Instruction::PtrToInt) {
Constant *SrcPtr = CE->getOperand(0);
unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType());
unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
if (MidIntSize >= SrcPtrSize) {
unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace();
if (SrcAS == DestTy->getPointerAddressSpace())
return FoldBitCast(CE->getOperand(0), DestTy, DL);
}
}
}
return ConstantExpr::getCast(Opcode, C, DestTy);
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::UIToFP:
case Instruction::SIToFP:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::AddrSpaceCast:
return ConstantExpr::getCast(Opcode, C, DestTy);
case Instruction::BitCast:
return FoldBitCast(C, DestTy, DL);
}
}
Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
ConstantExpr *CE,
Type *Ty,
const DataLayout &DL) {
if (!CE->getOperand(1)->isNullValue())
return nullptr; // Do not allow stepping over the value!
// Loop over all of the operands, tracking down which value we are
// addressing.
for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) {
C = C->getAggregateElement(CE->getOperand(i));
if (!C)
return nullptr;
}
return ConstantFoldLoadThroughBitcast(C, Ty, DL);
}
Constant *
llvm::ConstantFoldLoadThroughGEPIndices(Constant *C,
ArrayRef<Constant *> Indices) {
// Loop over all of the operands, tracking down which value we are
// addressing.
for (Constant *Index : Indices) {
C = C->getAggregateElement(Index);
if (!C)
return nullptr;
}
return C;
}
//===----------------------------------------------------------------------===//
// Constant Folding for Calls
//
bool llvm::canConstantFoldCallTo(const CallBase *Call, const Function *F) {
if (Call->isNoBuiltin())
return false;
switch (F->getIntrinsicID()) {
// Operations that do not operate floating-point numbers and do not depend on
// FP environment can be folded even in strictfp functions.
case Intrinsic::bswap:
case Intrinsic::ctpop:
case Intrinsic::ctlz:
case Intrinsic::cttz:
case Intrinsic::fshl:
case Intrinsic::fshr:
case Intrinsic::launder_invariant_group:
case Intrinsic::strip_invariant_group:
case Intrinsic::masked_load:
case Intrinsic::get_active_lane_mask:
case Intrinsic::abs:
case Intrinsic::smax:
case Intrinsic::smin:
case Intrinsic::umax:
case Intrinsic::umin:
case Intrinsic::sadd_with_overflow:
case Intrinsic::uadd_with_overflow:
case Intrinsic::ssub_with_overflow:
case Intrinsic::usub_with_overflow:
case Intrinsic::smul_with_overflow:
case Intrinsic::umul_with_overflow:
case Intrinsic::sadd_sat:
case Intrinsic::uadd_sat:
case Intrinsic::ssub_sat:
case Intrinsic::usub_sat:
case Intrinsic::smul_fix:
case Intrinsic::smul_fix_sat:
case Intrinsic::bitreverse:
case Intrinsic::is_constant:
case Intrinsic::vector_reduce_add:
case Intrinsic::vector_reduce_mul:
case Intrinsic::vector_reduce_and:
case Intrinsic::vector_reduce_or:
case Intrinsic::vector_reduce_xor:
case Intrinsic::vector_reduce_smin:
case Intrinsic::vector_reduce_smax:
case Intrinsic::vector_reduce_umin:
case Intrinsic::vector_reduce_umax:
// Target intrinsics
case Intrinsic::amdgcn_perm:
case Intrinsic::arm_mve_vctp8:
case Intrinsic::arm_mve_vctp16:
case Intrinsic::arm_mve_vctp32:
case Intrinsic::arm_mve_vctp64:
case Intrinsic::aarch64_sve_convert_from_svbool:
// WebAssembly float semantics are always known
case Intrinsic::wasm_trunc_signed:
case Intrinsic::wasm_trunc_unsigned:
return true;
// Floating point operations cannot be folded in strictfp functions in
// general case. They can be folded if FP environment is known to compiler.
case Intrinsic::minnum:
case Intrinsic::maxnum:
case Intrinsic::minimum:
case Intrinsic::maximum:
case Intrinsic::log:
case Intrinsic::log2:
case Intrinsic::log10:
case Intrinsic::exp:
case Intrinsic::exp2:
case Intrinsic::sqrt:
case Intrinsic::sin:
case Intrinsic::cos:
case Intrinsic::pow:
case Intrinsic::powi:
case Intrinsic::fma:
case Intrinsic::fmuladd:
case Intrinsic::fptoui_sat:
case Intrinsic::fptosi_sat:
case Intrinsic::convert_from_fp16:
case Intrinsic::convert_to_fp16:
case Intrinsic::amdgcn_cos:
case Intrinsic::amdgcn_cubeid:
case Intrinsic::amdgcn_cubema:
case Intrinsic::amdgcn_cubesc:
case Intrinsic::amdgcn_cubetc:
case Intrinsic::amdgcn_fmul_legacy:
case Intrinsic::amdgcn_fma_legacy:
case Intrinsic::amdgcn_fract:
case Intrinsic::amdgcn_ldexp:
case Intrinsic::amdgcn_sin:
// The intrinsics below depend on rounding mode in MXCSR.
case Intrinsic::x86_sse_cvtss2si:
case Intrinsic::x86_sse_cvtss2si64:
case Intrinsic::x86_sse_cvttss2si:
case Intrinsic::x86_sse_cvttss2si64:
case Intrinsic::x86_sse2_cvtsd2si:
case Intrinsic::x86_sse2_cvtsd2si64:
case Intrinsic::x86_sse2_cvttsd2si:
case Intrinsic::x86_sse2_cvttsd2si64:
case Intrinsic::x86_avx512_vcvtss2si32:
case Intrinsic::x86_avx512_vcvtss2si64:
case Intrinsic::x86_avx512_cvttss2si:
case Intrinsic::x86_avx512_cvttss2si64:
case Intrinsic::x86_avx512_vcvtsd2si32:
case Intrinsic::x86_avx512_vcvtsd2si64:
case Intrinsic::x86_avx512_cvttsd2si:
case Intrinsic::x86_avx512_cvttsd2si64:
case Intrinsic::x86_avx512_vcvtss2usi32:
case Intrinsic::x86_avx512_vcvtss2usi64:
case Intrinsic::x86_avx512_cvttss2usi:
case Intrinsic::x86_avx512_cvttss2usi64:
case Intrinsic::x86_avx512_vcvtsd2usi32:
case Intrinsic::x86_avx512_vcvtsd2usi64:
case Intrinsic::x86_avx512_cvttsd2usi:
case Intrinsic::x86_avx512_cvttsd2usi64:
return !Call->isStrictFP();
// Sign operations are actually bitwise operations, they do not raise
// exceptions even for SNANs.
case Intrinsic::fabs:
case Intrinsic::copysign:
// Non-constrained variants of rounding operations means default FP
// environment, they can be folded in any case.
case Intrinsic::ceil:
case Intrinsic::floor:
case Intrinsic::round:
case Intrinsic::roundeven:
case Intrinsic::trunc:
case Intrinsic::nearbyint:
case Intrinsic::rint:
// Constrained intrinsics can be folded if FP environment is known
// to compiler.
case Intrinsic::experimental_constrained_ceil:
case Intrinsic::experimental_constrained_floor:
case Intrinsic::experimental_constrained_round:
case Intrinsic::experimental_constrained_roundeven:
case Intrinsic::experimental_constrained_trunc:
case Intrinsic::experimental_constrained_nearbyint:
case Intrinsic::experimental_constrained_rint:
return true;
default:
return false;
case Intrinsic::not_intrinsic: break;
}
if (!F->hasName() || Call->isStrictFP())
return false;
// In these cases, the check of the length is required. We don't want to
// return true for a name like "cos\0blah" which strcmp would return equal to
// "cos", but has length 8.
StringRef Name = F->getName();
switch (Name[0]) {
default:
return false;
case 'a':
return Name == "acos" || Name == "acosf" ||
Name == "asin" || Name == "asinf" ||
Name == "atan" || Name == "atanf" ||
Name == "atan2" || Name == "atan2f";
case 'c':
return Name == "ceil" || Name == "ceilf" ||
Name == "cos" || Name == "cosf" ||
Name == "cosh" || Name == "coshf";
case 'e':
return Name == "exp" || Name == "expf" ||
Name == "exp2" || Name == "exp2f";
case 'f':
return Name == "fabs" || Name == "fabsf" ||
Name == "floor" || Name == "floorf" ||
Name == "fmod" || Name == "fmodf";
case 'l':
return Name == "log" || Name == "logf" ||
Name == "log2" || Name == "log2f" ||
Name == "log10" || Name == "log10f";
case 'n':
return Name == "nearbyint" || Name == "nearbyintf";
case 'p':
return Name == "pow" || Name == "powf";
case 'r':
return Name == "remainder" || Name == "remainderf" ||
Name == "rint" || Name == "rintf" ||
Name == "round" || Name == "roundf";
case 's':
return Name == "sin" || Name == "sinf" ||
Name == "sinh" || Name == "sinhf" ||
Name == "sqrt" || Name == "sqrtf";
case 't':
return Name == "tan" || Name == "tanf" ||
Name == "tanh" || Name == "tanhf" ||
Name == "trunc" || Name == "truncf";
case '_':
// Check for various function names that get used for the math functions
// when the header files are preprocessed with the macro
// __FINITE_MATH_ONLY__ enabled.
// The '12' here is the length of the shortest name that can match.
// We need to check the size before looking at Name[1] and Name[2]
// so we may as well check a limit that will eliminate mismatches.
if (Name.size() < 12 || Name[1] != '_')
return false;
switch (Name[2]) {
default:
return false;
case 'a':
return Name == "__acos_finite" || Name == "__acosf_finite" ||
Name == "__asin_finite" || Name == "__asinf_finite" ||
Name == "__atan2_finite" || Name == "__atan2f_finite";
case 'c':
return Name == "__cosh_finite" || Name == "__coshf_finite";
case 'e':
return Name == "__exp_finite" || Name == "__expf_finite" ||
Name == "__exp2_finite" || Name == "__exp2f_finite";
case 'l':
return Name == "__log_finite" || Name == "__logf_finite" ||
Name == "__log10_finite" || Name == "__log10f_finite";
case 'p':
return Name == "__pow_finite" || Name == "__powf_finite";
case 's':
return Name == "__sinh_finite" || Name == "__sinhf_finite";
}
}
}
namespace {
Constant *GetConstantFoldFPValue(double V, Type *Ty) {
if (Ty->isHalfTy() || Ty->isFloatTy()) {
APFloat APF(V);
bool unused;
APF.convert(Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &unused);
return ConstantFP::get(Ty->getContext(), APF);
}
if (Ty->isDoubleTy())
return ConstantFP::get(Ty->getContext(), APFloat(V));
llvm_unreachable("Can only constant fold half/float/double");
}
/// Clear the floating-point exception state.
inline void llvm_fenv_clearexcept() {
#if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT
feclearexcept(FE_ALL_EXCEPT);
#endif
errno = 0;
}
/// Test if a floating-point exception was raised.
inline bool llvm_fenv_testexcept() {
int errno_val = errno;
if (errno_val == ERANGE || errno_val == EDOM)
return true;
#if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT))
return true;
#endif
return false;
}
Constant *ConstantFoldFP(double (*NativeFP)(double), const APFloat &V,
Type *Ty) {
llvm_fenv_clearexcept();
double Result = NativeFP(V.convertToDouble());
if (llvm_fenv_testexcept()) {
llvm_fenv_clearexcept();
return nullptr;
}
return GetConstantFoldFPValue(Result, Ty);
}
Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
const APFloat &V, const APFloat &W, Type *Ty) {
llvm_fenv_clearexcept();
double Result = NativeFP(V.convertToDouble(), W.convertToDouble());
if (llvm_fenv_testexcept()) {
llvm_fenv_clearexcept();
return nullptr;
}
return GetConstantFoldFPValue(Result, Ty);
}
Constant *constantFoldVectorReduce(Intrinsic::ID IID, Constant *Op) {
FixedVectorType *VT = dyn_cast<FixedVectorType>(Op->getType());
if (!VT)
return nullptr;
// This isn't strictly necessary, but handle the special/common case of zero:
// all integer reductions of a zero input produce zero.
if (isa<ConstantAggregateZero>(Op))
return ConstantInt::get(VT->getElementType(), 0);
// This is the same as the underlying binops - poison propagates.
if (isa<PoisonValue>(Op) || Op->containsPoisonElement())
return PoisonValue::get(VT->getElementType());
// TODO: Handle undef.
if (!isa<ConstantVector>(Op) && !isa<ConstantDataVector>(Op))
return nullptr;
auto *EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(0U));
if (!EltC)
return nullptr;
APInt Acc = EltC->getValue();
for (unsigned I = 1, E = VT->getNumElements(); I != E; I++) {
if (!(EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(I))))
return nullptr;
const APInt &X = EltC->getValue();
switch (IID) {
case Intrinsic::vector_reduce_add:
Acc = Acc + X;
break;
case Intrinsic::vector_reduce_mul:
Acc = Acc * X;
break;
case Intrinsic::vector_reduce_and:
Acc = Acc & X;
break;
case Intrinsic::vector_reduce_or:
Acc = Acc | X;
break;
case Intrinsic::vector_reduce_xor:
Acc = Acc ^ X;
break;
case Intrinsic::vector_reduce_smin:
Acc = APIntOps::smin(Acc, X);
break;
case Intrinsic::vector_reduce_smax:
Acc = APIntOps::smax(Acc, X);
break;
case Intrinsic::vector_reduce_umin:
Acc = APIntOps::umin(Acc, X);
break;
case Intrinsic::vector_reduce_umax:
Acc = APIntOps::umax(Acc, X);
break;
}
}
return ConstantInt::get(Op->getContext(), Acc);
}
/// Attempt to fold an SSE floating point to integer conversion of a constant
/// floating point. If roundTowardZero is false, the default IEEE rounding is
/// used (toward nearest, ties to even). This matches the behavior of the
/// non-truncating SSE instructions in the default rounding mode. The desired
/// integer type Ty is used to select how many bits are available for the
/// result. Returns null if the conversion cannot be performed, otherwise
/// returns the Constant value resulting from the conversion.
Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero,
Type *Ty, bool IsSigned) {
// All of these conversion intrinsics form an integer of at most 64bits.
unsigned ResultWidth = Ty->getIntegerBitWidth();
assert(ResultWidth <= 64 &&
"Can only constant fold conversions to 64 and 32 bit ints");
uint64_t UIntVal;
bool isExact = false;
APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
: APFloat::rmNearestTiesToEven;
APFloat::opStatus status =
Val.convertToInteger(makeMutableArrayRef(UIntVal), ResultWidth,
IsSigned, mode, &isExact);
if (status != APFloat::opOK &&
(!roundTowardZero || status != APFloat::opInexact))
return nullptr;
return ConstantInt::get(Ty, UIntVal, IsSigned);
}
double getValueAsDouble(ConstantFP *Op) {
Type *Ty = Op->getType();
if (Ty->isBFloatTy() || Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())
return Op->getValueAPF().convertToDouble();
bool unused;
APFloat APF = Op->getValueAPF();
APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &unused);
return APF.convertToDouble();
}
static bool getConstIntOrUndef(Value *Op, const APInt *&C) {
if (auto *CI = dyn_cast<ConstantInt>(Op)) {
C = &CI->getValue();
return true;
}
if (isa<UndefValue>(Op)) {
C = nullptr;
return true;
}
return false;
}
static Constant *ConstantFoldScalarCall1(StringRef Name,
Intrinsic::ID IntrinsicID,
Type *Ty,
ArrayRef<Constant *> Operands,
const TargetLibraryInfo *TLI,
const CallBase *Call) {
assert(Operands.size() == 1 && "Wrong number of operands.");
if (IntrinsicID == Intrinsic::is_constant) {
// We know we have a "Constant" argument. But we want to only
// return true for manifest constants, not those that depend on
// constants with unknowable values, e.g. GlobalValue or BlockAddress.
if (Operands[0]->isManifestConstant())
return ConstantInt::getTrue(Ty->getContext());
return nullptr;
}
if (isa<UndefValue>(Operands[0])) {
// cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN.
// ctpop() is between 0 and bitwidth, pick 0 for undef.
// fptoui.sat and fptosi.sat can always fold to zero (for a zero input).
if (IntrinsicID == Intrinsic::cos ||
IntrinsicID == Intrinsic::ctpop ||
IntrinsicID == Intrinsic::fptoui_sat ||
IntrinsicID == Intrinsic::fptosi_sat)
return Constant::getNullValue(Ty);
if (IntrinsicID == Intrinsic::bswap ||
IntrinsicID == Intrinsic::bitreverse ||
IntrinsicID == Intrinsic::launder_invariant_group ||
IntrinsicID == Intrinsic::strip_invariant_group)
return Operands[0];
}
if (isa<ConstantPointerNull>(Operands[0])) {
// launder(null) == null == strip(null) iff in addrspace 0
if (IntrinsicID == Intrinsic::launder_invariant_group ||
IntrinsicID == Intrinsic::strip_invariant_group) {
// If instruction is not yet put in a basic block (e.g. when cloning
// a function during inlining), Call's caller may not be available.
// So check Call's BB first before querying Call->getCaller.
const Function *Caller =
Call->getParent() ? Call->getCaller() : nullptr;
if (Caller &&
!NullPointerIsDefined(
Caller, Operands[0]->getType()->getPointerAddressSpace())) {
return Operands[0];
}
return nullptr;
}
}
if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) {
if (IntrinsicID == Intrinsic::convert_to_fp16) {
APFloat Val(Op->getValueAPF());
bool lost = false;
Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &lost);
return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt());
}
APFloat U = Op->getValueAPF();
if (IntrinsicID == Intrinsic::wasm_trunc_signed ||
IntrinsicID == Intrinsic::wasm_trunc_unsigned) {
bool Signed = IntrinsicID == Intrinsic::wasm_trunc_signed;
if (U.isNaN())
return nullptr;
unsigned Width = Ty->getIntegerBitWidth();
APSInt Int(Width, !Signed);
bool IsExact = false;
APFloat::opStatus Status =
U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact);
if (Status == APFloat::opOK || Status == APFloat::opInexact)
return ConstantInt::get(Ty, Int);
return nullptr;
}
if (IntrinsicID == Intrinsic::fptoui_sat ||
IntrinsicID == Intrinsic::fptosi_sat) {
// convertToInteger() already has the desired saturation semantics.
APSInt Int(Ty->getIntegerBitWidth(),
IntrinsicID == Intrinsic::fptoui_sat);
bool IsExact;
U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact);
return ConstantInt::get(Ty, Int);
}
if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
return nullptr;
// Use internal versions of these intrinsics.
if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint) {
U.roundToIntegral(APFloat::rmNearestTiesToEven);
return ConstantFP::get(Ty->getContext(), U);
}
if (IntrinsicID == Intrinsic::round) {
U.roundToIntegral(APFloat::rmNearestTiesToAway);
return ConstantFP::get(Ty->getContext(), U);
}
if (IntrinsicID == Intrinsic::roundeven) {
U.roundToIntegral(APFloat::rmNearestTiesToEven);
return ConstantFP::get(Ty->getContext(), U);
}
if (IntrinsicID == Intrinsic::ceil) {
U.roundToIntegral(APFloat::rmTowardPositive);
return ConstantFP::get(Ty->getContext(), U);
}
if (IntrinsicID == Intrinsic::floor) {
U.roundToIntegral(APFloat::rmTowardNegative);
return ConstantFP::get(Ty->getContext(), U);
}
if (IntrinsicID == Intrinsic::trunc) {
U.roundToIntegral(APFloat::rmTowardZero);
return ConstantFP::get(Ty->getContext(), U);
}
if (IntrinsicID == Intrinsic::fabs) {
U.clearSign();
return ConstantFP::get(Ty->getContext(), U);
}
if (IntrinsicID == Intrinsic::amdgcn_fract) {
// The v_fract instruction behaves like the OpenCL spec, which defines
// fract(x) as fmin(x - floor(x), 0x1.fffffep-1f): "The min() operator is
// there to prevent fract(-small) from returning 1.0. It returns the
// largest positive floating-point number less than 1.0."
APFloat FloorU(U);
FloorU.roundToIntegral(APFloat::rmTowardNegative);
APFloat FractU(U - FloorU);
APFloat AlmostOne(U.getSemantics(), 1);
AlmostOne.next(/*nextDown*/ true);
return ConstantFP::get(Ty->getContext(), minimum(FractU, AlmostOne));
}
// Rounding operations (floor, trunc, ceil, round and nearbyint) do not
// raise FP exceptions, unless the argument is signaling NaN.
Optional<APFloat::roundingMode> RM;
switch (IntrinsicID) {
default:
break;
case Intrinsic::experimental_constrained_nearbyint:
case Intrinsic::experimental_constrained_rint: {
auto CI = cast<ConstrainedFPIntrinsic>(Call);
RM = CI->getRoundingMode();
if (!RM || RM.getValue() == RoundingMode::Dynamic)
return nullptr;
break;
}
case Intrinsic::experimental_constrained_round:
RM = APFloat::rmNearestTiesToAway;
break;
case Intrinsic::experimental_constrained_ceil:
RM = APFloat::rmTowardPositive;
break;
case Intrinsic::experimental_constrained_floor:
RM = APFloat::rmTowardNegative;
break;
case Intrinsic::experimental_constrained_trunc:
RM = APFloat::rmTowardZero;
break;
}
if (RM) {
auto CI = cast<ConstrainedFPIntrinsic>(Call);
if (U.isFinite()) {
APFloat::opStatus St = U.roundToIntegral(*RM);
if (IntrinsicID == Intrinsic::experimental_constrained_rint &&
St == APFloat::opInexact) {
Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
if (EB && *EB == fp::ebStrict)
return nullptr;
}
} else if (U.isSignaling()) {
Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
if (EB && *EB != fp::ebIgnore)
return nullptr;
U = APFloat::getQNaN(U.getSemantics());
}
return ConstantFP::get(Ty->getContext(), U);
}
/// We only fold functions with finite arguments. Folding NaN and inf is
/// likely to be aborted with an exception anyway, and some host libms
/// have known errors raising exceptions.
if (!U.isFinite())
return nullptr;
/// Currently APFloat versions of these functions do not exist, so we use
/// the host native double versions. Float versions are not called
/// directly but for all these it is true (float)(f((double)arg)) ==
/// f(arg). Long double not supported yet.
APFloat APF = Op->getValueAPF();
switch (IntrinsicID) {
default: break;
case Intrinsic::log:
return ConstantFoldFP(log, APF, Ty);
case Intrinsic::log2:
// TODO: What about hosts that lack a C99 library?
return ConstantFoldFP(Log2, APF, Ty);
case Intrinsic::log10:
// TODO: What about hosts that lack a C99 library?
return ConstantFoldFP(log10, APF, Ty);
case Intrinsic::exp:
return ConstantFoldFP(exp, APF, Ty);
case Intrinsic::exp2:
// Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty);
case Intrinsic::sin:
return ConstantFoldFP(sin, APF, Ty);
case Intrinsic::cos:
return ConstantFoldFP(cos, APF, Ty);
case Intrinsic::sqrt:
return ConstantFoldFP(sqrt, APF, Ty);
case Intrinsic::amdgcn_cos:
case Intrinsic::amdgcn_sin: {
double V = getValueAsDouble(Op);
if (V < -256.0 || V > 256.0)
// The gfx8 and gfx9 architectures handle arguments outside the range
// [-256, 256] differently. This should be a rare case so bail out
// rather than trying to handle the difference.
return nullptr;
bool IsCos = IntrinsicID == Intrinsic::amdgcn_cos;
double V4 = V * 4.0;
if (V4 == floor(V4)) {
// Force exact results for quarter-integer inputs.
const double SinVals[4] = { 0.0, 1.0, 0.0, -1.0 };
V = SinVals[((int)V4 + (IsCos ? 1 : 0)) & 3];
} else {
if (IsCos)
V = cos(V * 2.0 * numbers::pi);
else
V = sin(V * 2.0 * numbers::pi);
}
return GetConstantFoldFPValue(V, Ty);
}
}
if (!TLI)
return nullptr;
LibFunc Func = NotLibFunc;
TLI->getLibFunc(Name, Func);
switch (Func) {
default:
break;
case LibFunc_acos:
case LibFunc_acosf:
case LibFunc_acos_finite:
case LibFunc_acosf_finite:
if (TLI->has(Func))
return ConstantFoldFP(acos, APF, Ty);
break;
case LibFunc_asin:
case LibFunc_asinf:
case LibFunc_asin_finite:
case LibFunc_asinf_finite:
if (TLI->has(Func))
return ConstantFoldFP(asin, APF, Ty);
break;
case LibFunc_atan:
case LibFunc_atanf:
if (TLI->has(Func))
return ConstantFoldFP(atan, APF, Ty);
break;
case LibFunc_ceil:
case LibFunc_ceilf:
if (TLI->has(Func)) {
U.roundToIntegral(APFloat::rmTowardPositive);
return ConstantFP::get(Ty->getContext(), U);
}
break;
case LibFunc_cos:
case LibFunc_cosf:
if (TLI->has(Func))
return ConstantFoldFP(cos, APF, Ty);
break;
case LibFunc_cosh:
case LibFunc_coshf:
case LibFunc_cosh_finite:
case LibFunc_coshf_finite:
if (TLI->has(Func))
return ConstantFoldFP(cosh, APF, Ty);
break;
case LibFunc_exp:
case LibFunc_expf:
case LibFunc_exp_finite:
case LibFunc_expf_finite:
if (TLI->has(Func))
return ConstantFoldFP(exp, APF, Ty);
break;
case LibFunc_exp2:
case LibFunc_exp2f:
case LibFunc_exp2_finite:
case LibFunc_exp2f_finite:
if (TLI->has(Func))
// Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty);
break;
case LibFunc_fabs:
case LibFunc_fabsf:
if (TLI->has(Func)) {
U.clearSign();
return ConstantFP::get(Ty->getContext(), U);
}
break;
case LibFunc_floor:
case LibFunc_floorf:
if (TLI->has(Func)) {
U.roundToIntegral(APFloat::rmTowardNegative);
return ConstantFP::get(Ty->getContext(), U);
}
break;
case LibFunc_log:
case LibFunc_logf:
case LibFunc_log_finite:
case LibFunc_logf_finite:
if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
return ConstantFoldFP(log, APF, Ty);
break;
case LibFunc_log2:
case LibFunc_log2f:
case LibFunc_log2_finite:
case LibFunc_log2f_finite:
if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
// TODO: What about hosts that lack a C99 library?
return ConstantFoldFP(Log2, APF, Ty);
break;
case LibFunc_log10:
case LibFunc_log10f:
case LibFunc_log10_finite:
case LibFunc_log10f_finite:
if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
// TODO: What about hosts that lack a C99 library?
return ConstantFoldFP(log10, APF, Ty);
break;
case LibFunc_nearbyint:
case LibFunc_nearbyintf:
case LibFunc_rint:
case LibFunc_rintf:
if (TLI->has(Func)) {
U.roundToIntegral(APFloat::rmNearestTiesToEven);
return ConstantFP::get(Ty->getContext(), U);
}
break;
case LibFunc_round:
case LibFunc_roundf:
if (TLI->has(Func)) {
U.roundToIntegral(APFloat::rmNearestTiesToAway);
return ConstantFP::get(Ty->getContext(), U);
}
break;
case LibFunc_sin:
case LibFunc_sinf:
if (TLI->has(Func))
return ConstantFoldFP(sin, APF, Ty);
break;
case LibFunc_sinh:
case LibFunc_sinhf:
case LibFunc_sinh_finite:
case LibFunc_sinhf_finite:
if (TLI->has(Func))
return ConstantFoldFP(sinh, APF, Ty);
break;
case LibFunc_sqrt:
case LibFunc_sqrtf:
if (!APF.isNegative() && TLI->has(Func))
return ConstantFoldFP(sqrt, APF, Ty);
break;
case LibFunc_tan:
case LibFunc_tanf:
if (TLI->has(Func))
return ConstantFoldFP(tan, APF, Ty);
break;
case LibFunc_tanh:
case LibFunc_tanhf:
if (TLI->has(Func))
return ConstantFoldFP(tanh, APF, Ty);
break;
case LibFunc_trunc:
case LibFunc_truncf:
if (TLI->has(Func)) {
U.roundToIntegral(APFloat::rmTowardZero);
return ConstantFP::get(Ty->getContext(), U);
}
break;
}
return nullptr;
}
if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
switch (IntrinsicID) {
case Intrinsic::bswap:
return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap());
case Intrinsic::ctpop:
return ConstantInt::get(Ty, Op->getValue().countPopulation());
case Intrinsic::bitreverse:
return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits());
case Intrinsic::convert_from_fp16: {
APFloat Val(APFloat::IEEEhalf(), Op->getValue());
bool lost = false;
APFloat::opStatus status = Val.convert(
Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost);
// Conversion is always precise.
(void)status;
assert(status == APFloat::opOK && !lost &&
"Precision lost during fp16 constfolding");
return ConstantFP::get(Ty->getContext(), Val);
}
default:
return nullptr;
}
}
switch (IntrinsicID) {
default: break;
case Intrinsic::vector_reduce_add:
case Intrinsic::vector_reduce_mul:
case Intrinsic::vector_reduce_and:
case Intrinsic::vector_reduce_or:
case Intrinsic::vector_reduce_xor:
case Intrinsic::vector_reduce_smin:
case Intrinsic::vector_reduce_smax:
case Intrinsic::vector_reduce_umin:
case Intrinsic::vector_reduce_umax:
if (Constant *C = constantFoldVectorReduce(IntrinsicID, Operands[0]))
return C;
break;
}
// Support ConstantVector in case we have an Undef in the top.
if (isa<ConstantVector>(Operands[0]) ||
isa<ConstantDataVector>(Operands[0])) {
auto *Op = cast<Constant>(Operands[0]);
switch (IntrinsicID) {
default: break;
case Intrinsic::x86_sse_cvtss2si:
case Intrinsic::x86_sse_cvtss2si64:
case Intrinsic::x86_sse2_cvtsd2si:
case Intrinsic::x86_sse2_cvtsd2si64:
if (ConstantFP *FPOp =
dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
/*roundTowardZero=*/false, Ty,
/*IsSigned*/true);
break;
case Intrinsic::x86_sse_cvttss2si:
case Intrinsic::x86_sse_cvttss2si64:
case Intrinsic::x86_sse2_cvttsd2si:
case Intrinsic::x86_sse2_cvttsd2si64:
if (ConstantFP *FPOp =
dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
/*roundTowardZero=*/true, Ty,
/*IsSigned*/true);
break;
}
}
return nullptr;
}
static Constant *ConstantFoldScalarCall2(StringRef Name,
Intrinsic::ID IntrinsicID,
Type *Ty,
ArrayRef<Constant *> Operands,
const TargetLibraryInfo *TLI,
const CallBase *Call) {
assert(Operands.size() == 2 && "Wrong number of operands.");
if (Ty->isFloatingPointTy()) {
// TODO: We should have undef handling for all of the FP intrinsics that
// are attempted to be folded in this function.
bool IsOp0Undef = isa<UndefValue>(Operands[0]);
bool IsOp1Undef = isa<UndefValue>(Operands[1]);
switch (IntrinsicID) {
case Intrinsic::maxnum:
case Intrinsic::minnum:
case Intrinsic::maximum:
case Intrinsic::minimum:
// If one argument is undef, return the other argument.
if (IsOp0Undef)
return Operands[1];
if (IsOp1Undef)
return Operands[0];
break;
}
}
if (auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
if (!Ty->isFloatingPointTy())
return nullptr;
APFloat Op1V = Op1->getValueAPF();
if (auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
if (Op2->getType() != Op1->getType())
return nullptr;
APFloat Op2V = Op2->getValueAPF();
switch (IntrinsicID) {
default:
break;
case Intrinsic::copysign:
return ConstantFP::get(Ty->getContext(), APFloat::copySign(Op1V, Op2V));
case Intrinsic::minnum:
return ConstantFP::get(Ty->getContext(), minnum(Op1V, Op2V));
case Intrinsic::maxnum:
return ConstantFP::get(Ty->getContext(), maxnum(Op1V, Op2V));
case Intrinsic::minimum:
return ConstantFP::get(Ty->getContext(), minimum(Op1V, Op2V));
case Intrinsic::maximum:
return ConstantFP::get(Ty->getContext(), maximum(Op1V, Op2V));
}
if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
return nullptr;
switch (IntrinsicID) {
default:
break;
case Intrinsic::pow:
return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
case Intrinsic::amdgcn_fmul_legacy:
// The legacy behaviour is that multiplying +/- 0.0 by anything, even
// NaN or infinity, gives +0.0.
if (Op1V.isZero() || Op2V.isZero())
return ConstantFP::getNullValue(Ty);
return ConstantFP::get(Ty->getContext(), Op1V * Op2V);
}
if (!TLI)
return nullptr;
LibFunc Func = NotLibFunc;
TLI->getLibFunc(Name, Func);
switch (Func) {
default:
break;
case LibFunc_pow:
case LibFunc_powf:
case LibFunc_pow_finite:
case LibFunc_powf_finite:
if (TLI->has(Func))
return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
break;
case LibFunc_fmod:
case LibFunc_fmodf:
if (TLI->has(Func)) {
APFloat V = Op1->getValueAPF();
if (APFloat::opStatus::opOK == V.mod(Op2->getValueAPF()))
return ConstantFP::get(Ty->getContext(), V);
}
break;
case LibFunc_remainder:
case LibFunc_remainderf:
if (TLI->has(Func)) {
APFloat V = Op1->getValueAPF();
if (APFloat::opStatus::opOK == V.remainder(Op2->getValueAPF()))
return ConstantFP::get(Ty->getContext(), V);
}
break;
case LibFunc_atan2:
case LibFunc_atan2f:
case LibFunc_atan2_finite:
case LibFunc_atan2f_finite:
if (TLI->has(Func))
return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
break;
}
} else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy())
return ConstantFP::get(
Ty->getContext(),
APFloat((float)std::pow((float)Op1V.convertToDouble(),
(int)Op2C->getZExtValue())));
if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy())
return ConstantFP::get(
Ty->getContext(),
APFloat((float)std::pow((float)Op1V.convertToDouble(),
(int)Op2C->getZExtValue())));
if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy())
return ConstantFP::get(
Ty->getContext(),
APFloat((double)std::pow(Op1V.convertToDouble(),
(int)Op2C->getZExtValue())));
if (IntrinsicID == Intrinsic::amdgcn_ldexp) {
// FIXME: Should flush denorms depending on FP mode, but that's ignored
// everywhere else.
// scalbn is equivalent to ldexp with float radix 2
APFloat Result = scalbn(Op1->getValueAPF(), Op2C->getSExtValue(),
APFloat::rmNearestTiesToEven);
return ConstantFP::get(Ty->getContext(), Result);
}
}
return nullptr;
}
if (Operands[0]->getType()->isIntegerTy() &&
Operands[1]->getType()->isIntegerTy()) {
const APInt *C0, *C1;
if (!getConstIntOrUndef(Operands[0], C0) ||
!getConstIntOrUndef(Operands[1], C1))
return nullptr;
unsigned BitWidth = Ty->getScalarSizeInBits();
switch (IntrinsicID) {
default: break;
case Intrinsic::smax:
if (!C0 && !C1)
return UndefValue::get(Ty);
if (!C0 || !C1)
return ConstantInt::get(Ty, APInt::getSignedMaxValue(BitWidth));
return ConstantInt::get(Ty, C0->sgt(*C1) ? *C0 : *C1);
case Intrinsic::smin:
if (!C0 && !C1)
return UndefValue::get(Ty);
if (!C0 || !C1)
return ConstantInt::get(Ty, APInt::getSignedMinValue(BitWidth));
return ConstantInt::get(Ty, C0->slt(*C1) ? *C0 : *C1);
case Intrinsic::umax:
if (!C0 && !C1)
return UndefValue::get(Ty);
if (!C0 || !C1)
return ConstantInt::get(Ty, APInt::getMaxValue(BitWidth));
return ConstantInt::get(Ty, C0->ugt(*C1) ? *C0 : *C1);
case Intrinsic::umin:
if (!C0 && !C1)
return UndefValue::get(Ty);
if (!C0 || !C1)
return ConstantInt::get(Ty, APInt::getMinValue(BitWidth));
return ConstantInt::get(Ty, C0->ult(*C1) ? *C0 : *C1);
case Intrinsic::usub_with_overflow:
case Intrinsic::ssub_with_overflow:
// X - undef -> { 0, false }
// undef - X -> { 0, false }
if (!C0 || !C1)
return Constant::getNullValue(Ty);
LLVM_FALLTHROUGH;
case Intrinsic::uadd_with_overflow:
case Intrinsic::sadd_with_overflow:
// X + undef -> { -1, false }
// undef + x -> { -1, false }
if (!C0 || !C1) {
return ConstantStruct::get(
cast<StructType>(Ty),
{Constant::getAllOnesValue(Ty->getStructElementType(0)),
Constant::getNullValue(Ty->getStructElementType(1))});
}
LLVM_FALLTHROUGH;
case Intrinsic::smul_with_overflow:
case Intrinsic::umul_with_overflow: {
// undef * X -> { 0, false }
// X * undef -> { 0, false }
if (!C0 || !C1)
return Constant::getNullValue(Ty);
APInt Res;
bool Overflow;
switch (IntrinsicID) {
default: llvm_unreachable("Invalid case");
case Intrinsic::sadd_with_overflow:
Res = C0->sadd_ov(*C1, Overflow);
break;
case Intrinsic::uadd_with_overflow:
Res = C0->uadd_ov(*C1, Overflow);
break;
case Intrinsic::ssub_with_overflow:
Res = C0->ssub_ov(*C1, Overflow);
break;
case Intrinsic::usub_with_overflow:
Res = C0->usub_ov(*C1, Overflow);
break;
case Intrinsic::smul_with_overflow:
Res = C0->smul_ov(*C1, Overflow);
break;
case Intrinsic::umul_with_overflow:
Res = C0->umul_ov(*C1, Overflow);
break;
}
Constant *Ops[] = {
ConstantInt::get(Ty->getContext(), Res),
ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow)
};
return ConstantStruct::get(cast<StructType>(Ty), Ops);
}
case Intrinsic::uadd_sat:
case Intrinsic::sadd_sat:
if (!C0 && !C1)
return UndefValue::get(Ty);
if (!C0 || !C1)
return Constant::getAllOnesValue(Ty);
if (IntrinsicID == Intrinsic::uadd_sat)
return ConstantInt::get(Ty, C0->uadd_sat(*C1));
else
return ConstantInt::get(Ty, C0->sadd_sat(*C1));
case Intrinsic::usub_sat:
case Intrinsic::ssub_sat:
if (!C0 && !C1)
return UndefValue::get(Ty);
if (!C0 || !C1)
return Constant::getNullValue(Ty);
if (IntrinsicID == Intrinsic::usub_sat)
return ConstantInt::get(Ty, C0->usub_sat(*C1));
else
return ConstantInt::get(Ty, C0->ssub_sat(*C1));
case Intrinsic::cttz:
case Intrinsic::ctlz:
assert(C1 && "Must be constant int");
// cttz(0, 1) and ctlz(0, 1) are undef.
if (C1->isOneValue() && (!C0 || C0->isNullValue()))
return UndefValue::get(Ty);
if (!C0)
return Constant::getNullValue(Ty);
if (IntrinsicID == Intrinsic::cttz)
return ConstantInt::get(Ty, C0->countTrailingZeros());
else
return ConstantInt::get(Ty, C0->countLeadingZeros());
case Intrinsic::abs:
// Undef or minimum val operand with poison min --> undef
assert(C1 && "Must be constant int");
if (C1->isOneValue() && (!C0 || C0->isMinSignedValue()))
return UndefValue::get(Ty);
// Undef operand with no poison min --> 0 (sign bit must be clear)
if (C1->isNullValue() && !C0)
return Constant::getNullValue(Ty);
return ConstantInt::get(Ty, C0->abs());
}
return nullptr;
}
// Support ConstantVector in case we have an Undef in the top.
if ((isa<ConstantVector>(Operands[0]) ||
isa<ConstantDataVector>(Operands[0])) &&
// Check for default rounding mode.
// FIXME: Support other rounding modes?
isa<ConstantInt>(Operands[1]) &&
cast<ConstantInt>(Operands[1])->getValue() == 4) {
auto *Op = cast<Constant>(Operands[0]);
switch (IntrinsicID) {
default: break;
case Intrinsic::x86_avx512_vcvtss2si32:
case Intrinsic::x86_avx512_vcvtss2si64:
case Intrinsic::x86_avx512_vcvtsd2si32:
case Intrinsic::x86_avx512_vcvtsd2si64:
if (ConstantFP *FPOp =
dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
/*roundTowardZero=*/false, Ty,
/*IsSigned*/true);
break;
case Intrinsic::x86_avx512_vcvtss2usi32:
case Intrinsic::x86_avx512_vcvtss2usi64:
case Intrinsic::x86_avx512_vcvtsd2usi32:
case Intrinsic::x86_avx512_vcvtsd2usi64:
if (ConstantFP *FPOp =
dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
/*roundTowardZero=*/false, Ty,
/*IsSigned*/false);
break;
case Intrinsic::x86_avx512_cvttss2si:
case Intrinsic::x86_avx512_cvttss2si64:
case Intrinsic::x86_avx512_cvttsd2si:
case Intrinsic::x86_avx512_cvttsd2si64:
if (ConstantFP *FPOp =
dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
/*roundTowardZero=*/true, Ty,
/*IsSigned*/true);
break;
case Intrinsic::x86_avx512_cvttss2usi:
case Intrinsic::x86_avx512_cvttss2usi64:
case Intrinsic::x86_avx512_cvttsd2usi:
case Intrinsic::x86_avx512_cvttsd2usi64:
if (ConstantFP *FPOp =
dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
/*roundTowardZero=*/true, Ty,
/*IsSigned*/false);
break;
}
}
return nullptr;
}
static APFloat ConstantFoldAMDGCNCubeIntrinsic(Intrinsic::ID IntrinsicID,
const APFloat &S0,
const APFloat &S1,
const APFloat &S2) {
unsigned ID;
const fltSemantics &Sem = S0.getSemantics();
APFloat MA(Sem), SC(Sem), TC(Sem);
if (abs(S2) >= abs(S0) && abs(S2) >= abs(S1)) {
if (S2.isNegative() && S2.isNonZero() && !S2.isNaN()) {
// S2 < 0
ID = 5;
SC = -S0;
} else {
ID = 4;
SC = S0;
}
MA = S2;
TC = -S1;
} else if (abs(S1) >= abs(S0)) {
if (S1.isNegative() && S1.isNonZero() && !S1.isNaN()) {
// S1 < 0
ID = 3;
TC = -S2;
} else {
ID = 2;
TC = S2;
}
MA = S1;
SC = S0;
} else {
if (S0.isNegative() && S0.isNonZero() && !S0.isNaN()) {
// S0 < 0
ID = 1;
SC = S2;
} else {
ID = 0;
SC = -S2;
}
MA = S0;
TC = -S1;
}
switch (IntrinsicID) {
default:
llvm_unreachable("unhandled amdgcn cube intrinsic");
case Intrinsic::amdgcn_cubeid:
return APFloat(Sem, ID);
case Intrinsic::amdgcn_cubema:
return MA + MA;
case Intrinsic::amdgcn_cubesc:
return SC;
case Intrinsic::amdgcn_cubetc:
return TC;
}
}
static Constant *ConstantFoldAMDGCNPermIntrinsic(ArrayRef<Constant *> Operands,
Type *Ty) {
const APInt *C0, *C1, *C2;
if (!getConstIntOrUndef(Operands[0], C0) ||
!getConstIntOrUndef(Operands[1], C1) ||
!getConstIntOrUndef(Operands[2], C2))
return nullptr;
if (!C2)
return UndefValue::get(Ty);
APInt Val(32, 0);
unsigned NumUndefBytes = 0;
for (unsigned I = 0; I < 32; I += 8) {
unsigned Sel = C2->extractBitsAsZExtValue(8, I);
unsigned B = 0;
if (Sel >= 13)
B = 0xff;
else if (Sel == 12)
B = 0x00;
else {
const APInt *Src = ((Sel & 10) == 10 || (Sel & 12) == 4) ? C0 : C1;
if (!Src)
++NumUndefBytes;
else if (Sel < 8)
B = Src->extractBitsAsZExtValue(8, (Sel & 3) * 8);
else
B = Src->extractBitsAsZExtValue(1, (Sel & 1) ? 31 : 15) * 0xff;
}
Val.insertBits(B, I, 8);
}
if (NumUndefBytes == 4)
return UndefValue::get(Ty);
return ConstantInt::get(Ty, Val);
}
static Constant *ConstantFoldScalarCall3(StringRef Name,
Intrinsic::ID IntrinsicID,
Type *Ty,
ArrayRef<Constant *> Operands,
const TargetLibraryInfo *TLI,
const CallBase *Call) {
assert(Operands.size() == 3 && "Wrong number of operands.");
if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) {
const APFloat &C1 = Op1->getValueAPF();
const APFloat &C2 = Op2->getValueAPF();
const APFloat &C3 = Op3->getValueAPF();
switch (IntrinsicID) {
default: break;
case Intrinsic::amdgcn_fma_legacy: {
// The legacy behaviour is that multiplying +/- 0.0 by anything, even
// NaN or infinity, gives +0.0.
if (C1.isZero() || C2.isZero()) {
// It's tempting to just return C3 here, but that would give the
// wrong result if C3 was -0.0.
return ConstantFP::get(Ty->getContext(), APFloat(0.0f) + C3);
}
LLVM_FALLTHROUGH;
}
case Intrinsic::fma:
case Intrinsic::fmuladd: {
APFloat V = C1;
V.fusedMultiplyAdd(C2, C3, APFloat::rmNearestTiesToEven);
return ConstantFP::get(Ty->getContext(), V);
}
case Intrinsic::amdgcn_cubeid:
case Intrinsic::amdgcn_cubema:
case Intrinsic::amdgcn_cubesc:
case Intrinsic::amdgcn_cubetc: {
APFloat V = ConstantFoldAMDGCNCubeIntrinsic(IntrinsicID, C1, C2, C3);
return ConstantFP::get(Ty->getContext(), V);
}
}
}
}
}
if (IntrinsicID == Intrinsic::smul_fix ||
IntrinsicID == Intrinsic::smul_fix_sat) {
// poison * C -> poison
// C * poison -> poison
if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
return PoisonValue::get(Ty);
const APInt *C0, *C1;
if (!getConstIntOrUndef(Operands[0], C0) ||
!getConstIntOrUndef(Operands[1], C1))
return nullptr;
// undef * C -> 0
// C * undef -> 0
if (!C0 || !C1)
return Constant::getNullValue(Ty);
// This code performs rounding towards negative infinity in case the result
// cannot be represented exactly for the given scale. Targets that do care
// about rounding should use a target hook for specifying how rounding
// should be done, and provide their own folding to be consistent with
// rounding. This is the same approach as used by
// DAGTypeLegalizer::ExpandIntRes_MULFIX.
unsigned Scale = cast<ConstantInt>(Operands[2])->getZExtValue();
unsigned Width = C0->getBitWidth();
assert(Scale < Width && "Illegal scale.");
unsigned ExtendedWidth = Width * 2;
APInt Product = (C0->sextOrSelf(ExtendedWidth) *
C1->sextOrSelf(ExtendedWidth)).ashr(Scale);
if (IntrinsicID == Intrinsic::smul_fix_sat) {
APInt Max = APInt::getSignedMaxValue(Width).sextOrSelf(ExtendedWidth);
APInt Min = APInt::getSignedMinValue(Width).sextOrSelf(ExtendedWidth);
Product = APIntOps::smin(Product, Max);
Product = APIntOps::smax(Product, Min);
}
return ConstantInt::get(Ty->getContext(), Product.sextOrTrunc(Width));
}
if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) {
const APInt *C0, *C1, *C2;
if (!getConstIntOrUndef(Operands[0], C0) ||
!getConstIntOrUndef(Operands[1], C1) ||
!getConstIntOrUndef(Operands[2], C2))
return nullptr;
bool IsRight = IntrinsicID == Intrinsic::fshr;
if (!C2)
return Operands[IsRight ? 1 : 0];
if (!C0 && !C1)
return UndefValue::get(Ty);
// The shift amount is interpreted as modulo the bitwidth. If the shift
// amount is effectively 0, avoid UB due to oversized inverse shift below.
unsigned BitWidth = C2->getBitWidth();
unsigned ShAmt = C2->urem(BitWidth);
if (!ShAmt)
return Operands[IsRight ? 1 : 0];
// (C0 << ShlAmt) | (C1 >> LshrAmt)
unsigned LshrAmt = IsRight ? ShAmt : BitWidth - ShAmt;
unsigned ShlAmt = !IsRight ? ShAmt : BitWidth - ShAmt;
if (!C0)
return ConstantInt::get(Ty, C1->lshr(LshrAmt));
if (!C1)
return ConstantInt::get(Ty, C0->shl(ShlAmt));
return ConstantInt::get(Ty, C0->shl(ShlAmt) | C1->lshr(LshrAmt));
}
if (IntrinsicID == Intrinsic::amdgcn_perm)
return ConstantFoldAMDGCNPermIntrinsic(Operands, Ty);
return nullptr;
}
static Constant *ConstantFoldScalarCall(StringRef Name,
Intrinsic::ID IntrinsicID,
Type *Ty,
ArrayRef<Constant *> Operands,
const TargetLibraryInfo *TLI,
const CallBase *Call) {
if (Operands.size() == 1)
return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI, Call);
if (Operands.size() == 2)
return ConstantFoldScalarCall2(Name, IntrinsicID, Ty, Operands, TLI, Call);
if (Operands.size() == 3)
return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI, Call);
return nullptr;
}
static Constant *ConstantFoldFixedVectorCall(
StringRef Name, Intrinsic::ID IntrinsicID, FixedVectorType *FVTy,
ArrayRef<Constant *> Operands, const DataLayout &DL,
const TargetLibraryInfo *TLI, const CallBase *Call) {
SmallVector<Constant *, 4> Result(FVTy->getNumElements());
SmallVector<Constant *, 4> Lane(Operands.size());
Type *Ty = FVTy->getElementType();
switch (IntrinsicID) {
case Intrinsic::masked_load: {
auto *SrcPtr = Operands[0];
auto *Mask = Operands[2];
auto *Passthru = Operands[3];
Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, FVTy, DL);
SmallVector<Constant *, 32> NewElements;
for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
auto *MaskElt = Mask->getAggregateElement(I);
if (!MaskElt)
break;
auto *PassthruElt = Passthru->getAggregateElement(I);
auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr;
if (isa<UndefValue>(MaskElt)) {
if (PassthruElt)
NewElements.push_back(PassthruElt);
else if (VecElt)
NewElements.push_back(VecElt);
else
return nullptr;
}
if (MaskElt->isNullValue()) {
if (!PassthruElt)
return nullptr;
NewElements.push_back(PassthruElt);
} else if (MaskElt->isOneValue()) {
if (!VecElt)
return nullptr;
NewElements.push_back(VecElt);
} else {
return nullptr;
}
}
if (NewElements.size() != FVTy->getNumElements())
return nullptr;
return ConstantVector::get(NewElements);
}
case Intrinsic::arm_mve_vctp8:
case Intrinsic::arm_mve_vctp16:
case Intrinsic::arm_mve_vctp32:
case Intrinsic::arm_mve_vctp64: {
if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
unsigned Lanes = FVTy->getNumElements();
uint64_t Limit = Op->getZExtValue();
// vctp64 are currently modelled as returning a v4i1, not a v2i1. Make
// sure we get the limit right in that case and set all relevant lanes.
if (IntrinsicID == Intrinsic::arm_mve_vctp64)
Limit *= 2;
SmallVector<Constant *, 16> NCs;
for (unsigned i = 0; i < Lanes; i++) {
if (i < Limit)
NCs.push_back(ConstantInt::getTrue(Ty));
else
NCs.push_back(ConstantInt::getFalse(Ty));
}
return ConstantVector::get(NCs);
}
break;
}
case Intrinsic::get_active_lane_mask: {
auto *Op0 = dyn_cast<ConstantInt>(Operands[0]);
auto *Op1 = dyn_cast<ConstantInt>(Operands[1]);
if (Op0 && Op1) {
unsigned Lanes = FVTy->getNumElements();
uint64_t Base = Op0->getZExtValue();
uint64_t Limit = Op1->getZExtValue();
SmallVector<Constant *, 16> NCs;
for (unsigned i = 0; i < Lanes; i++) {
if (Base + i < Limit)
NCs.push_back(ConstantInt::getTrue(Ty));
else
NCs.push_back(ConstantInt::getFalse(Ty));
}
return ConstantVector::get(NCs);
}
break;
}
default:
break;
}
for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
// Gather a column of constants.
for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) {
// Some intrinsics use a scalar type for certain arguments.
if (hasVectorInstrinsicScalarOpd(IntrinsicID, J)) {
Lane[J] = Operands[J];
continue;
}
Constant *Agg = Operands[J]->getAggregateElement(I);
if (!Agg)
return nullptr;
Lane[J] = Agg;
}
// Use the regular scalar folding to simplify this column.
Constant *Folded =
ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI, Call);
if (!Folded)
return nullptr;
Result[I] = Folded;
}
return ConstantVector::get(Result);
}
static Constant *ConstantFoldScalableVectorCall(
StringRef Name, Intrinsic::ID IntrinsicID, ScalableVectorType *SVTy,
ArrayRef<Constant *> Operands, const DataLayout &DL,
const TargetLibraryInfo *TLI, const CallBase *Call) {
switch (IntrinsicID) {
case Intrinsic::aarch64_sve_convert_from_svbool: {
auto *Src = dyn_cast<Constant>(Operands[0]);
if (!Src || !Src->isNullValue())
break;
return ConstantInt::getFalse(SVTy);
}
default:
break;
}
return nullptr;
}
} // end anonymous namespace
Constant *llvm::ConstantFoldCall(const CallBase *Call, Function *F,
ArrayRef<Constant *> Operands,
const TargetLibraryInfo *TLI) {
if (Call->isNoBuiltin())
return nullptr;
if (!F->hasName())
return nullptr;
StringRef Name = F->getName();
Type *Ty = F->getReturnType();
if (auto *FVTy = dyn_cast<FixedVectorType>(Ty))
return ConstantFoldFixedVectorCall(
Name, F->getIntrinsicID(), FVTy, Operands,
F->getParent()->getDataLayout(), TLI, Call);
if (auto *SVTy = dyn_cast<ScalableVectorType>(Ty))
return ConstantFoldScalableVectorCall(
Name, F->getIntrinsicID(), SVTy, Operands,
F->getParent()->getDataLayout(), TLI, Call);
return ConstantFoldScalarCall(Name, F->getIntrinsicID(), Ty, Operands, TLI,
Call);
}
bool llvm::isMathLibCallNoop(const CallBase *Call,
const TargetLibraryInfo *TLI) {
// FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap
// (and to some extent ConstantFoldScalarCall).
if (Call->isNoBuiltin() || Call->isStrictFP())
return false;
Function *F = Call->getCalledFunction();
if (!F)
return false;
LibFunc Func;
if (!TLI || !TLI->getLibFunc(*F, Func))
return false;
if (Call->getNumArgOperands() == 1) {
if (ConstantFP *OpC = dyn_cast<ConstantFP>(Call->getArgOperand(0))) {
const APFloat &Op = OpC->getValueAPF();
switch (Func) {
case LibFunc_logl:
case LibFunc_log:
case LibFunc_logf:
case LibFunc_log2l:
case LibFunc_log2:
case LibFunc_log2f:
case LibFunc_log10l:
case LibFunc_log10:
case LibFunc_log10f:
return Op.isNaN() || (!Op.isZero() && !Op.isNegative());
case LibFunc_expl:
case LibFunc_exp:
case LibFunc_expf:
// FIXME: These boundaries are slightly conservative.
if (OpC->getType()->isDoubleTy())
return !(Op < APFloat(-745.0) || Op > APFloat(709.0));
if (OpC->getType()->isFloatTy())
return !(Op < APFloat(-103.0f) || Op > APFloat(88.0f));
break;
case LibFunc_exp2l:
case LibFunc_exp2:
case LibFunc_exp2f:
// FIXME: These boundaries are slightly conservative.
if (OpC->getType()->isDoubleTy())
return !(Op < APFloat(-1074.0) || Op > APFloat(1023.0));
if (OpC->getType()->isFloatTy())
return !(Op < APFloat(-149.0f) || Op > APFloat(127.0f));
break;
case LibFunc_sinl:
case LibFunc_sin:
case LibFunc_sinf:
case LibFunc_cosl:
case LibFunc_cos:
case LibFunc_cosf:
return !Op.isInfinity();
case LibFunc_tanl:
case LibFunc_tan:
case LibFunc_tanf: {
// FIXME: Stop using the host math library.
// FIXME: The computation isn't done in the right precision.
Type *Ty = OpC->getType();
if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy())
return ConstantFoldFP(tan, OpC->getValueAPF(), Ty) != nullptr;
break;
}
case LibFunc_asinl:
case LibFunc_asin:
case LibFunc_asinf:
case LibFunc_acosl:
case LibFunc_acos:
case LibFunc_acosf:
return !(Op < APFloat(Op.getSemantics(), "-1") ||
Op > APFloat(Op.getSemantics(), "1"));
case LibFunc_sinh:
case LibFunc_cosh:
case LibFunc_sinhf:
case LibFunc_coshf:
case LibFunc_sinhl:
case LibFunc_coshl:
// FIXME: These boundaries are slightly conservative.
if (OpC->getType()->isDoubleTy())
return !(Op < APFloat(-710.0) || Op > APFloat(710.0));
if (OpC->getType()->isFloatTy())
return !(Op < APFloat(-89.0f) || Op > APFloat(89.0f));
break;
case LibFunc_sqrtl:
case LibFunc_sqrt:
case LibFunc_sqrtf:
return Op.isNaN() || Op.isZero() || !Op.isNegative();
// FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p,
// maybe others?
default:
break;
}
}
}
if (Call->getNumArgOperands() == 2) {
ConstantFP *Op0C = dyn_cast<ConstantFP>(Call->getArgOperand(0));
ConstantFP *Op1C = dyn_cast<ConstantFP>(Call->getArgOperand(1));
if (Op0C && Op1C) {
const APFloat &Op0 = Op0C->getValueAPF();
const APFloat &Op1 = Op1C->getValueAPF();
switch (Func) {
case LibFunc_powl:
case LibFunc_pow:
case LibFunc_powf: {
// FIXME: Stop using the host math library.
// FIXME: The computation isn't done in the right precision.
Type *Ty = Op0C->getType();
if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) {
if (Ty == Op1C->getType())
return ConstantFoldBinaryFP(pow, Op0, Op1, Ty) != nullptr;
}
break;
}
case LibFunc_fmodl:
case LibFunc_fmod:
case LibFunc_fmodf:
case LibFunc_remainderl:
case LibFunc_remainder:
case LibFunc_remainderf:
return Op0.isNaN() || Op1.isNaN() ||
(!Op0.isInfinity() && !Op1.isZero());
default:
break;
}
}
}
return false;
}
void TargetFolder::anchor() {}