1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-19 19:12:56 +02:00
llvm-mirror/lib/Target/AMDGPU/EvergreenInstructions.td
Chandler Carruth ae65e281f3 Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

llvm-svn: 351636
2019-01-19 08:50:56 +00:00

772 lines
28 KiB
TableGen

//===-- EvergreenInstructions.td - EG Instruction defs ----*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// TableGen definitions for instructions which are:
// - Available to Evergreen and newer VLIW4/VLIW5 GPUs
// - Available only on Evergreen family GPUs.
//
//===----------------------------------------------------------------------===//
def isEG : Predicate<
"Subtarget->getGeneration() >= AMDGPUSubtarget::EVERGREEN && "
"!Subtarget->hasCaymanISA()"
>;
def isEGorCayman : Predicate<
"Subtarget->getGeneration() == AMDGPUSubtarget::EVERGREEN ||"
"Subtarget->getGeneration() == AMDGPUSubtarget::NORTHERN_ISLANDS"
>;
class EGPat<dag pattern, dag result> : AMDGPUPat<pattern, result> {
let SubtargetPredicate = isEG;
}
class EGOrCaymanPat<dag pattern, dag result> : AMDGPUPat<pattern, result> {
let SubtargetPredicate = isEGorCayman;
}
//===----------------------------------------------------------------------===//
// Evergreen / Cayman store instructions
//===----------------------------------------------------------------------===//
let SubtargetPredicate = isEGorCayman in {
class CF_MEM_RAT_CACHELESS <bits<6> rat_inst, bits<4> rat_id, bits<4> mask, dag ins,
string name, list<dag> pattern>
: EG_CF_RAT <0x57, rat_inst, rat_id, mask, (outs), ins,
"MEM_RAT_CACHELESS "#name, pattern>;
class CF_MEM_RAT <bits<6> rat_inst, bits<4> rat_id, bits<4> mask, dag ins,
dag outs, string name, list<dag> pattern>
: EG_CF_RAT <0x56, rat_inst, rat_id, mask, outs, ins,
"MEM_RAT "#name, pattern>;
class CF_MEM_RAT_STORE_TYPED<bits<1> has_eop>
: CF_MEM_RAT <0x1, ?, 0xf, (ins R600_Reg128:$rw_gpr, R600_Reg128:$index_gpr,
i32imm:$rat_id, InstFlag:$eop), (outs),
"STORE_TYPED RAT($rat_id) $rw_gpr, $index_gpr"
#!if(has_eop, ", $eop", ""),
[(int_r600_rat_store_typed R600_Reg128:$rw_gpr,
R600_Reg128:$index_gpr,
(i32 imm:$rat_id))]>;
def RAT_MSKOR : CF_MEM_RAT <0x11, 0, 0xf,
(ins R600_Reg128:$rw_gpr, R600_TReg32_X:$index_gpr), (outs),
"MSKOR $rw_gpr.XW, $index_gpr",
[(mskor_global v4i32:$rw_gpr, i32:$index_gpr)]
> {
let eop = 0;
}
multiclass RAT_ATOMIC<bits<6> op_ret, bits<6> op_noret, string name> {
let Constraints = "$rw_gpr = $out_gpr", eop = 0, mayStore = 1 in {
def _RTN: CF_MEM_RAT <op_ret, 0, 0xf,
(ins R600_Reg128:$rw_gpr, R600_TReg32_X:$index_gpr),
(outs R600_Reg128:$out_gpr),
name ## "_RTN" ## " $rw_gpr, $index_gpr", [] >;
def _NORET: CF_MEM_RAT <op_noret, 0, 0xf,
(ins R600_Reg128:$rw_gpr, R600_TReg32_X:$index_gpr),
(outs R600_Reg128:$out_gpr),
name ## " $rw_gpr, $index_gpr", [] >;
}
}
// Swap no-ret is just store. Raw store to cached target
// can only store on dword, which exactly matches swap_no_ret.
defm RAT_ATOMIC_XCHG_INT : RAT_ATOMIC<1, 34, "ATOMIC_XCHG_INT">;
defm RAT_ATOMIC_CMPXCHG_INT : RAT_ATOMIC<4, 36, "ATOMIC_CMPXCHG_INT">;
defm RAT_ATOMIC_ADD : RAT_ATOMIC<7, 39, "ATOMIC_ADD">;
defm RAT_ATOMIC_SUB : RAT_ATOMIC<8, 40, "ATOMIC_SUB">;
defm RAT_ATOMIC_RSUB : RAT_ATOMIC<9, 41, "ATOMIC_RSUB">;
defm RAT_ATOMIC_MIN_INT : RAT_ATOMIC<10, 42, "ATOMIC_MIN_INT">;
defm RAT_ATOMIC_MIN_UINT : RAT_ATOMIC<11, 43, "ATOMIC_MIN_UINT">;
defm RAT_ATOMIC_MAX_INT : RAT_ATOMIC<12, 44, "ATOMIC_MAX_INT">;
defm RAT_ATOMIC_MAX_UINT : RAT_ATOMIC<13, 45, "ATOMIC_MAX_UINT">;
defm RAT_ATOMIC_AND : RAT_ATOMIC<14, 46, "ATOMIC_AND">;
defm RAT_ATOMIC_OR : RAT_ATOMIC<15, 47, "ATOMIC_OR">;
defm RAT_ATOMIC_XOR : RAT_ATOMIC<16, 48, "ATOMIC_XOR">;
defm RAT_ATOMIC_INC_UINT : RAT_ATOMIC<18, 50, "ATOMIC_INC_UINT">;
defm RAT_ATOMIC_DEC_UINT : RAT_ATOMIC<19, 51, "ATOMIC_DEC_UINT">;
} // End SubtargetPredicate = isEGorCayman
//===----------------------------------------------------------------------===//
// Evergreen Only instructions
//===----------------------------------------------------------------------===//
let SubtargetPredicate = isEG in {
def RECIP_IEEE_eg : RECIP_IEEE_Common<0x86>;
defm DIV_eg : DIV_Common<RECIP_IEEE_eg>;
def MULLO_INT_eg : MULLO_INT_Common<0x8F>;
def MULHI_INT_eg : MULHI_INT_Common<0x90>;
def MULLO_UINT_eg : MULLO_UINT_Common<0x91>;
def MULHI_UINT_eg : MULHI_UINT_Common<0x92>;
def MULHI_UINT24_eg : MULHI_UINT24_Common<0xb2>;
def RECIP_UINT_eg : RECIP_UINT_Common<0x94>;
def RECIPSQRT_CLAMPED_eg : RECIPSQRT_CLAMPED_Common<0x87>;
def EXP_IEEE_eg : EXP_IEEE_Common<0x81>;
def LOG_IEEE_eg : LOG_IEEE_Common<0x83>;
def RECIP_CLAMPED_eg : RECIP_CLAMPED_Common<0x84>;
def RECIPSQRT_IEEE_eg : RECIPSQRT_IEEE_Common<0x89>;
def : RsqPat<RECIPSQRT_IEEE_eg, f32>;
def SIN_eg : SIN_Common<0x8D>;
def COS_eg : COS_Common<0x8E>;
def : POW_Common <LOG_IEEE_eg, EXP_IEEE_eg, MUL>;
def : EGPat<(fsqrt f32:$src), (MUL $src, (RECIPSQRT_CLAMPED_eg $src))>;
} // End SubtargetPredicate = isEG
//===----------------------------------------------------------------------===//
// Memory read/write instructions
//===----------------------------------------------------------------------===//
let usesCustomInserter = 1 in {
// 32-bit store
def RAT_WRITE_CACHELESS_32_eg : CF_MEM_RAT_CACHELESS <0x2, 0, 0x1,
(ins R600_TReg32_X:$rw_gpr, R600_TReg32_X:$index_gpr, InstFlag:$eop),
"STORE_RAW $rw_gpr, $index_gpr, $eop",
[(store_global i32:$rw_gpr, i32:$index_gpr)]
>;
// 64-bit store
def RAT_WRITE_CACHELESS_64_eg : CF_MEM_RAT_CACHELESS <0x2, 0, 0x3,
(ins R600_Reg64:$rw_gpr, R600_TReg32_X:$index_gpr, InstFlag:$eop),
"STORE_RAW $rw_gpr.XY, $index_gpr, $eop",
[(store_global v2i32:$rw_gpr, i32:$index_gpr)]
>;
//128-bit store
def RAT_WRITE_CACHELESS_128_eg : CF_MEM_RAT_CACHELESS <0x2, 0, 0xf,
(ins R600_Reg128:$rw_gpr, R600_TReg32_X:$index_gpr, InstFlag:$eop),
"STORE_RAW $rw_gpr.XYZW, $index_gpr, $eop",
[(store_global v4i32:$rw_gpr, i32:$index_gpr)]
>;
def RAT_STORE_TYPED_eg: CF_MEM_RAT_STORE_TYPED<1>;
} // End usesCustomInserter = 1
class VTX_READ_eg <string name, dag outs>
: VTX_WORD0_eg, VTX_READ<name, outs, []> {
// Static fields
let VC_INST = 0;
let FETCH_TYPE = 2;
let FETCH_WHOLE_QUAD = 0;
let SRC_REL = 0;
// XXX: We can infer this field based on the SRC_GPR. This would allow us
// to store vertex addresses in any channel, not just X.
let SRC_SEL_X = 0;
let Inst{31-0} = Word0;
}
def VTX_READ_8_eg
: VTX_READ_eg <"VTX_READ_8 $dst_gpr, $src_gpr",
(outs R600_TReg32_X:$dst_gpr)> {
let MEGA_FETCH_COUNT = 1;
let DST_SEL_X = 0;
let DST_SEL_Y = 7; // Masked
let DST_SEL_Z = 7; // Masked
let DST_SEL_W = 7; // Masked
let DATA_FORMAT = 1; // FMT_8
}
def VTX_READ_16_eg
: VTX_READ_eg <"VTX_READ_16 $dst_gpr, $src_gpr",
(outs R600_TReg32_X:$dst_gpr)> {
let MEGA_FETCH_COUNT = 2;
let DST_SEL_X = 0;
let DST_SEL_Y = 7; // Masked
let DST_SEL_Z = 7; // Masked
let DST_SEL_W = 7; // Masked
let DATA_FORMAT = 5; // FMT_16
}
def VTX_READ_32_eg
: VTX_READ_eg <"VTX_READ_32 $dst_gpr, $src_gpr",
(outs R600_TReg32_X:$dst_gpr)> {
let MEGA_FETCH_COUNT = 4;
let DST_SEL_X = 0;
let DST_SEL_Y = 7; // Masked
let DST_SEL_Z = 7; // Masked
let DST_SEL_W = 7; // Masked
let DATA_FORMAT = 0xD; // COLOR_32
// This is not really necessary, but there were some GPU hangs that appeared
// to be caused by ALU instructions in the next instruction group that wrote
// to the $src_gpr registers of the VTX_READ.
// e.g.
// %t3_x = VTX_READ_PARAM_32_eg killed %t2_x, 24
// %t2_x = MOV %zero
//Adding this constraint prevents this from happening.
let Constraints = "$src_gpr.ptr = $dst_gpr";
}
def VTX_READ_64_eg
: VTX_READ_eg <"VTX_READ_64 $dst_gpr.XY, $src_gpr",
(outs R600_Reg64:$dst_gpr)> {
let MEGA_FETCH_COUNT = 8;
let DST_SEL_X = 0;
let DST_SEL_Y = 1;
let DST_SEL_Z = 7;
let DST_SEL_W = 7;
let DATA_FORMAT = 0x1D; // COLOR_32_32
}
def VTX_READ_128_eg
: VTX_READ_eg <"VTX_READ_128 $dst_gpr.XYZW, $src_gpr",
(outs R600_Reg128:$dst_gpr)> {
let MEGA_FETCH_COUNT = 16;
let DST_SEL_X = 0;
let DST_SEL_Y = 1;
let DST_SEL_Z = 2;
let DST_SEL_W = 3;
let DATA_FORMAT = 0x22; // COLOR_32_32_32_32
// XXX: Need to force VTX_READ_128 instructions to write to the same register
// that holds its buffer address to avoid potential hangs. We can't use
// the same constraint as VTX_READ_32_eg, because the $src_gpr.ptr and $dst
// registers are different sizes.
}
//===----------------------------------------------------------------------===//
// VTX Read from parameter memory space
//===----------------------------------------------------------------------===//
def : EGPat<(i32:$dst_gpr (vtx_id3_az_extloadi8 ADDRVTX_READ:$src_gpr)),
(VTX_READ_8_eg MEMxi:$src_gpr, 3)>;
def : EGPat<(i32:$dst_gpr (vtx_id3_az_extloadi16 ADDRVTX_READ:$src_gpr)),
(VTX_READ_16_eg MEMxi:$src_gpr, 3)>;
def : EGPat<(i32:$dst_gpr (vtx_id3_load ADDRVTX_READ:$src_gpr)),
(VTX_READ_32_eg MEMxi:$src_gpr, 3)>;
def : EGPat<(v2i32:$dst_gpr (vtx_id3_load ADDRVTX_READ:$src_gpr)),
(VTX_READ_64_eg MEMxi:$src_gpr, 3)>;
def : EGPat<(v4i32:$dst_gpr (vtx_id3_load ADDRVTX_READ:$src_gpr)),
(VTX_READ_128_eg MEMxi:$src_gpr, 3)>;
//===----------------------------------------------------------------------===//
// VTX Read from constant memory space
//===----------------------------------------------------------------------===//
def : EGPat<(i32:$dst_gpr (vtx_id2_az_extloadi8 ADDRVTX_READ:$src_gpr)),
(VTX_READ_8_eg MEMxi:$src_gpr, 2)>;
def : EGPat<(i32:$dst_gpr (vtx_id2_az_extloadi16 ADDRVTX_READ:$src_gpr)),
(VTX_READ_16_eg MEMxi:$src_gpr, 2)>;
def : EGPat<(i32:$dst_gpr (vtx_id2_load ADDRVTX_READ:$src_gpr)),
(VTX_READ_32_eg MEMxi:$src_gpr, 2)>;
def : EGPat<(v2i32:$dst_gpr (vtx_id2_load ADDRVTX_READ:$src_gpr)),
(VTX_READ_64_eg MEMxi:$src_gpr, 2)>;
def : EGPat<(v4i32:$dst_gpr (vtx_id2_load ADDRVTX_READ:$src_gpr)),
(VTX_READ_128_eg MEMxi:$src_gpr, 2)>;
//===----------------------------------------------------------------------===//
// VTX Read from global memory space
//===----------------------------------------------------------------------===//
def : EGPat<(i32:$dst_gpr (vtx_id1_az_extloadi8 ADDRVTX_READ:$src_gpr)),
(VTX_READ_8_eg MEMxi:$src_gpr, 1)>;
def : EGPat<(i32:$dst_gpr (vtx_id1_az_extloadi16 ADDRVTX_READ:$src_gpr)),
(VTX_READ_16_eg MEMxi:$src_gpr, 1)>;
def : EGPat<(i32:$dst_gpr (vtx_id1_load ADDRVTX_READ:$src_gpr)),
(VTX_READ_32_eg MEMxi:$src_gpr, 1)>;
def : EGPat<(v2i32:$dst_gpr (vtx_id1_load ADDRVTX_READ:$src_gpr)),
(VTX_READ_64_eg MEMxi:$src_gpr, 1)>;
def : EGPat<(v4i32:$dst_gpr (vtx_id1_load ADDRVTX_READ:$src_gpr)),
(VTX_READ_128_eg MEMxi:$src_gpr, 1)>;
//===----------------------------------------------------------------------===//
// Evergreen / Cayman Instructions
//===----------------------------------------------------------------------===//
let SubtargetPredicate = isEGorCayman in {
multiclass AtomicPat<Instruction inst_ret, Instruction inst_noret,
SDPatternOperator node_ret, SDPatternOperator node_noret> {
// FIXME: Add _RTN version. We need per WI scratch location to store the old value
// EXTRACT_SUBREG here is dummy, we know the node has no uses
def : EGOrCaymanPat<(i32 (node_noret i32:$ptr, i32:$data)),
(EXTRACT_SUBREG (inst_noret
(INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), $data, sub0), $ptr), sub1)>;
}
multiclass AtomicIncDecPat<Instruction inst_ret, Instruction inst_noret,
SDPatternOperator node_ret, SDPatternOperator node_noret, int C> {
// FIXME: Add _RTN version. We need per WI scratch location to store the old value
// EXTRACT_SUBREG here is dummy, we know the node has no uses
def : EGOrCaymanPat<(i32 (node_noret i32:$ptr, C)),
(EXTRACT_SUBREG (inst_noret
(INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), (MOV_IMM_I32 -1), sub0), $ptr), sub1)>;
}
// CMPSWAP is pattern is special
// EXTRACT_SUBREG here is dummy, we know the node has no uses
// FIXME: Add _RTN version. We need per WI scratch location to store the old value
def : EGOrCaymanPat<(i32 (atomic_cmp_swap_global_noret i32:$ptr, i32:$cmp, i32:$data)),
(EXTRACT_SUBREG (RAT_ATOMIC_CMPXCHG_INT_NORET
(INSERT_SUBREG
(INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), $cmp, sub3),
$data, sub0),
$ptr), sub1)>;
defm AtomicSwapPat : AtomicPat <RAT_ATOMIC_XCHG_INT_RTN,
RAT_ATOMIC_XCHG_INT_NORET,
atomic_swap_global_ret,
atomic_swap_global_noret>;
defm AtomicAddPat : AtomicPat <RAT_ATOMIC_ADD_RTN, RAT_ATOMIC_ADD_NORET,
atomic_add_global_ret, atomic_add_global_noret>;
defm AtomicSubPat : AtomicPat <RAT_ATOMIC_SUB_RTN, RAT_ATOMIC_SUB_NORET,
atomic_sub_global_ret, atomic_sub_global_noret>;
defm AtomicMinPat : AtomicPat <RAT_ATOMIC_MIN_INT_RTN,
RAT_ATOMIC_MIN_INT_NORET,
atomic_min_global_ret, atomic_min_global_noret>;
defm AtomicUMinPat : AtomicPat <RAT_ATOMIC_MIN_UINT_RTN,
RAT_ATOMIC_MIN_UINT_NORET,
atomic_umin_global_ret, atomic_umin_global_noret>;
defm AtomicMaxPat : AtomicPat <RAT_ATOMIC_MAX_INT_RTN,
RAT_ATOMIC_MAX_INT_NORET,
atomic_max_global_ret, atomic_max_global_noret>;
defm AtomicUMaxPat : AtomicPat <RAT_ATOMIC_MAX_UINT_RTN,
RAT_ATOMIC_MAX_UINT_NORET,
atomic_umax_global_ret, atomic_umax_global_noret>;
defm AtomicAndPat : AtomicPat <RAT_ATOMIC_AND_RTN, RAT_ATOMIC_AND_NORET,
atomic_and_global_ret, atomic_and_global_noret>;
defm AtomicOrPat : AtomicPat <RAT_ATOMIC_OR_RTN, RAT_ATOMIC_OR_NORET,
atomic_or_global_ret, atomic_or_global_noret>;
defm AtomicXorPat : AtomicPat <RAT_ATOMIC_XOR_RTN, RAT_ATOMIC_XOR_NORET,
atomic_xor_global_ret, atomic_xor_global_noret>;
defm AtomicIncAddPat : AtomicIncDecPat <RAT_ATOMIC_INC_UINT_RTN,
RAT_ATOMIC_INC_UINT_NORET,
atomic_add_global_ret,
atomic_add_global_noret, 1>;
defm AtomicIncSubPat : AtomicIncDecPat <RAT_ATOMIC_INC_UINT_RTN,
RAT_ATOMIC_INC_UINT_NORET,
atomic_sub_global_ret,
atomic_sub_global_noret, -1>;
defm AtomicDecAddPat : AtomicIncDecPat <RAT_ATOMIC_DEC_UINT_RTN,
RAT_ATOMIC_DEC_UINT_NORET,
atomic_add_global_ret,
atomic_add_global_noret, -1>;
defm AtomicDecSubPat : AtomicIncDecPat <RAT_ATOMIC_DEC_UINT_RTN,
RAT_ATOMIC_DEC_UINT_NORET,
atomic_sub_global_ret,
atomic_sub_global_noret, 1>;
// Should be predicated on FeatureFP64
// def FMA_64 : R600_3OP <
// 0xA, "FMA_64",
// [(set f64:$dst, (fma f64:$src0, f64:$src1, f64:$src2))]
// >;
// BFE_UINT - bit_extract, an optimization for mask and shift
// Src0 = Input
// Src1 = Offset
// Src2 = Width
//
// bit_extract = (Input << (32 - Offset - Width)) >> (32 - Width)
//
// Example Usage:
// (Offset, Width)
//
// (0, 8) = (Input << 24) >> 24 = (Input & 0xff) >> 0
// (8, 8) = (Input << 16) >> 24 = (Input & 0xffff) >> 8
// (16, 8) = (Input << 8) >> 24 = (Input & 0xffffff) >> 16
// (24, 8) = (Input << 0) >> 24 = (Input & 0xffffffff) >> 24
def BFE_UINT_eg : R600_3OP <0x4, "BFE_UINT",
[(set i32:$dst, (AMDGPUbfe_u32 i32:$src0, i32:$src1, i32:$src2))],
VecALU
>;
def BFE_INT_eg : R600_3OP <0x5, "BFE_INT",
[(set i32:$dst, (AMDGPUbfe_i32 i32:$src0, i32:$src1, i32:$src2))],
VecALU
>;
defm : BFEPattern <BFE_UINT_eg, BFE_INT_eg, MOV_IMM_I32>;
def BFI_INT_eg : R600_3OP <0x06, "BFI_INT",
[(set i32:$dst, (AMDGPUbfi i32:$src0, i32:$src1, i32:$src2))],
VecALU
>;
def : EGOrCaymanPat<(i32 (sext_inreg i32:$src, i1)),
(BFE_INT_eg i32:$src, (i32 ZERO), (i32 ONE_INT))>;
def : EGOrCaymanPat<(i32 (sext_inreg i32:$src, i8)),
(BFE_INT_eg i32:$src, (i32 ZERO), (MOV_IMM_I32 8))>;
def : EGOrCaymanPat<(i32 (sext_inreg i32:$src, i16)),
(BFE_INT_eg i32:$src, (i32 ZERO), (MOV_IMM_I32 16))>;
defm : BFIPatterns <BFI_INT_eg, MOV_IMM_I32, R600_Reg64>;
def BFM_INT_eg : R600_2OP <0xA0, "BFM_INT",
[(set i32:$dst, (AMDGPUbfm i32:$src0, i32:$src1))],
VecALU
>;
def MULADD_UINT24_eg : R600_3OP <0x10, "MULADD_UINT24",
[(set i32:$dst, (AMDGPUmad_u24 i32:$src0, i32:$src1, i32:$src2))], VecALU
>;
def : UMad24Pat<MULADD_UINT24_eg>;
def BIT_ALIGN_INT_eg : R600_3OP <0xC, "BIT_ALIGN_INT", [], VecALU>;
def : ROTRPattern <BIT_ALIGN_INT_eg>;
def MULADD_eg : MULADD_Common<0x14>;
def MULADD_IEEE_eg : MULADD_IEEE_Common<0x18>;
def FMA_eg : FMA_Common<0x7>;
def ASHR_eg : ASHR_Common<0x15>;
def LSHR_eg : LSHR_Common<0x16>;
def LSHL_eg : LSHL_Common<0x17>;
def CNDE_eg : CNDE_Common<0x19>;
def CNDGT_eg : CNDGT_Common<0x1A>;
def CNDGE_eg : CNDGE_Common<0x1B>;
def MUL_LIT_eg : MUL_LIT_Common<0x1F>;
def LOG_CLAMPED_eg : LOG_CLAMPED_Common<0x82>;
def MUL_UINT24_eg : R600_2OP <0xB5, "MUL_UINT24",
[(set i32:$dst, (AMDGPUmul_u24 i32:$src0, i32:$src1))], VecALU
>;
def DOT4_eg : DOT4_Common<0xBE>;
defm CUBE_eg : CUBE_Common<0xC0>;
def ADDC_UINT : R600_2OP_Helper <0x52, "ADDC_UINT", AMDGPUcarry>;
def SUBB_UINT : R600_2OP_Helper <0x53, "SUBB_UINT", AMDGPUborrow>;
def FLT32_TO_FLT16 : R600_1OP_Helper <0xA2, "FLT32_TO_FLT16", AMDGPUfp_to_f16, VecALU>;
def FLT16_TO_FLT32 : R600_1OP_Helper <0xA3, "FLT16_TO_FLT32", f16_to_fp, VecALU>;
def BCNT_INT : R600_1OP_Helper <0xAA, "BCNT_INT", ctpop, VecALU>;
def FFBH_UINT : R600_1OP_Helper <0xAB, "FFBH_UINT", AMDGPUffbh_u32, VecALU>;
def FFBL_INT : R600_1OP_Helper <0xAC, "FFBL_INT", AMDGPUffbl_b32, VecALU>;
let hasSideEffects = 1 in {
def MOVA_INT_eg : R600_1OP <0xCC, "MOVA_INT", [], VecALU>;
}
def FLT_TO_INT_eg : FLT_TO_INT_Common<0x50> {
let Pattern = [];
let Itinerary = AnyALU;
}
def INT_TO_FLT_eg : INT_TO_FLT_Common<0x9B>;
def FLT_TO_UINT_eg : FLT_TO_UINT_Common<0x9A> {
let Pattern = [];
}
def UINT_TO_FLT_eg : UINT_TO_FLT_Common<0x9C>;
def GROUP_BARRIER : InstR600 <
(outs), (ins), " GROUP_BARRIER", [(int_r600_group_barrier)], AnyALU>,
R600ALU_Word0,
R600ALU_Word1_OP2 <0x54> {
let dst = 0;
let dst_rel = 0;
let src0 = 0;
let src0_rel = 0;
let src0_neg = 0;
let src0_abs = 0;
let src1 = 0;
let src1_rel = 0;
let src1_neg = 0;
let src1_abs = 0;
let write = 0;
let omod = 0;
let clamp = 0;
let last = 1;
let bank_swizzle = 0;
let pred_sel = 0;
let update_exec_mask = 0;
let update_pred = 0;
let Inst{31-0} = Word0;
let Inst{63-32} = Word1;
let ALUInst = 1;
}
//===----------------------------------------------------------------------===//
// LDS Instructions
//===----------------------------------------------------------------------===//
class R600_LDS <bits<6> op, dag outs, dag ins, string asm,
list<dag> pattern = []> :
InstR600 <outs, ins, asm, pattern, XALU>,
R600_ALU_LDS_Word0,
R600LDS_Word1 {
bits<6> offset = 0;
let lds_op = op;
let Word1{27} = offset{0};
let Word1{12} = offset{1};
let Word1{28} = offset{2};
let Word1{31} = offset{3};
let Word0{12} = offset{4};
let Word0{25} = offset{5};
let Inst{31-0} = Word0;
let Inst{63-32} = Word1;
let ALUInst = 1;
let HasNativeOperands = 1;
let UseNamedOperandTable = 1;
}
class R600_LDS_1A <bits<6> lds_op, string name, list<dag> pattern> : R600_LDS <
lds_op,
(outs R600_Reg32:$dst),
(ins R600_Reg32:$src0, REL:$src0_rel, SEL:$src0_sel,
LAST:$last, R600_Pred:$pred_sel,
BANK_SWIZZLE:$bank_swizzle),
" "#name#" $last OQAP, $src0$src0_rel $pred_sel",
pattern
> {
let src1 = 0;
let src1_rel = 0;
let src2 = 0;
let src2_rel = 0;
let usesCustomInserter = 1;
let LDS_1A = 1;
let DisableEncoding = "$dst";
}
class R600_LDS_1A1D <bits<6> lds_op, dag outs, string name, list<dag> pattern,
string dst =""> :
R600_LDS <
lds_op, outs,
(ins R600_Reg32:$src0, REL:$src0_rel, SEL:$src0_sel,
R600_Reg32:$src1, REL:$src1_rel, SEL:$src1_sel,
LAST:$last, R600_Pred:$pred_sel,
BANK_SWIZZLE:$bank_swizzle),
" "#name#" $last "#dst#"$src0$src0_rel, $src1$src1_rel, $pred_sel",
pattern
> {
field string BaseOp;
let src2 = 0;
let src2_rel = 0;
let LDS_1A1D = 1;
}
class R600_LDS_1A1D_NORET <bits<6> lds_op, string name, list<dag> pattern> :
R600_LDS_1A1D <lds_op, (outs), name, pattern> {
let BaseOp = name;
}
class R600_LDS_1A1D_RET <bits<6> lds_op, string name, list<dag> pattern> :
R600_LDS_1A1D <lds_op, (outs R600_Reg32:$dst), name##"_RET", pattern, "OQAP, "> {
let BaseOp = name;
let usesCustomInserter = 1;
let DisableEncoding = "$dst";
}
class R600_LDS_1A2D <bits<6> lds_op, dag outs, string name, list<dag> pattern,
string dst =""> :
R600_LDS <
lds_op, outs,
(ins R600_Reg32:$src0, REL:$src0_rel, SEL:$src0_sel,
R600_Reg32:$src1, REL:$src1_rel, SEL:$src1_sel,
R600_Reg32:$src2, REL:$src2_rel, SEL:$src2_sel,
LAST:$last, R600_Pred:$pred_sel, BANK_SWIZZLE:$bank_swizzle),
" "#name# "$last "#dst#"$src0$src0_rel, $src1$src1_rel, $src2$src2_rel, $pred_sel",
pattern> {
field string BaseOp;
let LDS_1A1D = 0;
let LDS_1A2D = 1;
}
class R600_LDS_1A2D_NORET <bits<6> lds_op, string name, list<dag> pattern> :
R600_LDS_1A2D <lds_op, (outs), name, pattern> {
let BaseOp = name;
}
class R600_LDS_1A2D_RET <bits<6> lds_op, string name, list<dag> pattern> :
R600_LDS_1A2D <lds_op, (outs R600_Reg32:$dst), name, pattern> {
let BaseOp = name;
let usesCustomInserter = 1;
let DisableEncoding = "$dst";
}
def LDS_ADD : R600_LDS_1A1D_NORET <0x0, "LDS_ADD", [] >;
def LDS_SUB : R600_LDS_1A1D_NORET <0x1, "LDS_SUB", [] >;
def LDS_AND : R600_LDS_1A1D_NORET <0x9, "LDS_AND", [] >;
def LDS_OR : R600_LDS_1A1D_NORET <0xa, "LDS_OR", [] >;
def LDS_XOR : R600_LDS_1A1D_NORET <0xb, "LDS_XOR", [] >;
def LDS_WRXCHG: R600_LDS_1A1D_NORET <0xd, "LDS_WRXCHG", [] >;
def LDS_CMPST: R600_LDS_1A2D_NORET <0x10, "LDS_CMPST", [] >;
def LDS_MIN_INT : R600_LDS_1A1D_NORET <0x5, "LDS_MIN_INT", [] >;
def LDS_MAX_INT : R600_LDS_1A1D_NORET <0x6, "LDS_MAX_INT", [] >;
def LDS_MIN_UINT : R600_LDS_1A1D_NORET <0x7, "LDS_MIN_UINT", [] >;
def LDS_MAX_UINT : R600_LDS_1A1D_NORET <0x8, "LDS_MAX_UINT", [] >;
def LDS_WRITE : R600_LDS_1A1D_NORET <0xD, "LDS_WRITE",
[(store_local (i32 R600_Reg32:$src1), R600_Reg32:$src0)]
>;
def LDS_BYTE_WRITE : R600_LDS_1A1D_NORET<0x12, "LDS_BYTE_WRITE",
[(truncstorei8_local i32:$src1, i32:$src0)]
>;
def LDS_SHORT_WRITE : R600_LDS_1A1D_NORET<0x13, "LDS_SHORT_WRITE",
[(truncstorei16_local i32:$src1, i32:$src0)]
>;
def LDS_ADD_RET : R600_LDS_1A1D_RET <0x20, "LDS_ADD",
[(set i32:$dst, (atomic_load_add_local i32:$src0, i32:$src1))]
>;
def LDS_SUB_RET : R600_LDS_1A1D_RET <0x21, "LDS_SUB",
[(set i32:$dst, (atomic_load_sub_local i32:$src0, i32:$src1))]
>;
def LDS_AND_RET : R600_LDS_1A1D_RET <0x29, "LDS_AND",
[(set i32:$dst, (atomic_load_and_local i32:$src0, i32:$src1))]
>;
def LDS_OR_RET : R600_LDS_1A1D_RET <0x2a, "LDS_OR",
[(set i32:$dst, (atomic_load_or_local i32:$src0, i32:$src1))]
>;
def LDS_XOR_RET : R600_LDS_1A1D_RET <0x2b, "LDS_XOR",
[(set i32:$dst, (atomic_load_xor_local i32:$src0, i32:$src1))]
>;
def LDS_MIN_INT_RET : R600_LDS_1A1D_RET <0x25, "LDS_MIN_INT",
[(set i32:$dst, (atomic_load_min_local i32:$src0, i32:$src1))]
>;
def LDS_MAX_INT_RET : R600_LDS_1A1D_RET <0x26, "LDS_MAX_INT",
[(set i32:$dst, (atomic_load_max_local i32:$src0, i32:$src1))]
>;
def LDS_MIN_UINT_RET : R600_LDS_1A1D_RET <0x27, "LDS_MIN_UINT",
[(set i32:$dst, (atomic_load_umin_local i32:$src0, i32:$src1))]
>;
def LDS_MAX_UINT_RET : R600_LDS_1A1D_RET <0x28, "LDS_MAX_UINT",
[(set i32:$dst, (atomic_load_umax_local i32:$src0, i32:$src1))]
>;
def LDS_WRXCHG_RET : R600_LDS_1A1D_RET <0x2d, "LDS_WRXCHG",
[(set i32:$dst, (atomic_swap_local i32:$src0, i32:$src1))]
>;
def LDS_CMPST_RET : R600_LDS_1A2D_RET <0x30, "LDS_CMPST",
[(set i32:$dst, (atomic_cmp_swap_local i32:$src0, i32:$src1, i32:$src2))]
>;
def LDS_READ_RET : R600_LDS_1A <0x32, "LDS_READ_RET",
[(set (i32 R600_Reg32:$dst), (load_local R600_Reg32:$src0))]
>;
def LDS_BYTE_READ_RET : R600_LDS_1A <0x36, "LDS_BYTE_READ_RET",
[(set i32:$dst, (sextloadi8_local i32:$src0))]
>;
def LDS_UBYTE_READ_RET : R600_LDS_1A <0x37, "LDS_UBYTE_READ_RET",
[(set i32:$dst, (az_extloadi8_local i32:$src0))]
>;
def LDS_SHORT_READ_RET : R600_LDS_1A <0x38, "LDS_SHORT_READ_RET",
[(set i32:$dst, (sextloadi16_local i32:$src0))]
>;
def LDS_USHORT_READ_RET : R600_LDS_1A <0x39, "LDS_USHORT_READ_RET",
[(set i32:$dst, (az_extloadi16_local i32:$src0))]
>;
// TRUNC is used for the FLT_TO_INT instructions to work around a
// perceived problem where the rounding modes are applied differently
// depending on the instruction and the slot they are in.
// See:
// https://bugs.freedesktop.org/show_bug.cgi?id=50232
// Mesa commit: a1a0974401c467cb86ef818f22df67c21774a38c
//
// XXX: Lowering SELECT_CC will sometimes generate fp_to_[su]int nodes,
// which do not need to be truncated since the fp values are 0.0f or 1.0f.
// We should look into handling these cases separately.
def : EGOrCaymanPat<(fp_to_sint f32:$src0), (FLT_TO_INT_eg (TRUNC $src0))>;
def : EGOrCaymanPat<(fp_to_uint f32:$src0), (FLT_TO_UINT_eg (TRUNC $src0))>;
// SHA-256 Patterns
defm : SHA256MaPattern <BFI_INT_eg, XOR_INT, R600_Reg64>;
def EG_ExportSwz : ExportSwzInst {
let Word1{19-16} = 0; // BURST_COUNT
let Word1{20} = 0; // VALID_PIXEL_MODE
let Word1{21} = eop;
let Word1{29-22} = inst;
let Word1{30} = 0; // MARK
let Word1{31} = 1; // BARRIER
}
defm : ExportPattern<EG_ExportSwz, 83>;
def EG_ExportBuf : ExportBufInst {
let Word1{19-16} = 0; // BURST_COUNT
let Word1{20} = 0; // VALID_PIXEL_MODE
let Word1{21} = eop;
let Word1{29-22} = inst;
let Word1{30} = 0; // MARK
let Word1{31} = 1; // BARRIER
}
defm : SteamOutputExportPattern<EG_ExportBuf, 0x40, 0x41, 0x42, 0x43>;
def CF_TC_EG : CF_CLAUSE_EG<1, (ins i32imm:$ADDR, i32imm:$COUNT),
"TEX $COUNT @$ADDR"> {
let POP_COUNT = 0;
}
def CF_VC_EG : CF_CLAUSE_EG<2, (ins i32imm:$ADDR, i32imm:$COUNT),
"VTX $COUNT @$ADDR"> {
let POP_COUNT = 0;
}
def WHILE_LOOP_EG : CF_CLAUSE_EG<6, (ins i32imm:$ADDR),
"LOOP_START_DX10 @$ADDR"> {
let POP_COUNT = 0;
let COUNT = 0;
}
def END_LOOP_EG : CF_CLAUSE_EG<5, (ins i32imm:$ADDR), "END_LOOP @$ADDR"> {
let POP_COUNT = 0;
let COUNT = 0;
}
def LOOP_BREAK_EG : CF_CLAUSE_EG<9, (ins i32imm:$ADDR),
"LOOP_BREAK @$ADDR"> {
let POP_COUNT = 0;
let COUNT = 0;
}
def CF_CONTINUE_EG : CF_CLAUSE_EG<8, (ins i32imm:$ADDR),
"CONTINUE @$ADDR"> {
let POP_COUNT = 0;
let COUNT = 0;
}
def CF_JUMP_EG : CF_CLAUSE_EG<10, (ins i32imm:$ADDR, i32imm:$POP_COUNT),
"JUMP @$ADDR POP:$POP_COUNT"> {
let COUNT = 0;
}
def CF_PUSH_EG : CF_CLAUSE_EG<11, (ins i32imm:$ADDR, i32imm:$POP_COUNT),
"PUSH @$ADDR POP:$POP_COUNT"> {
let COUNT = 0;
}
def CF_ELSE_EG : CF_CLAUSE_EG<13, (ins i32imm:$ADDR, i32imm:$POP_COUNT),
"ELSE @$ADDR POP:$POP_COUNT"> {
let COUNT = 0;
}
def CF_CALL_FS_EG : CF_CLAUSE_EG<19, (ins), "CALL_FS"> {
let ADDR = 0;
let COUNT = 0;
let POP_COUNT = 0;
}
def POP_EG : CF_CLAUSE_EG<14, (ins i32imm:$ADDR, i32imm:$POP_COUNT),
"POP @$ADDR POP:$POP_COUNT"> {
let COUNT = 0;
}
def CF_END_EG : CF_CLAUSE_EG<0, (ins), "CF_END"> {
let COUNT = 0;
let POP_COUNT = 0;
let ADDR = 0;
let END_OF_PROGRAM = 1;
}
} // End Predicates = [isEGorCayman]