1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-20 03:23:01 +02:00
llvm-mirror/tools/opt/opt.cpp
Peter Kokai af0afdb02e [opt] Fix run-twice crash and detection problem
1. Execute `opt -run-twice a.ll` with in a terminal will crash.
   https://bugs.llvm.org/show_bug.cgi?id=44382
2. `-run-twice` saves output into two buffers and compares them.
   When outputing the result is disabled, that produces two empty string thus
   they are going to be equal all the time resulting false-positive results.

The proposed solution is to generate the results even if the output will not be
emitted, as that is required for the comparision.

Differential Revision: https://reviews.llvm.org/D71967
2019-12-30 00:42:46 -08:00

982 lines
33 KiB
C++

//===- opt.cpp - The LLVM Modular Optimizer -------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Optimizations may be specified an arbitrary number of times on the command
// line, They are run in the order specified.
//
//===----------------------------------------------------------------------===//
#include "BreakpointPrinter.h"
#include "NewPMDriver.h"
#include "PassPrinters.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/CallGraphSCCPass.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/RegionPass.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Bitcode/BitcodeWriterPass.h"
#include "llvm/CodeGen/CommandFlags.inc"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/IRPrintingPasses.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/LegacyPassNameParser.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/RemarkStreamer.h"
#include "llvm/IR/Verifier.h"
#include "llvm/IRReader/IRReader.h"
#include "llvm/InitializePasses.h"
#include "llvm/LinkAllIR.h"
#include "llvm/LinkAllPasses.h"
#include "llvm/MC/SubtargetFeature.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/InitLLVM.h"
#include "llvm/Support/PluginLoader.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/SystemUtils.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Support/ToolOutputFile.h"
#include "llvm/Support/YAMLTraits.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/Coroutines.h"
#include "llvm/Transforms/IPO/AlwaysInliner.h"
#include "llvm/Transforms/IPO/PassManagerBuilder.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/Debugify.h"
#include <algorithm>
#include <memory>
using namespace llvm;
using namespace opt_tool;
// The OptimizationList is automatically populated with registered Passes by the
// PassNameParser.
//
static cl::list<const PassInfo*, bool, PassNameParser>
PassList(cl::desc("Optimizations available:"));
// This flag specifies a textual description of the optimization pass pipeline
// to run over the module. This flag switches opt to use the new pass manager
// infrastructure, completely disabling all of the flags specific to the old
// pass management.
static cl::opt<std::string> PassPipeline(
"passes",
cl::desc("A textual description of the pass pipeline for optimizing"),
cl::Hidden);
// Other command line options...
//
static cl::opt<std::string>
InputFilename(cl::Positional, cl::desc("<input bitcode file>"),
cl::init("-"), cl::value_desc("filename"));
static cl::opt<std::string>
OutputFilename("o", cl::desc("Override output filename"),
cl::value_desc("filename"));
static cl::opt<bool>
Force("f", cl::desc("Enable binary output on terminals"));
static cl::opt<bool>
PrintEachXForm("p", cl::desc("Print module after each transformation"));
static cl::opt<bool>
NoOutput("disable-output",
cl::desc("Do not write result bitcode file"), cl::Hidden);
static cl::opt<bool>
OutputAssembly("S", cl::desc("Write output as LLVM assembly"));
static cl::opt<bool>
OutputThinLTOBC("thinlto-bc",
cl::desc("Write output as ThinLTO-ready bitcode"));
static cl::opt<bool>
SplitLTOUnit("thinlto-split-lto-unit",
cl::desc("Enable splitting of a ThinLTO LTOUnit"));
static cl::opt<std::string> ThinLinkBitcodeFile(
"thin-link-bitcode-file", cl::value_desc("filename"),
cl::desc(
"A file in which to write minimized bitcode for the thin link only"));
static cl::opt<bool>
NoVerify("disable-verify", cl::desc("Do not run the verifier"), cl::Hidden);
static cl::opt<bool>
VerifyEach("verify-each", cl::desc("Verify after each transform"));
static cl::opt<bool>
DisableDITypeMap("disable-debug-info-type-map",
cl::desc("Don't use a uniquing type map for debug info"));
static cl::opt<bool>
StripDebug("strip-debug",
cl::desc("Strip debugger symbol info from translation unit"));
static cl::opt<bool>
StripNamedMetadata("strip-named-metadata",
cl::desc("Strip module-level named metadata"));
static cl::opt<bool> DisableInline("disable-inlining",
cl::desc("Do not run the inliner pass"));
static cl::opt<bool>
DisableOptimizations("disable-opt",
cl::desc("Do not run any optimization passes"));
static cl::opt<bool>
StandardLinkOpts("std-link-opts",
cl::desc("Include the standard link time optimizations"));
static cl::opt<bool>
OptLevelO0("O0",
cl::desc("Optimization level 0. Similar to clang -O0"));
static cl::opt<bool>
OptLevelO1("O1",
cl::desc("Optimization level 1. Similar to clang -O1"));
static cl::opt<bool>
OptLevelO2("O2",
cl::desc("Optimization level 2. Similar to clang -O2"));
static cl::opt<bool>
OptLevelOs("Os",
cl::desc("Like -O2 with extra optimizations for size. Similar to clang -Os"));
static cl::opt<bool>
OptLevelOz("Oz",
cl::desc("Like -Os but reduces code size further. Similar to clang -Oz"));
static cl::opt<bool>
OptLevelO3("O3",
cl::desc("Optimization level 3. Similar to clang -O3"));
static cl::opt<unsigned>
CodeGenOptLevel("codegen-opt-level",
cl::desc("Override optimization level for codegen hooks"));
static cl::opt<std::string>
TargetTriple("mtriple", cl::desc("Override target triple for module"));
static cl::opt<bool>
DisableLoopUnrolling("disable-loop-unrolling",
cl::desc("Disable loop unrolling in all relevant passes"),
cl::init(false));
static cl::opt<bool>
DisableSLPVectorization("disable-slp-vectorization",
cl::desc("Disable the slp vectorization pass"),
cl::init(false));
static cl::opt<bool> EmitSummaryIndex("module-summary",
cl::desc("Emit module summary index"),
cl::init(false));
static cl::opt<bool> EmitModuleHash("module-hash", cl::desc("Emit module hash"),
cl::init(false));
static cl::opt<bool>
DisableSimplifyLibCalls("disable-simplify-libcalls",
cl::desc("Disable simplify-libcalls"));
static cl::list<std::string>
DisableBuiltins("disable-builtin",
cl::desc("Disable specific target library builtin function"),
cl::ZeroOrMore);
static cl::opt<bool>
Quiet("q", cl::desc("Obsolete option"), cl::Hidden);
static cl::alias
QuietA("quiet", cl::desc("Alias for -q"), cl::aliasopt(Quiet));
static cl::opt<bool>
AnalyzeOnly("analyze", cl::desc("Only perform analysis, no optimization"));
static cl::opt<bool> EnableDebugify(
"enable-debugify",
cl::desc(
"Start the pipeline with debugify and end it with check-debugify"));
static cl::opt<bool> DebugifyEach(
"debugify-each",
cl::desc(
"Start each pass with debugify and end it with check-debugify"));
static cl::opt<std::string>
DebugifyExport("debugify-export",
cl::desc("Export per-pass debugify statistics to this file"),
cl::value_desc("filename"), cl::init(""));
static cl::opt<bool>
PrintBreakpoints("print-breakpoints-for-testing",
cl::desc("Print select breakpoints location for testing"));
static cl::opt<std::string> ClDataLayout("data-layout",
cl::desc("data layout string to use"),
cl::value_desc("layout-string"),
cl::init(""));
static cl::opt<bool> PreserveBitcodeUseListOrder(
"preserve-bc-uselistorder",
cl::desc("Preserve use-list order when writing LLVM bitcode."),
cl::init(true), cl::Hidden);
static cl::opt<bool> PreserveAssemblyUseListOrder(
"preserve-ll-uselistorder",
cl::desc("Preserve use-list order when writing LLVM assembly."),
cl::init(false), cl::Hidden);
static cl::opt<bool>
RunTwice("run-twice",
cl::desc("Run all passes twice, re-using the same pass manager."),
cl::init(false), cl::Hidden);
static cl::opt<bool> DiscardValueNames(
"discard-value-names",
cl::desc("Discard names from Value (other than GlobalValue)."),
cl::init(false), cl::Hidden);
static cl::opt<bool> Coroutines(
"enable-coroutines",
cl::desc("Enable coroutine passes."),
cl::init(false), cl::Hidden);
static cl::opt<bool> RemarksWithHotness(
"pass-remarks-with-hotness",
cl::desc("With PGO, include profile count in optimization remarks"),
cl::Hidden);
static cl::opt<unsigned>
RemarksHotnessThreshold("pass-remarks-hotness-threshold",
cl::desc("Minimum profile count required for "
"an optimization remark to be output"),
cl::Hidden);
static cl::opt<std::string>
RemarksFilename("pass-remarks-output",
cl::desc("Output filename for pass remarks"),
cl::value_desc("filename"));
static cl::opt<std::string>
RemarksPasses("pass-remarks-filter",
cl::desc("Only record optimization remarks from passes whose "
"names match the given regular expression"),
cl::value_desc("regex"));
static cl::opt<std::string> RemarksFormat(
"pass-remarks-format",
cl::desc("The format used for serializing remarks (default: YAML)"),
cl::value_desc("format"), cl::init("yaml"));
cl::opt<PGOKind>
PGOKindFlag("pgo-kind", cl::init(NoPGO), cl::Hidden,
cl::desc("The kind of profile guided optimization"),
cl::values(clEnumValN(NoPGO, "nopgo", "Do not use PGO."),
clEnumValN(InstrGen, "pgo-instr-gen-pipeline",
"Instrument the IR to generate profile."),
clEnumValN(InstrUse, "pgo-instr-use-pipeline",
"Use instrumented profile to guide PGO."),
clEnumValN(SampleUse, "pgo-sample-use-pipeline",
"Use sampled profile to guide PGO.")));
cl::opt<std::string> ProfileFile("profile-file",
cl::desc("Path to the profile."), cl::Hidden);
cl::opt<CSPGOKind> CSPGOKindFlag(
"cspgo-kind", cl::init(NoCSPGO), cl::Hidden,
cl::desc("The kind of context sensitive profile guided optimization"),
cl::values(
clEnumValN(NoCSPGO, "nocspgo", "Do not use CSPGO."),
clEnumValN(
CSInstrGen, "cspgo-instr-gen-pipeline",
"Instrument (context sensitive) the IR to generate profile."),
clEnumValN(
CSInstrUse, "cspgo-instr-use-pipeline",
"Use instrumented (context sensitive) profile to guide PGO.")));
cl::opt<std::string> CSProfileGenFile(
"cs-profilegen-file",
cl::desc("Path to the instrumented context sensitive profile."),
cl::Hidden);
class OptCustomPassManager : public legacy::PassManager {
DebugifyStatsMap DIStatsMap;
public:
using super = legacy::PassManager;
void add(Pass *P) override {
// Wrap each pass with (-check)-debugify passes if requested, making
// exceptions for passes which shouldn't see -debugify instrumentation.
bool WrapWithDebugify = DebugifyEach && !P->getAsImmutablePass() &&
!isIRPrintingPass(P) && !isBitcodeWriterPass(P);
if (!WrapWithDebugify) {
super::add(P);
return;
}
// Apply -debugify/-check-debugify before/after each pass and collect
// debug info loss statistics.
PassKind Kind = P->getPassKind();
StringRef Name = P->getPassName();
// TODO: Implement Debugify for LoopPass.
switch (Kind) {
case PT_Function:
super::add(createDebugifyFunctionPass());
super::add(P);
super::add(createCheckDebugifyFunctionPass(true, Name, &DIStatsMap));
break;
case PT_Module:
super::add(createDebugifyModulePass());
super::add(P);
super::add(createCheckDebugifyModulePass(true, Name, &DIStatsMap));
break;
default:
super::add(P);
break;
}
}
const DebugifyStatsMap &getDebugifyStatsMap() const { return DIStatsMap; }
};
static inline void addPass(legacy::PassManagerBase &PM, Pass *P) {
// Add the pass to the pass manager...
PM.add(P);
// If we are verifying all of the intermediate steps, add the verifier...
if (VerifyEach)
PM.add(createVerifierPass());
}
/// This routine adds optimization passes based on selected optimization level,
/// OptLevel.
///
/// OptLevel - Optimization Level
static void AddOptimizationPasses(legacy::PassManagerBase &MPM,
legacy::FunctionPassManager &FPM,
TargetMachine *TM, unsigned OptLevel,
unsigned SizeLevel) {
if (!NoVerify || VerifyEach)
FPM.add(createVerifierPass()); // Verify that input is correct
PassManagerBuilder Builder;
Builder.OptLevel = OptLevel;
Builder.SizeLevel = SizeLevel;
if (DisableInline) {
// No inlining pass
} else if (OptLevel > 1) {
Builder.Inliner = createFunctionInliningPass(OptLevel, SizeLevel, false);
} else {
Builder.Inliner = createAlwaysInlinerLegacyPass();
}
Builder.DisableUnrollLoops = (DisableLoopUnrolling.getNumOccurrences() > 0) ?
DisableLoopUnrolling : OptLevel == 0;
// Check if vectorization is explicitly disabled via -vectorize-loops=false.
// The flag enables vectorization in the LoopVectorize pass, it is on by
// default, and if it was disabled, leave it disabled here.
// Another flag that exists: -loop-vectorize, controls adding the pass to the
// pass manager. If set, the pass is added, and there is no additional check
// here for it.
if (Builder.LoopVectorize)
Builder.LoopVectorize = OptLevel > 1 && SizeLevel < 2;
// When #pragma vectorize is on for SLP, do the same as above
Builder.SLPVectorize =
DisableSLPVectorization ? false : OptLevel > 1 && SizeLevel < 2;
if (TM)
TM->adjustPassManager(Builder);
if (Coroutines)
addCoroutinePassesToExtensionPoints(Builder);
switch (PGOKindFlag) {
case InstrGen:
Builder.EnablePGOInstrGen = true;
Builder.PGOInstrGen = ProfileFile;
break;
case InstrUse:
Builder.PGOInstrUse = ProfileFile;
break;
case SampleUse:
Builder.PGOSampleUse = ProfileFile;
break;
default:
break;
}
switch (CSPGOKindFlag) {
case CSInstrGen:
Builder.EnablePGOCSInstrGen = true;
break;
case CSInstrUse:
Builder.EnablePGOCSInstrUse = true;
break;
default:
break;
}
Builder.populateFunctionPassManager(FPM);
Builder.populateModulePassManager(MPM);
}
static void AddStandardLinkPasses(legacy::PassManagerBase &PM) {
PassManagerBuilder Builder;
Builder.VerifyInput = true;
if (DisableOptimizations)
Builder.OptLevel = 0;
if (!DisableInline)
Builder.Inliner = createFunctionInliningPass();
Builder.populateLTOPassManager(PM);
}
//===----------------------------------------------------------------------===//
// CodeGen-related helper functions.
//
static CodeGenOpt::Level GetCodeGenOptLevel() {
if (CodeGenOptLevel.getNumOccurrences())
return static_cast<CodeGenOpt::Level>(unsigned(CodeGenOptLevel));
if (OptLevelO1)
return CodeGenOpt::Less;
if (OptLevelO2)
return CodeGenOpt::Default;
if (OptLevelO3)
return CodeGenOpt::Aggressive;
return CodeGenOpt::None;
}
// Returns the TargetMachine instance or zero if no triple is provided.
static TargetMachine* GetTargetMachine(Triple TheTriple, StringRef CPUStr,
StringRef FeaturesStr,
const TargetOptions &Options) {
std::string Error;
const Target *TheTarget = TargetRegistry::lookupTarget(MArch, TheTriple,
Error);
// Some modules don't specify a triple, and this is okay.
if (!TheTarget) {
return nullptr;
}
return TheTarget->createTargetMachine(TheTriple.getTriple(), CPUStr,
FeaturesStr, Options, getRelocModel(),
getCodeModel(), GetCodeGenOptLevel());
}
#ifdef LINK_POLLY_INTO_TOOLS
namespace polly {
void initializePollyPasses(llvm::PassRegistry &Registry);
}
#endif
void exportDebugifyStats(llvm::StringRef Path, const DebugifyStatsMap &Map) {
std::error_code EC;
raw_fd_ostream OS{Path, EC};
if (EC) {
errs() << "Could not open file: " << EC.message() << ", " << Path << '\n';
return;
}
OS << "Pass Name" << ',' << "# of missing debug values" << ','
<< "# of missing locations" << ',' << "Missing/Expected value ratio" << ','
<< "Missing/Expected location ratio" << '\n';
for (const auto &Entry : Map) {
StringRef Pass = Entry.first;
DebugifyStatistics Stats = Entry.second;
OS << Pass << ',' << Stats.NumDbgValuesMissing << ','
<< Stats.NumDbgLocsMissing << ',' << Stats.getMissingValueRatio() << ','
<< Stats.getEmptyLocationRatio() << '\n';
}
}
//===----------------------------------------------------------------------===//
// main for opt
//
int main(int argc, char **argv) {
InitLLVM X(argc, argv);
// Enable debug stream buffering.
EnableDebugBuffering = true;
LLVMContext Context;
InitializeAllTargets();
InitializeAllTargetMCs();
InitializeAllAsmPrinters();
InitializeAllAsmParsers();
// Initialize passes
PassRegistry &Registry = *PassRegistry::getPassRegistry();
initializeCore(Registry);
initializeCoroutines(Registry);
initializeScalarOpts(Registry);
initializeObjCARCOpts(Registry);
initializeVectorization(Registry);
initializeIPO(Registry);
initializeAnalysis(Registry);
initializeTransformUtils(Registry);
initializeInstCombine(Registry);
initializeAggressiveInstCombine(Registry);
initializeInstrumentation(Registry);
initializeTarget(Registry);
// For codegen passes, only passes that do IR to IR transformation are
// supported.
initializeExpandMemCmpPassPass(Registry);
initializeScalarizeMaskedMemIntrinPass(Registry);
initializeCodeGenPreparePass(Registry);
initializeAtomicExpandPass(Registry);
initializeRewriteSymbolsLegacyPassPass(Registry);
initializeWinEHPreparePass(Registry);
initializeDwarfEHPreparePass(Registry);
initializeSafeStackLegacyPassPass(Registry);
initializeSjLjEHPreparePass(Registry);
initializePreISelIntrinsicLoweringLegacyPassPass(Registry);
initializeGlobalMergePass(Registry);
initializeIndirectBrExpandPassPass(Registry);
initializeInterleavedLoadCombinePass(Registry);
initializeInterleavedAccessPass(Registry);
initializeEntryExitInstrumenterPass(Registry);
initializePostInlineEntryExitInstrumenterPass(Registry);
initializeUnreachableBlockElimLegacyPassPass(Registry);
initializeExpandReductionsPass(Registry);
initializeWasmEHPreparePass(Registry);
initializeWriteBitcodePassPass(Registry);
initializeHardwareLoopsPass(Registry);
initializeTypePromotionPass(Registry);
#ifdef LINK_POLLY_INTO_TOOLS
polly::initializePollyPasses(Registry);
#endif
cl::ParseCommandLineOptions(argc, argv,
"llvm .bc -> .bc modular optimizer and analysis printer\n");
if (AnalyzeOnly && NoOutput) {
errs() << argv[0] << ": analyze mode conflicts with no-output mode.\n";
return 1;
}
SMDiagnostic Err;
Context.setDiscardValueNames(DiscardValueNames);
if (!DisableDITypeMap)
Context.enableDebugTypeODRUniquing();
Expected<std::unique_ptr<ToolOutputFile>> RemarksFileOrErr =
setupOptimizationRemarks(Context, RemarksFilename, RemarksPasses,
RemarksFormat, RemarksWithHotness,
RemarksHotnessThreshold);
if (Error E = RemarksFileOrErr.takeError()) {
errs() << toString(std::move(E)) << '\n';
return 1;
}
std::unique_ptr<ToolOutputFile> RemarksFile = std::move(*RemarksFileOrErr);
// Load the input module...
std::unique_ptr<Module> M =
parseIRFile(InputFilename, Err, Context, !NoVerify, ClDataLayout);
if (!M) {
Err.print(argv[0], errs());
return 1;
}
// Strip debug info before running the verifier.
if (StripDebug)
StripDebugInfo(*M);
// Erase module-level named metadata, if requested.
if (StripNamedMetadata) {
while (!M->named_metadata_empty()) {
NamedMDNode *NMD = &*M->named_metadata_begin();
M->eraseNamedMetadata(NMD);
}
}
// If we are supposed to override the target triple or data layout, do so now.
if (!TargetTriple.empty())
M->setTargetTriple(Triple::normalize(TargetTriple));
// Immediately run the verifier to catch any problems before starting up the
// pass pipelines. Otherwise we can crash on broken code during
// doInitialization().
if (!NoVerify && verifyModule(*M, &errs())) {
errs() << argv[0] << ": " << InputFilename
<< ": error: input module is broken!\n";
return 1;
}
// Figure out what stream we are supposed to write to...
std::unique_ptr<ToolOutputFile> Out;
std::unique_ptr<ToolOutputFile> ThinLinkOut;
if (NoOutput) {
if (!OutputFilename.empty())
errs() << "WARNING: The -o (output filename) option is ignored when\n"
"the --disable-output option is used.\n";
} else {
// Default to standard output.
if (OutputFilename.empty())
OutputFilename = "-";
std::error_code EC;
sys::fs::OpenFlags Flags = OutputAssembly ? sys::fs::OF_Text
: sys::fs::OF_None;
Out.reset(new ToolOutputFile(OutputFilename, EC, Flags));
if (EC) {
errs() << EC.message() << '\n';
return 1;
}
if (!ThinLinkBitcodeFile.empty()) {
ThinLinkOut.reset(
new ToolOutputFile(ThinLinkBitcodeFile, EC, sys::fs::OF_None));
if (EC) {
errs() << EC.message() << '\n';
return 1;
}
}
}
Triple ModuleTriple(M->getTargetTriple());
std::string CPUStr, FeaturesStr;
TargetMachine *Machine = nullptr;
const TargetOptions Options = InitTargetOptionsFromCodeGenFlags();
if (ModuleTriple.getArch()) {
CPUStr = getCPUStr();
FeaturesStr = getFeaturesStr();
Machine = GetTargetMachine(ModuleTriple, CPUStr, FeaturesStr, Options);
} else if (ModuleTriple.getArchName() != "unknown" &&
ModuleTriple.getArchName() != "") {
errs() << argv[0] << ": unrecognized architecture '"
<< ModuleTriple.getArchName() << "' provided.\n";
return 1;
}
std::unique_ptr<TargetMachine> TM(Machine);
// Override function attributes based on CPUStr, FeaturesStr, and command line
// flags.
setFunctionAttributes(CPUStr, FeaturesStr, *M);
// If the output is set to be emitted to standard out, and standard out is a
// console, print out a warning message and refuse to do it. We don't
// impress anyone by spewing tons of binary goo to a terminal.
if (!Force && !NoOutput && !AnalyzeOnly && !OutputAssembly)
if (CheckBitcodeOutputToConsole(Out->os(), !Quiet))
NoOutput = true;
if (OutputThinLTOBC)
M->addModuleFlag(Module::Error, "EnableSplitLTOUnit", SplitLTOUnit);
if (PassPipeline.getNumOccurrences() > 0) {
OutputKind OK = OK_NoOutput;
if (!NoOutput)
OK = OutputAssembly
? OK_OutputAssembly
: (OutputThinLTOBC ? OK_OutputThinLTOBitcode : OK_OutputBitcode);
VerifierKind VK = VK_VerifyInAndOut;
if (NoVerify)
VK = VK_NoVerifier;
else if (VerifyEach)
VK = VK_VerifyEachPass;
// The user has asked to use the new pass manager and provided a pipeline
// string. Hand off the rest of the functionality to the new code for that
// layer.
return runPassPipeline(argv[0], *M, TM.get(), Out.get(), ThinLinkOut.get(),
RemarksFile.get(), PassPipeline, OK, VK,
PreserveAssemblyUseListOrder,
PreserveBitcodeUseListOrder, EmitSummaryIndex,
EmitModuleHash, EnableDebugify)
? 0
: 1;
}
// Create a PassManager to hold and optimize the collection of passes we are
// about to build.
OptCustomPassManager Passes;
bool AddOneTimeDebugifyPasses = EnableDebugify && !DebugifyEach;
// Add an appropriate TargetLibraryInfo pass for the module's triple.
TargetLibraryInfoImpl TLII(ModuleTriple);
// The -disable-simplify-libcalls flag actually disables all builtin optzns.
if (DisableSimplifyLibCalls)
TLII.disableAllFunctions();
else {
// Disable individual builtin functions in TargetLibraryInfo.
LibFunc F;
for (auto &FuncName : DisableBuiltins)
if (TLII.getLibFunc(FuncName, F))
TLII.setUnavailable(F);
else {
errs() << argv[0] << ": cannot disable nonexistent builtin function "
<< FuncName << '\n';
return 1;
}
}
Passes.add(new TargetLibraryInfoWrapperPass(TLII));
// Add internal analysis passes from the target machine.
Passes.add(createTargetTransformInfoWrapperPass(TM ? TM->getTargetIRAnalysis()
: TargetIRAnalysis()));
if (AddOneTimeDebugifyPasses)
Passes.add(createDebugifyModulePass());
std::unique_ptr<legacy::FunctionPassManager> FPasses;
if (OptLevelO0 || OptLevelO1 || OptLevelO2 || OptLevelOs || OptLevelOz ||
OptLevelO3) {
FPasses.reset(new legacy::FunctionPassManager(M.get()));
FPasses->add(createTargetTransformInfoWrapperPass(
TM ? TM->getTargetIRAnalysis() : TargetIRAnalysis()));
}
if (PrintBreakpoints) {
// Default to standard output.
if (!Out) {
if (OutputFilename.empty())
OutputFilename = "-";
std::error_code EC;
Out = std::make_unique<ToolOutputFile>(OutputFilename, EC,
sys::fs::OF_None);
if (EC) {
errs() << EC.message() << '\n';
return 1;
}
}
Passes.add(createBreakpointPrinter(Out->os()));
NoOutput = true;
}
if (TM) {
// FIXME: We should dyn_cast this when supported.
auto &LTM = static_cast<LLVMTargetMachine &>(*TM);
Pass *TPC = LTM.createPassConfig(Passes);
Passes.add(TPC);
}
// Create a new optimization pass for each one specified on the command line
for (unsigned i = 0; i < PassList.size(); ++i) {
if (StandardLinkOpts &&
StandardLinkOpts.getPosition() < PassList.getPosition(i)) {
AddStandardLinkPasses(Passes);
StandardLinkOpts = false;
}
if (OptLevelO0 && OptLevelO0.getPosition() < PassList.getPosition(i)) {
AddOptimizationPasses(Passes, *FPasses, TM.get(), 0, 0);
OptLevelO0 = false;
}
if (OptLevelO1 && OptLevelO1.getPosition() < PassList.getPosition(i)) {
AddOptimizationPasses(Passes, *FPasses, TM.get(), 1, 0);
OptLevelO1 = false;
}
if (OptLevelO2 && OptLevelO2.getPosition() < PassList.getPosition(i)) {
AddOptimizationPasses(Passes, *FPasses, TM.get(), 2, 0);
OptLevelO2 = false;
}
if (OptLevelOs && OptLevelOs.getPosition() < PassList.getPosition(i)) {
AddOptimizationPasses(Passes, *FPasses, TM.get(), 2, 1);
OptLevelOs = false;
}
if (OptLevelOz && OptLevelOz.getPosition() < PassList.getPosition(i)) {
AddOptimizationPasses(Passes, *FPasses, TM.get(), 2, 2);
OptLevelOz = false;
}
if (OptLevelO3 && OptLevelO3.getPosition() < PassList.getPosition(i)) {
AddOptimizationPasses(Passes, *FPasses, TM.get(), 3, 0);
OptLevelO3 = false;
}
const PassInfo *PassInf = PassList[i];
Pass *P = nullptr;
if (PassInf->getNormalCtor())
P = PassInf->getNormalCtor()();
else
errs() << argv[0] << ": cannot create pass: "
<< PassInf->getPassName() << "\n";
if (P) {
PassKind Kind = P->getPassKind();
addPass(Passes, P);
if (AnalyzeOnly) {
switch (Kind) {
case PT_Region:
Passes.add(createRegionPassPrinter(PassInf, Out->os(), Quiet));
break;
case PT_Loop:
Passes.add(createLoopPassPrinter(PassInf, Out->os(), Quiet));
break;
case PT_Function:
Passes.add(createFunctionPassPrinter(PassInf, Out->os(), Quiet));
break;
case PT_CallGraphSCC:
Passes.add(createCallGraphPassPrinter(PassInf, Out->os(), Quiet));
break;
default:
Passes.add(createModulePassPrinter(PassInf, Out->os(), Quiet));
break;
}
}
}
if (PrintEachXForm)
Passes.add(
createPrintModulePass(errs(), "", PreserveAssemblyUseListOrder));
}
if (StandardLinkOpts) {
AddStandardLinkPasses(Passes);
StandardLinkOpts = false;
}
if (OptLevelO0)
AddOptimizationPasses(Passes, *FPasses, TM.get(), 0, 0);
if (OptLevelO1)
AddOptimizationPasses(Passes, *FPasses, TM.get(), 1, 0);
if (OptLevelO2)
AddOptimizationPasses(Passes, *FPasses, TM.get(), 2, 0);
if (OptLevelOs)
AddOptimizationPasses(Passes, *FPasses, TM.get(), 2, 1);
if (OptLevelOz)
AddOptimizationPasses(Passes, *FPasses, TM.get(), 2, 2);
if (OptLevelO3)
AddOptimizationPasses(Passes, *FPasses, TM.get(), 3, 0);
if (FPasses) {
FPasses->doInitialization();
for (Function &F : *M)
FPasses->run(F);
FPasses->doFinalization();
}
// Check that the module is well formed on completion of optimization
if (!NoVerify && !VerifyEach)
Passes.add(createVerifierPass());
if (AddOneTimeDebugifyPasses)
Passes.add(createCheckDebugifyModulePass(false));
// In run twice mode, we want to make sure the output is bit-by-bit
// equivalent if we run the pass manager again, so setup two buffers and
// a stream to write to them. Note that llc does something similar and it
// may be worth to abstract this out in the future.
SmallVector<char, 0> Buffer;
SmallVector<char, 0> FirstRunBuffer;
std::unique_ptr<raw_svector_ostream> BOS;
raw_ostream *OS = nullptr;
const bool ShouldEmitOutput = !NoOutput && !AnalyzeOnly;
// Write bitcode or assembly to the output as the last step...
if (ShouldEmitOutput || RunTwice) {
assert(Out);
OS = &Out->os();
if (RunTwice) {
BOS = std::make_unique<raw_svector_ostream>(Buffer);
OS = BOS.get();
}
if (OutputAssembly) {
if (EmitSummaryIndex)
report_fatal_error("Text output is incompatible with -module-summary");
if (EmitModuleHash)
report_fatal_error("Text output is incompatible with -module-hash");
Passes.add(createPrintModulePass(*OS, "", PreserveAssemblyUseListOrder));
} else if (OutputThinLTOBC)
Passes.add(createWriteThinLTOBitcodePass(
*OS, ThinLinkOut ? &ThinLinkOut->os() : nullptr));
else
Passes.add(createBitcodeWriterPass(*OS, PreserveBitcodeUseListOrder,
EmitSummaryIndex, EmitModuleHash));
}
// Before executing passes, print the final values of the LLVM options.
cl::PrintOptionValues();
if (!RunTwice) {
// Now that we have all of the passes ready, run them.
Passes.run(*M);
} else {
// If requested, run all passes twice with the same pass manager to catch
// bugs caused by persistent state in the passes.
std::unique_ptr<Module> M2(CloneModule(*M));
// Run all passes on the original module first, so the second run processes
// the clone to catch CloneModule bugs.
Passes.run(*M);
FirstRunBuffer = Buffer;
Buffer.clear();
Passes.run(*M2);
// Compare the two outputs and make sure they're the same
assert(Out);
if (Buffer.size() != FirstRunBuffer.size() ||
(memcmp(Buffer.data(), FirstRunBuffer.data(), Buffer.size()) != 0)) {
errs()
<< "Running the pass manager twice changed the output.\n"
"Writing the result of the second run to the specified output.\n"
"To generate the one-run comparison binary, just run without\n"
"the compile-twice option\n";
if (ShouldEmitOutput) {
Out->os() << BOS->str();
Out->keep();
}
if (RemarksFile)
RemarksFile->keep();
return 1;
}
if (ShouldEmitOutput)
Out->os() << BOS->str();
}
if (DebugifyEach && !DebugifyExport.empty())
exportDebugifyStats(DebugifyExport, Passes.getDebugifyStatsMap());
// Declare success.
if (!NoOutput || PrintBreakpoints)
Out->keep();
if (RemarksFile)
RemarksFile->keep();
if (ThinLinkOut)
ThinLinkOut->keep();
return 0;
}