1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 20:23:11 +01:00
llvm-mirror/lib/Target/ARM/ARMAsmPrinter.cpp
Eric Christopher 000dd7d0e6 Implement the 'M' output modifier for arm inline asm. This is fairly
register allocation dependent and will occasionally break. WIP in the
register allocator to model paired/etc registers.

rdar://9119939

llvm-svn: 132242
2011-05-28 01:40:44 +00:00

1964 lines
71 KiB
C++

//===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a printer that converts from our internal representation
// of machine-dependent LLVM code to GAS-format ARM assembly language.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "asm-printer"
#include "ARM.h"
#include "ARMAsmPrinter.h"
#include "ARMAddressingModes.h"
#include "ARMBuildAttrs.h"
#include "ARMBaseRegisterInfo.h"
#include "ARMConstantPoolValue.h"
#include "ARMMachineFunctionInfo.h"
#include "ARMMCExpr.h"
#include "ARMTargetMachine.h"
#include "ARMTargetObjectFile.h"
#include "InstPrinter/ARMInstPrinter.h"
#include "llvm/Analysis/DebugInfo.h"
#include "llvm/Constants.h"
#include "llvm/Module.h"
#include "llvm/Type.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/CodeGen/MachineModuleInfoImpls.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCSectionMachO.h"
#include "llvm/MC/MCObjectStreamer.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Target/Mangler.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Target/TargetRegistry.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <cctype>
using namespace llvm;
namespace {
// Per section and per symbol attributes are not supported.
// To implement them we would need the ability to delay this emission
// until the assembly file is fully parsed/generated as only then do we
// know the symbol and section numbers.
class AttributeEmitter {
public:
virtual void MaybeSwitchVendor(StringRef Vendor) = 0;
virtual void EmitAttribute(unsigned Attribute, unsigned Value) = 0;
virtual void EmitTextAttribute(unsigned Attribute, StringRef String) = 0;
virtual void Finish() = 0;
virtual ~AttributeEmitter() {}
};
class AsmAttributeEmitter : public AttributeEmitter {
MCStreamer &Streamer;
public:
AsmAttributeEmitter(MCStreamer &Streamer_) : Streamer(Streamer_) {}
void MaybeSwitchVendor(StringRef Vendor) { }
void EmitAttribute(unsigned Attribute, unsigned Value) {
Streamer.EmitRawText("\t.eabi_attribute " +
Twine(Attribute) + ", " + Twine(Value));
}
void EmitTextAttribute(unsigned Attribute, StringRef String) {
switch (Attribute) {
case ARMBuildAttrs::CPU_name:
Streamer.EmitRawText(StringRef("\t.cpu ") + LowercaseString(String));
break;
/* GAS requires .fpu to be emitted regardless of EABI attribute */
case ARMBuildAttrs::Advanced_SIMD_arch:
case ARMBuildAttrs::VFP_arch:
Streamer.EmitRawText(StringRef("\t.fpu ") + LowercaseString(String));
break;
default: assert(0 && "Unsupported Text attribute in ASM Mode"); break;
}
}
void Finish() { }
};
class ObjectAttributeEmitter : public AttributeEmitter {
MCObjectStreamer &Streamer;
StringRef CurrentVendor;
SmallString<64> Contents;
public:
ObjectAttributeEmitter(MCObjectStreamer &Streamer_) :
Streamer(Streamer_), CurrentVendor("") { }
void MaybeSwitchVendor(StringRef Vendor) {
assert(!Vendor.empty() && "Vendor cannot be empty.");
if (CurrentVendor.empty())
CurrentVendor = Vendor;
else if (CurrentVendor == Vendor)
return;
else
Finish();
CurrentVendor = Vendor;
assert(Contents.size() == 0);
}
void EmitAttribute(unsigned Attribute, unsigned Value) {
// FIXME: should be ULEB
Contents += Attribute;
Contents += Value;
}
void EmitTextAttribute(unsigned Attribute, StringRef String) {
Contents += Attribute;
Contents += UppercaseString(String);
Contents += 0;
}
void Finish() {
const size_t ContentsSize = Contents.size();
// Vendor size + Vendor name + '\0'
const size_t VendorHeaderSize = 4 + CurrentVendor.size() + 1;
// Tag + Tag Size
const size_t TagHeaderSize = 1 + 4;
Streamer.EmitIntValue(VendorHeaderSize + TagHeaderSize + ContentsSize, 4);
Streamer.EmitBytes(CurrentVendor, 0);
Streamer.EmitIntValue(0, 1); // '\0'
Streamer.EmitIntValue(ARMBuildAttrs::File, 1);
Streamer.EmitIntValue(TagHeaderSize + ContentsSize, 4);
Streamer.EmitBytes(Contents, 0);
Contents.clear();
}
};
} // end of anonymous namespace
MachineLocation ARMAsmPrinter::
getDebugValueLocation(const MachineInstr *MI) const {
MachineLocation Location;
assert(MI->getNumOperands() == 4 && "Invalid no. of machine operands!");
// Frame address. Currently handles register +- offset only.
if (MI->getOperand(0).isReg() && MI->getOperand(1).isImm())
Location.set(MI->getOperand(0).getReg(), MI->getOperand(1).getImm());
else {
DEBUG(dbgs() << "DBG_VALUE instruction ignored! " << *MI << "\n");
}
return Location;
}
/// EmitDwarfRegOp - Emit dwarf register operation.
void ARMAsmPrinter::EmitDwarfRegOp(const MachineLocation &MLoc) const {
const TargetRegisterInfo *RI = TM.getRegisterInfo();
if (RI->getDwarfRegNum(MLoc.getReg(), false) != -1)
AsmPrinter::EmitDwarfRegOp(MLoc);
else {
unsigned Reg = MLoc.getReg();
if (Reg >= ARM::S0 && Reg <= ARM::S31) {
assert(ARM::S0 + 31 == ARM::S31 && "Unexpected ARM S register numbering");
// S registers are described as bit-pieces of a register
// S[2x] = DW_OP_regx(256 + (x>>1)) DW_OP_bit_piece(32, 0)
// S[2x+1] = DW_OP_regx(256 + (x>>1)) DW_OP_bit_piece(32, 32)
unsigned SReg = Reg - ARM::S0;
bool odd = SReg & 0x1;
unsigned Rx = 256 + (SReg >> 1);
OutStreamer.AddComment("DW_OP_regx for S register");
EmitInt8(dwarf::DW_OP_regx);
OutStreamer.AddComment(Twine(SReg));
EmitULEB128(Rx);
if (odd) {
OutStreamer.AddComment("DW_OP_bit_piece 32 32");
EmitInt8(dwarf::DW_OP_bit_piece);
EmitULEB128(32);
EmitULEB128(32);
} else {
OutStreamer.AddComment("DW_OP_bit_piece 32 0");
EmitInt8(dwarf::DW_OP_bit_piece);
EmitULEB128(32);
EmitULEB128(0);
}
} else if (Reg >= ARM::Q0 && Reg <= ARM::Q15) {
assert(ARM::Q0 + 15 == ARM::Q15 && "Unexpected ARM Q register numbering");
// Q registers Q0-Q15 are described by composing two D registers together.
// Qx = DW_OP_regx(256+2x) DW_OP_piece(8) DW_OP_regx(256+2x+1) DW_OP_piece(8)
unsigned QReg = Reg - ARM::Q0;
unsigned D1 = 256 + 2 * QReg;
unsigned D2 = D1 + 1;
OutStreamer.AddComment("DW_OP_regx for Q register: D1");
EmitInt8(dwarf::DW_OP_regx);
EmitULEB128(D1);
OutStreamer.AddComment("DW_OP_piece 8");
EmitInt8(dwarf::DW_OP_piece);
EmitULEB128(8);
OutStreamer.AddComment("DW_OP_regx for Q register: D2");
EmitInt8(dwarf::DW_OP_regx);
EmitULEB128(D2);
OutStreamer.AddComment("DW_OP_piece 8");
EmitInt8(dwarf::DW_OP_piece);
EmitULEB128(8);
}
}
}
void ARMAsmPrinter::EmitFunctionEntryLabel() {
if (AFI->isThumbFunction()) {
OutStreamer.EmitAssemblerFlag(MCAF_Code16);
OutStreamer.EmitThumbFunc(CurrentFnSym);
}
OutStreamer.EmitLabel(CurrentFnSym);
}
/// runOnMachineFunction - This uses the EmitInstruction()
/// method to print assembly for each instruction.
///
bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
AFI = MF.getInfo<ARMFunctionInfo>();
MCP = MF.getConstantPool();
return AsmPrinter::runOnMachineFunction(MF);
}
void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O, const char *Modifier) {
const MachineOperand &MO = MI->getOperand(OpNum);
unsigned TF = MO.getTargetFlags();
switch (MO.getType()) {
default:
assert(0 && "<unknown operand type>");
case MachineOperand::MO_Register: {
unsigned Reg = MO.getReg();
assert(TargetRegisterInfo::isPhysicalRegister(Reg));
assert(!MO.getSubReg() && "Subregs should be eliminated!");
O << ARMInstPrinter::getRegisterName(Reg);
break;
}
case MachineOperand::MO_Immediate: {
int64_t Imm = MO.getImm();
O << '#';
if ((Modifier && strcmp(Modifier, "lo16") == 0) ||
(TF == ARMII::MO_LO16))
O << ":lower16:";
else if ((Modifier && strcmp(Modifier, "hi16") == 0) ||
(TF == ARMII::MO_HI16))
O << ":upper16:";
O << Imm;
break;
}
case MachineOperand::MO_MachineBasicBlock:
O << *MO.getMBB()->getSymbol();
return;
case MachineOperand::MO_GlobalAddress: {
const GlobalValue *GV = MO.getGlobal();
if ((Modifier && strcmp(Modifier, "lo16") == 0) ||
(TF & ARMII::MO_LO16))
O << ":lower16:";
else if ((Modifier && strcmp(Modifier, "hi16") == 0) ||
(TF & ARMII::MO_HI16))
O << ":upper16:";
O << *Mang->getSymbol(GV);
printOffset(MO.getOffset(), O);
if (TF == ARMII::MO_PLT)
O << "(PLT)";
break;
}
case MachineOperand::MO_ExternalSymbol: {
O << *GetExternalSymbolSymbol(MO.getSymbolName());
if (TF == ARMII::MO_PLT)
O << "(PLT)";
break;
}
case MachineOperand::MO_ConstantPoolIndex:
O << *GetCPISymbol(MO.getIndex());
break;
case MachineOperand::MO_JumpTableIndex:
O << *GetJTISymbol(MO.getIndex());
break;
}
}
//===--------------------------------------------------------------------===//
MCSymbol *ARMAsmPrinter::
GetARMSetPICJumpTableLabel2(unsigned uid, unsigned uid2,
const MachineBasicBlock *MBB) const {
SmallString<60> Name;
raw_svector_ostream(Name) << MAI->getPrivateGlobalPrefix()
<< getFunctionNumber() << '_' << uid << '_' << uid2
<< "_set_" << MBB->getNumber();
return OutContext.GetOrCreateSymbol(Name.str());
}
MCSymbol *ARMAsmPrinter::
GetARMJTIPICJumpTableLabel2(unsigned uid, unsigned uid2) const {
SmallString<60> Name;
raw_svector_ostream(Name) << MAI->getPrivateGlobalPrefix() << "JTI"
<< getFunctionNumber() << '_' << uid << '_' << uid2;
return OutContext.GetOrCreateSymbol(Name.str());
}
MCSymbol *ARMAsmPrinter::GetARMSJLJEHLabel(void) const {
SmallString<60> Name;
raw_svector_ostream(Name) << MAI->getPrivateGlobalPrefix() << "SJLJEH"
<< getFunctionNumber();
return OutContext.GetOrCreateSymbol(Name.str());
}
bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
unsigned AsmVariant, const char *ExtraCode,
raw_ostream &O) {
// Does this asm operand have a single letter operand modifier?
if (ExtraCode && ExtraCode[0]) {
if (ExtraCode[1] != 0) return true; // Unknown modifier.
switch (ExtraCode[0]) {
default: return true; // Unknown modifier.
case 'a': // Print as a memory address.
if (MI->getOperand(OpNum).isReg()) {
O << "["
<< ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg())
<< "]";
return false;
}
// Fallthrough
case 'c': // Don't print "#" before an immediate operand.
if (!MI->getOperand(OpNum).isImm())
return true;
O << MI->getOperand(OpNum).getImm();
return false;
case 'P': // Print a VFP double precision register.
case 'q': // Print a NEON quad precision register.
printOperand(MI, OpNum, O);
return false;
case 'y': // Print a VFP single precision register as indexed double.
// This uses the ordering of the alias table to get the first 'd' register
// that overlaps the 's' register. Also, s0 is an odd register, hence the
// odd modulus check below.
if (MI->getOperand(OpNum).isReg()) {
unsigned Reg = MI->getOperand(OpNum).getReg();
const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
O << ARMInstPrinter::getRegisterName(TRI->getAliasSet(Reg)[0]) <<
(((Reg % 2) == 1) ? "[0]" : "[1]");
return false;
}
return true;
case 'B': // Bitwise inverse of integer or symbol without a preceding #.
if (!MI->getOperand(OpNum).isImm())
return true;
O << ~(MI->getOperand(OpNum).getImm());
return false;
case 'L': // The low 16 bits of an immediate constant.
if (!MI->getOperand(OpNum).isImm())
return true;
O << (MI->getOperand(OpNum).getImm() & 0xffff);
return false;
case 'M': { // A register range suitable for LDM/STM.
if (!MI->getOperand(OpNum).isReg())
return true;
const MachineOperand &MO = MI->getOperand(OpNum);
unsigned RegBegin = MO.getReg();
// This takes advantage of the 2 operand-ness of ldm/stm and that we've
// already got the operands in registers that are operands to the
// inline asm statement.
O << "{" << ARMInstPrinter::getRegisterName(RegBegin);
// FIXME: The register allocator not only may not have given us the
// registers in sequence, but may not be in ascending registers. This
// will require changes in the register allocator that'll need to be
// propagated down here if the operands change.
unsigned RegOps = OpNum + 1;
while (MI->getOperand(RegOps).isReg()) {
O << ", "
<< ARMInstPrinter::getRegisterName(MI->getOperand(RegOps).getReg());
RegOps++;
}
O << "}";
return false;
}
// These modifiers are not yet supported.
case 'p': // The high single-precision register of a VFP double-precision
// register.
case 'e': // The low doubleword register of a NEON quad register.
case 'f': // The high doubleword register of a NEON quad register.
case 'h': // A range of VFP/NEON registers suitable for VLD1/VST1.
case 'Q': // The least significant register of a pair.
case 'R': // The most significant register of a pair.
case 'H': // The highest-numbered register of a pair.
return true;
}
}
printOperand(MI, OpNum, O);
return false;
}
bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
unsigned OpNum, unsigned AsmVariant,
const char *ExtraCode,
raw_ostream &O) {
// Does this asm operand have a single letter operand modifier?
if (ExtraCode && ExtraCode[0]) {
if (ExtraCode[1] != 0) return true; // Unknown modifier.
switch (ExtraCode[0]) {
case 'A': // A memory operand for a VLD1/VST1 instruction.
default: return true; // Unknown modifier.
case 'm': // The base register of a memory operand.
if (!MI->getOperand(OpNum).isReg())
return true;
O << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg());
return false;
}
}
const MachineOperand &MO = MI->getOperand(OpNum);
assert(MO.isReg() && "unexpected inline asm memory operand");
O << "[" << ARMInstPrinter::getRegisterName(MO.getReg()) << "]";
return false;
}
void ARMAsmPrinter::EmitStartOfAsmFile(Module &M) {
if (Subtarget->isTargetDarwin()) {
Reloc::Model RelocM = TM.getRelocationModel();
if (RelocM == Reloc::PIC_ || RelocM == Reloc::DynamicNoPIC) {
// Declare all the text sections up front (before the DWARF sections
// emitted by AsmPrinter::doInitialization) so the assembler will keep
// them together at the beginning of the object file. This helps
// avoid out-of-range branches that are due a fundamental limitation of
// the way symbol offsets are encoded with the current Darwin ARM
// relocations.
const TargetLoweringObjectFileMachO &TLOFMacho =
static_cast<const TargetLoweringObjectFileMachO &>(
getObjFileLowering());
OutStreamer.SwitchSection(TLOFMacho.getTextSection());
OutStreamer.SwitchSection(TLOFMacho.getTextCoalSection());
OutStreamer.SwitchSection(TLOFMacho.getConstTextCoalSection());
if (RelocM == Reloc::DynamicNoPIC) {
const MCSection *sect =
OutContext.getMachOSection("__TEXT", "__symbol_stub4",
MCSectionMachO::S_SYMBOL_STUBS,
12, SectionKind::getText());
OutStreamer.SwitchSection(sect);
} else {
const MCSection *sect =
OutContext.getMachOSection("__TEXT", "__picsymbolstub4",
MCSectionMachO::S_SYMBOL_STUBS,
16, SectionKind::getText());
OutStreamer.SwitchSection(sect);
}
const MCSection *StaticInitSect =
OutContext.getMachOSection("__TEXT", "__StaticInit",
MCSectionMachO::S_REGULAR |
MCSectionMachO::S_ATTR_PURE_INSTRUCTIONS,
SectionKind::getText());
OutStreamer.SwitchSection(StaticInitSect);
}
}
// Use unified assembler syntax.
OutStreamer.EmitAssemblerFlag(MCAF_SyntaxUnified);
// Emit ARM Build Attributes
if (Subtarget->isTargetELF()) {
emitAttributes();
}
}
void ARMAsmPrinter::EmitEndOfAsmFile(Module &M) {
if (Subtarget->isTargetDarwin()) {
// All darwin targets use mach-o.
const TargetLoweringObjectFileMachO &TLOFMacho =
static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering());
MachineModuleInfoMachO &MMIMacho =
MMI->getObjFileInfo<MachineModuleInfoMachO>();
// Output non-lazy-pointers for external and common global variables.
MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList();
if (!Stubs.empty()) {
// Switch with ".non_lazy_symbol_pointer" directive.
OutStreamer.SwitchSection(TLOFMacho.getNonLazySymbolPointerSection());
EmitAlignment(2);
for (unsigned i = 0, e = Stubs.size(); i != e; ++i) {
// L_foo$stub:
OutStreamer.EmitLabel(Stubs[i].first);
// .indirect_symbol _foo
MachineModuleInfoImpl::StubValueTy &MCSym = Stubs[i].second;
OutStreamer.EmitSymbolAttribute(MCSym.getPointer(),MCSA_IndirectSymbol);
if (MCSym.getInt())
// External to current translation unit.
OutStreamer.EmitIntValue(0, 4/*size*/, 0/*addrspace*/);
else
// Internal to current translation unit.
//
// When we place the LSDA into the TEXT section, the type info
// pointers need to be indirect and pc-rel. We accomplish this by
// using NLPs; however, sometimes the types are local to the file.
// We need to fill in the value for the NLP in those cases.
OutStreamer.EmitValue(MCSymbolRefExpr::Create(MCSym.getPointer(),
OutContext),
4/*size*/, 0/*addrspace*/);
}
Stubs.clear();
OutStreamer.AddBlankLine();
}
Stubs = MMIMacho.GetHiddenGVStubList();
if (!Stubs.empty()) {
OutStreamer.SwitchSection(getObjFileLowering().getDataSection());
EmitAlignment(2);
for (unsigned i = 0, e = Stubs.size(); i != e; ++i) {
// L_foo$stub:
OutStreamer.EmitLabel(Stubs[i].first);
// .long _foo
OutStreamer.EmitValue(MCSymbolRefExpr::
Create(Stubs[i].second.getPointer(),
OutContext),
4/*size*/, 0/*addrspace*/);
}
Stubs.clear();
OutStreamer.AddBlankLine();
}
// Funny Darwin hack: This flag tells the linker that no global symbols
// contain code that falls through to other global symbols (e.g. the obvious
// implementation of multiple entry points). If this doesn't occur, the
// linker can safely perform dead code stripping. Since LLVM never
// generates code that does this, it is always safe to set.
OutStreamer.EmitAssemblerFlag(MCAF_SubsectionsViaSymbols);
}
}
//===----------------------------------------------------------------------===//
// Helper routines for EmitStartOfAsmFile() and EmitEndOfAsmFile()
// FIXME:
// The following seem like one-off assembler flags, but they actually need
// to appear in the .ARM.attributes section in ELF.
// Instead of subclassing the MCELFStreamer, we do the work here.
void ARMAsmPrinter::emitAttributes() {
emitARMAttributeSection();
/* GAS expect .fpu to be emitted, regardless of VFP build attribute */
bool emitFPU = false;
AttributeEmitter *AttrEmitter;
if (OutStreamer.hasRawTextSupport()) {
AttrEmitter = new AsmAttributeEmitter(OutStreamer);
emitFPU = true;
} else {
MCObjectStreamer &O = static_cast<MCObjectStreamer&>(OutStreamer);
AttrEmitter = new ObjectAttributeEmitter(O);
}
AttrEmitter->MaybeSwitchVendor("aeabi");
std::string CPUString = Subtarget->getCPUString();
if (CPUString == "cortex-a8" ||
Subtarget->isCortexA8()) {
AttrEmitter->EmitTextAttribute(ARMBuildAttrs::CPU_name, "cortex-a8");
AttrEmitter->EmitAttribute(ARMBuildAttrs::CPU_arch, ARMBuildAttrs::v7);
AttrEmitter->EmitAttribute(ARMBuildAttrs::CPU_arch_profile,
ARMBuildAttrs::ApplicationProfile);
AttrEmitter->EmitAttribute(ARMBuildAttrs::ARM_ISA_use,
ARMBuildAttrs::Allowed);
AttrEmitter->EmitAttribute(ARMBuildAttrs::THUMB_ISA_use,
ARMBuildAttrs::AllowThumb32);
// Fixme: figure out when this is emitted.
//AttrEmitter->EmitAttribute(ARMBuildAttrs::WMMX_arch,
// ARMBuildAttrs::AllowWMMXv1);
//
/// ADD additional Else-cases here!
} else if (CPUString == "xscale") {
AttrEmitter->EmitAttribute(ARMBuildAttrs::CPU_arch, ARMBuildAttrs::v5TEJ);
AttrEmitter->EmitAttribute(ARMBuildAttrs::ARM_ISA_use,
ARMBuildAttrs::Allowed);
AttrEmitter->EmitAttribute(ARMBuildAttrs::THUMB_ISA_use,
ARMBuildAttrs::Allowed);
} else if (CPUString == "generic") {
// FIXME: Why these defaults?
AttrEmitter->EmitAttribute(ARMBuildAttrs::CPU_arch, ARMBuildAttrs::v4T);
AttrEmitter->EmitAttribute(ARMBuildAttrs::ARM_ISA_use,
ARMBuildAttrs::Allowed);
AttrEmitter->EmitAttribute(ARMBuildAttrs::THUMB_ISA_use,
ARMBuildAttrs::Allowed);
}
if (Subtarget->hasNEON() && emitFPU) {
/* NEON is not exactly a VFP architecture, but GAS emit one of
* neon/vfpv3/vfpv2 for .fpu parameters */
AttrEmitter->EmitTextAttribute(ARMBuildAttrs::Advanced_SIMD_arch, "neon");
/* If emitted for NEON, omit from VFP below, since you can have both
* NEON and VFP in build attributes but only one .fpu */
emitFPU = false;
}
/* VFPv3 + .fpu */
if (Subtarget->hasVFP3()) {
AttrEmitter->EmitAttribute(ARMBuildAttrs::VFP_arch,
ARMBuildAttrs::AllowFPv3A);
if (emitFPU)
AttrEmitter->EmitTextAttribute(ARMBuildAttrs::VFP_arch, "vfpv3");
/* VFPv2 + .fpu */
} else if (Subtarget->hasVFP2()) {
AttrEmitter->EmitAttribute(ARMBuildAttrs::VFP_arch,
ARMBuildAttrs::AllowFPv2);
if (emitFPU)
AttrEmitter->EmitTextAttribute(ARMBuildAttrs::VFP_arch, "vfpv2");
}
/* TODO: ARMBuildAttrs::Allowed is not completely accurate,
* since NEON can have 1 (allowed) or 2 (fused MAC operations) */
if (Subtarget->hasNEON()) {
AttrEmitter->EmitAttribute(ARMBuildAttrs::Advanced_SIMD_arch,
ARMBuildAttrs::Allowed);
}
// Signal various FP modes.
if (!UnsafeFPMath) {
AttrEmitter->EmitAttribute(ARMBuildAttrs::ABI_FP_denormal,
ARMBuildAttrs::Allowed);
AttrEmitter->EmitAttribute(ARMBuildAttrs::ABI_FP_exceptions,
ARMBuildAttrs::Allowed);
}
if (NoInfsFPMath && NoNaNsFPMath)
AttrEmitter->EmitAttribute(ARMBuildAttrs::ABI_FP_number_model,
ARMBuildAttrs::Allowed);
else
AttrEmitter->EmitAttribute(ARMBuildAttrs::ABI_FP_number_model,
ARMBuildAttrs::AllowIEE754);
// FIXME: add more flags to ARMBuildAttrs.h
// 8-bytes alignment stuff.
AttrEmitter->EmitAttribute(ARMBuildAttrs::ABI_align8_needed, 1);
AttrEmitter->EmitAttribute(ARMBuildAttrs::ABI_align8_preserved, 1);
// Hard float. Use both S and D registers and conform to AAPCS-VFP.
if (Subtarget->isAAPCS_ABI() && FloatABIType == FloatABI::Hard) {
AttrEmitter->EmitAttribute(ARMBuildAttrs::ABI_HardFP_use, 3);
AttrEmitter->EmitAttribute(ARMBuildAttrs::ABI_VFP_args, 1);
}
// FIXME: Should we signal R9 usage?
if (Subtarget->hasDivide())
AttrEmitter->EmitAttribute(ARMBuildAttrs::DIV_use, 1);
AttrEmitter->Finish();
delete AttrEmitter;
}
void ARMAsmPrinter::emitARMAttributeSection() {
// <format-version>
// [ <section-length> "vendor-name"
// [ <file-tag> <size> <attribute>*
// | <section-tag> <size> <section-number>* 0 <attribute>*
// | <symbol-tag> <size> <symbol-number>* 0 <attribute>*
// ]+
// ]*
if (OutStreamer.hasRawTextSupport())
return;
const ARMElfTargetObjectFile &TLOFELF =
static_cast<const ARMElfTargetObjectFile &>
(getObjFileLowering());
OutStreamer.SwitchSection(TLOFELF.getAttributesSection());
// Format version
OutStreamer.EmitIntValue(0x41, 1);
}
//===----------------------------------------------------------------------===//
static MCSymbol *getPICLabel(const char *Prefix, unsigned FunctionNumber,
unsigned LabelId, MCContext &Ctx) {
MCSymbol *Label = Ctx.GetOrCreateSymbol(Twine(Prefix)
+ "PC" + Twine(FunctionNumber) + "_" + Twine(LabelId));
return Label;
}
static MCSymbolRefExpr::VariantKind
getModifierVariantKind(ARMCP::ARMCPModifier Modifier) {
switch (Modifier) {
default: llvm_unreachable("Unknown modifier!");
case ARMCP::no_modifier: return MCSymbolRefExpr::VK_None;
case ARMCP::TLSGD: return MCSymbolRefExpr::VK_ARM_TLSGD;
case ARMCP::TPOFF: return MCSymbolRefExpr::VK_ARM_TPOFF;
case ARMCP::GOTTPOFF: return MCSymbolRefExpr::VK_ARM_GOTTPOFF;
case ARMCP::GOT: return MCSymbolRefExpr::VK_ARM_GOT;
case ARMCP::GOTOFF: return MCSymbolRefExpr::VK_ARM_GOTOFF;
}
return MCSymbolRefExpr::VK_None;
}
MCSymbol *ARMAsmPrinter::GetARMGVSymbol(const GlobalValue *GV) {
bool isIndirect = Subtarget->isTargetDarwin() &&
Subtarget->GVIsIndirectSymbol(GV, TM.getRelocationModel());
if (!isIndirect)
return Mang->getSymbol(GV);
// FIXME: Remove this when Darwin transition to @GOT like syntax.
MCSymbol *MCSym = GetSymbolWithGlobalValueBase(GV, "$non_lazy_ptr");
MachineModuleInfoMachO &MMIMachO =
MMI->getObjFileInfo<MachineModuleInfoMachO>();
MachineModuleInfoImpl::StubValueTy &StubSym =
GV->hasHiddenVisibility() ? MMIMachO.getHiddenGVStubEntry(MCSym) :
MMIMachO.getGVStubEntry(MCSym);
if (StubSym.getPointer() == 0)
StubSym = MachineModuleInfoImpl::
StubValueTy(Mang->getSymbol(GV), !GV->hasInternalLinkage());
return MCSym;
}
void ARMAsmPrinter::
EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
int Size = TM.getTargetData()->getTypeAllocSize(MCPV->getType());
ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV);
MCSymbol *MCSym;
if (ACPV->isLSDA()) {
SmallString<128> Str;
raw_svector_ostream OS(Str);
OS << MAI->getPrivateGlobalPrefix() << "_LSDA_" << getFunctionNumber();
MCSym = OutContext.GetOrCreateSymbol(OS.str());
} else if (ACPV->isBlockAddress()) {
MCSym = GetBlockAddressSymbol(ACPV->getBlockAddress());
} else if (ACPV->isGlobalValue()) {
const GlobalValue *GV = ACPV->getGV();
MCSym = GetARMGVSymbol(GV);
} else {
assert(ACPV->isExtSymbol() && "unrecognized constant pool value");
MCSym = GetExternalSymbolSymbol(ACPV->getSymbol());
}
// Create an MCSymbol for the reference.
const MCExpr *Expr =
MCSymbolRefExpr::Create(MCSym, getModifierVariantKind(ACPV->getModifier()),
OutContext);
if (ACPV->getPCAdjustment()) {
MCSymbol *PCLabel = getPICLabel(MAI->getPrivateGlobalPrefix(),
getFunctionNumber(),
ACPV->getLabelId(),
OutContext);
const MCExpr *PCRelExpr = MCSymbolRefExpr::Create(PCLabel, OutContext);
PCRelExpr =
MCBinaryExpr::CreateAdd(PCRelExpr,
MCConstantExpr::Create(ACPV->getPCAdjustment(),
OutContext),
OutContext);
if (ACPV->mustAddCurrentAddress()) {
// We want "(<expr> - .)", but MC doesn't have a concept of the '.'
// label, so just emit a local label end reference that instead.
MCSymbol *DotSym = OutContext.CreateTempSymbol();
OutStreamer.EmitLabel(DotSym);
const MCExpr *DotExpr = MCSymbolRefExpr::Create(DotSym, OutContext);
PCRelExpr = MCBinaryExpr::CreateSub(PCRelExpr, DotExpr, OutContext);
}
Expr = MCBinaryExpr::CreateSub(Expr, PCRelExpr, OutContext);
}
OutStreamer.EmitValue(Expr, Size);
}
void ARMAsmPrinter::EmitJumpTable(const MachineInstr *MI) {
unsigned Opcode = MI->getOpcode();
int OpNum = 1;
if (Opcode == ARM::BR_JTadd)
OpNum = 2;
else if (Opcode == ARM::BR_JTm)
OpNum = 3;
const MachineOperand &MO1 = MI->getOperand(OpNum);
const MachineOperand &MO2 = MI->getOperand(OpNum+1); // Unique Id
unsigned JTI = MO1.getIndex();
// Emit a label for the jump table.
MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel2(JTI, MO2.getImm());
OutStreamer.EmitLabel(JTISymbol);
// Emit each entry of the table.
const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) {
MachineBasicBlock *MBB = JTBBs[i];
// Construct an MCExpr for the entry. We want a value of the form:
// (BasicBlockAddr - TableBeginAddr)
//
// For example, a table with entries jumping to basic blocks BB0 and BB1
// would look like:
// LJTI_0_0:
// .word (LBB0 - LJTI_0_0)
// .word (LBB1 - LJTI_0_0)
const MCExpr *Expr = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
if (TM.getRelocationModel() == Reloc::PIC_)
Expr = MCBinaryExpr::CreateSub(Expr, MCSymbolRefExpr::Create(JTISymbol,
OutContext),
OutContext);
OutStreamer.EmitValue(Expr, 4);
}
}
void ARMAsmPrinter::EmitJump2Table(const MachineInstr *MI) {
unsigned Opcode = MI->getOpcode();
int OpNum = (Opcode == ARM::t2BR_JT) ? 2 : 1;
const MachineOperand &MO1 = MI->getOperand(OpNum);
const MachineOperand &MO2 = MI->getOperand(OpNum+1); // Unique Id
unsigned JTI = MO1.getIndex();
// Emit a label for the jump table.
MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel2(JTI, MO2.getImm());
OutStreamer.EmitLabel(JTISymbol);
// Emit each entry of the table.
const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
unsigned OffsetWidth = 4;
if (MI->getOpcode() == ARM::t2TBB_JT)
OffsetWidth = 1;
else if (MI->getOpcode() == ARM::t2TBH_JT)
OffsetWidth = 2;
for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) {
MachineBasicBlock *MBB = JTBBs[i];
const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::Create(MBB->getSymbol(),
OutContext);
// If this isn't a TBB or TBH, the entries are direct branch instructions.
if (OffsetWidth == 4) {
MCInst BrInst;
BrInst.setOpcode(ARM::t2B);
BrInst.addOperand(MCOperand::CreateExpr(MBBSymbolExpr));
OutStreamer.EmitInstruction(BrInst);
continue;
}
// Otherwise it's an offset from the dispatch instruction. Construct an
// MCExpr for the entry. We want a value of the form:
// (BasicBlockAddr - TableBeginAddr) / 2
//
// For example, a TBB table with entries jumping to basic blocks BB0 and BB1
// would look like:
// LJTI_0_0:
// .byte (LBB0 - LJTI_0_0) / 2
// .byte (LBB1 - LJTI_0_0) / 2
const MCExpr *Expr =
MCBinaryExpr::CreateSub(MBBSymbolExpr,
MCSymbolRefExpr::Create(JTISymbol, OutContext),
OutContext);
Expr = MCBinaryExpr::CreateDiv(Expr, MCConstantExpr::Create(2, OutContext),
OutContext);
OutStreamer.EmitValue(Expr, OffsetWidth);
}
}
void ARMAsmPrinter::PrintDebugValueComment(const MachineInstr *MI,
raw_ostream &OS) {
unsigned NOps = MI->getNumOperands();
assert(NOps==4);
OS << '\t' << MAI->getCommentString() << "DEBUG_VALUE: ";
// cast away const; DIetc do not take const operands for some reason.
DIVariable V(const_cast<MDNode *>(MI->getOperand(NOps-1).getMetadata()));
OS << V.getName();
OS << " <- ";
// Frame address. Currently handles register +- offset only.
assert(MI->getOperand(0).isReg() && MI->getOperand(1).isImm());
OS << '['; printOperand(MI, 0, OS); OS << '+'; printOperand(MI, 1, OS);
OS << ']';
OS << "+";
printOperand(MI, NOps-2, OS);
}
static void populateADROperands(MCInst &Inst, unsigned Dest,
const MCSymbol *Label,
unsigned pred, unsigned ccreg,
MCContext &Ctx) {
const MCExpr *SymbolExpr = MCSymbolRefExpr::Create(Label, Ctx);
Inst.addOperand(MCOperand::CreateReg(Dest));
Inst.addOperand(MCOperand::CreateExpr(SymbolExpr));
// Add predicate operands.
Inst.addOperand(MCOperand::CreateImm(pred));
Inst.addOperand(MCOperand::CreateReg(ccreg));
}
void ARMAsmPrinter::EmitPatchedInstruction(const MachineInstr *MI,
unsigned Opcode) {
MCInst TmpInst;
// Emit the instruction as usual, just patch the opcode.
LowerARMMachineInstrToMCInst(MI, TmpInst, *this);
TmpInst.setOpcode(Opcode);
OutStreamer.EmitInstruction(TmpInst);
}
void ARMAsmPrinter::EmitUnwindingInstruction(const MachineInstr *MI) {
assert(MI->getFlag(MachineInstr::FrameSetup) &&
"Only instruction which are involved into frame setup code are allowed");
const MachineFunction &MF = *MI->getParent()->getParent();
const TargetRegisterInfo *RegInfo = MF.getTarget().getRegisterInfo();
const ARMFunctionInfo &AFI = *MF.getInfo<ARMFunctionInfo>();
unsigned FramePtr = RegInfo->getFrameRegister(MF);
unsigned Opc = MI->getOpcode();
unsigned SrcReg, DstReg;
if (Opc == ARM::tPUSH || Opc == ARM::tLDRpci) {
// Two special cases:
// 1) tPUSH does not have src/dst regs.
// 2) for Thumb1 code we sometimes materialize the constant via constpool
// load. Yes, this is pretty fragile, but for now I don't see better
// way... :(
SrcReg = DstReg = ARM::SP;
} else {
SrcReg = MI->getOperand(1).getReg();
DstReg = MI->getOperand(0).getReg();
}
// Try to figure out the unwinding opcode out of src / dst regs.
if (MI->getDesc().mayStore()) {
// Register saves.
assert(DstReg == ARM::SP &&
"Only stack pointer as a destination reg is supported");
SmallVector<unsigned, 4> RegList;
// Skip src & dst reg, and pred ops.
unsigned StartOp = 2 + 2;
// Use all the operands.
unsigned NumOffset = 0;
switch (Opc) {
default:
MI->dump();
assert(0 && "Unsupported opcode for unwinding information");
case ARM::tPUSH:
// Special case here: no src & dst reg, but two extra imp ops.
StartOp = 2; NumOffset = 2;
case ARM::STMDB_UPD:
case ARM::t2STMDB_UPD:
case ARM::VSTMDDB_UPD:
assert(SrcReg == ARM::SP &&
"Only stack pointer as a source reg is supported");
for (unsigned i = StartOp, NumOps = MI->getNumOperands() - NumOffset;
i != NumOps; ++i)
RegList.push_back(MI->getOperand(i).getReg());
break;
case ARM::STR_PRE:
assert(MI->getOperand(2).getReg() == ARM::SP &&
"Only stack pointer as a source reg is supported");
RegList.push_back(SrcReg);
break;
}
OutStreamer.EmitRegSave(RegList, Opc == ARM::VSTMDDB_UPD);
} else {
// Changes of stack / frame pointer.
if (SrcReg == ARM::SP) {
int64_t Offset = 0;
switch (Opc) {
default:
MI->dump();
assert(0 && "Unsupported opcode for unwinding information");
case ARM::MOVr:
case ARM::tMOVgpr2gpr:
case ARM::tMOVgpr2tgpr:
Offset = 0;
break;
case ARM::ADDri:
Offset = -MI->getOperand(2).getImm();
break;
case ARM::SUBri:
case ARM::t2SUBrSPi:
Offset = MI->getOperand(2).getImm();
break;
case ARM::tSUBspi:
Offset = MI->getOperand(2).getImm()*4;
break;
case ARM::tADDspi:
case ARM::tADDrSPi:
Offset = -MI->getOperand(2).getImm()*4;
break;
case ARM::tLDRpci: {
// Grab the constpool index and check, whether it corresponds to
// original or cloned constpool entry.
unsigned CPI = MI->getOperand(1).getIndex();
const MachineConstantPool *MCP = MF.getConstantPool();
if (CPI >= MCP->getConstants().size())
CPI = AFI.getOriginalCPIdx(CPI);
assert(CPI != -1U && "Invalid constpool index");
// Derive the actual offset.
const MachineConstantPoolEntry &CPE = MCP->getConstants()[CPI];
assert(!CPE.isMachineConstantPoolEntry() && "Invalid constpool entry");
// FIXME: Check for user, it should be "add" instruction!
Offset = -cast<ConstantInt>(CPE.Val.ConstVal)->getSExtValue();
break;
}
}
if (DstReg == FramePtr && FramePtr != ARM::SP)
// Set-up of the frame pointer. Positive values correspond to "add"
// instruction.
OutStreamer.EmitSetFP(FramePtr, ARM::SP, -Offset);
else if (DstReg == ARM::SP) {
// Change of SP by an offset. Positive values correspond to "sub"
// instruction.
OutStreamer.EmitPad(Offset);
} else {
MI->dump();
assert(0 && "Unsupported opcode for unwinding information");
}
} else if (DstReg == ARM::SP) {
// FIXME: .movsp goes here
MI->dump();
assert(0 && "Unsupported opcode for unwinding information");
}
else {
MI->dump();
assert(0 && "Unsupported opcode for unwinding information");
}
}
}
extern cl::opt<bool> EnableARMEHABI;
void ARMAsmPrinter::EmitInstruction(const MachineInstr *MI) {
unsigned Opc = MI->getOpcode();
switch (Opc) {
default: break;
case ARM::B: {
// B is just a Bcc with an 'always' predicate.
MCInst TmpInst;
LowerARMMachineInstrToMCInst(MI, TmpInst, *this);
TmpInst.setOpcode(ARM::Bcc);
// Add predicate operands.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
return;
}
case ARM::LDMIA_RET: {
// LDMIA_RET is just a normal LDMIA_UPD instruction that targets PC and as
// such has additional code-gen properties and scheduling information.
// To emit it, we just construct as normal and set the opcode to LDMIA_UPD.
MCInst TmpInst;
LowerARMMachineInstrToMCInst(MI, TmpInst, *this);
TmpInst.setOpcode(ARM::LDMIA_UPD);
OutStreamer.EmitInstruction(TmpInst);
return;
}
case ARM::t2ADDrSPi:
case ARM::t2ADDrSPi12:
case ARM::t2SUBrSPi:
case ARM::t2SUBrSPi12:
assert ((MI->getOperand(1).getReg() == ARM::SP) &&
"Unexpected source register!");
break;
case ARM::t2MOVi32imm: assert(0 && "Should be lowered by thumb2it pass");
case ARM::DBG_VALUE: {
if (isVerbose() && OutStreamer.hasRawTextSupport()) {
SmallString<128> TmpStr;
raw_svector_ostream OS(TmpStr);
PrintDebugValueComment(MI, OS);
OutStreamer.EmitRawText(StringRef(OS.str()));
}
return;
}
case ARM::tBfar: {
MCInst TmpInst;
TmpInst.setOpcode(ARM::tBL);
TmpInst.addOperand(MCOperand::CreateExpr(MCSymbolRefExpr::Create(
MI->getOperand(0).getMBB()->getSymbol(), OutContext)));
OutStreamer.EmitInstruction(TmpInst);
return;
}
case ARM::LEApcrel:
case ARM::tLEApcrel:
case ARM::t2LEApcrel: {
// FIXME: Need to also handle globals and externals
MCInst TmpInst;
TmpInst.setOpcode(MI->getOpcode() == ARM::t2LEApcrel ? ARM::t2ADR
: (MI->getOpcode() == ARM::tLEApcrel ? ARM::tADR
: ARM::ADR));
populateADROperands(TmpInst, MI->getOperand(0).getReg(),
GetCPISymbol(MI->getOperand(1).getIndex()),
MI->getOperand(2).getImm(), MI->getOperand(3).getReg(),
OutContext);
OutStreamer.EmitInstruction(TmpInst);
return;
}
case ARM::LEApcrelJT:
case ARM::tLEApcrelJT:
case ARM::t2LEApcrelJT: {
MCInst TmpInst;
TmpInst.setOpcode(MI->getOpcode() == ARM::t2LEApcrelJT ? ARM::t2ADR
: (MI->getOpcode() == ARM::tLEApcrelJT ? ARM::tADR
: ARM::ADR));
populateADROperands(TmpInst, MI->getOperand(0).getReg(),
GetARMJTIPICJumpTableLabel2(MI->getOperand(1).getIndex(),
MI->getOperand(2).getImm()),
MI->getOperand(3).getImm(), MI->getOperand(4).getReg(),
OutContext);
OutStreamer.EmitInstruction(TmpInst);
return;
}
case ARM::MOVPCRX: {
MCInst TmpInst;
TmpInst.setOpcode(ARM::MOVr);
TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
// Add predicate operands.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
// Add 's' bit operand (always reg0 for this)
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
return;
}
// Darwin call instructions are just normal call instructions with different
// clobber semantics (they clobber R9).
case ARM::BLr9:
case ARM::BLr9_pred:
case ARM::BLXr9:
case ARM::BLXr9_pred: {
unsigned newOpc;
switch (Opc) {
default: assert(0);
case ARM::BLr9: newOpc = ARM::BL; break;
case ARM::BLr9_pred: newOpc = ARM::BL_pred; break;
case ARM::BLXr9: newOpc = ARM::BLX; break;
case ARM::BLXr9_pred: newOpc = ARM::BLX_pred; break;
}
MCInst TmpInst;
LowerARMMachineInstrToMCInst(MI, TmpInst, *this);
TmpInst.setOpcode(newOpc);
OutStreamer.EmitInstruction(TmpInst);
return;
}
case ARM::BXr9_CALL:
case ARM::BX_CALL: {
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::MOVr);
TmpInst.addOperand(MCOperand::CreateReg(ARM::LR));
TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
// Add predicate operands.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
// Add 's' bit operand (always reg0 for this)
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::BX);
TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
OutStreamer.EmitInstruction(TmpInst);
}
return;
}
case ARM::tBXr9_CALL:
case ARM::tBX_CALL: {
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::tMOVr);
TmpInst.addOperand(MCOperand::CreateReg(ARM::LR));
TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::tBX);
TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
// Add predicate operands.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
return;
}
case ARM::BMOVPCRXr9_CALL:
case ARM::BMOVPCRX_CALL: {
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::MOVr);
TmpInst.addOperand(MCOperand::CreateReg(ARM::LR));
TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
// Add predicate operands.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
// Add 's' bit operand (always reg0 for this)
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::MOVr);
TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
// Add predicate operands.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
// Add 's' bit operand (always reg0 for this)
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
return;
}
case ARM::MOVi16_ga_pcrel:
case ARM::t2MOVi16_ga_pcrel: {
MCInst TmpInst;
TmpInst.setOpcode(Opc == ARM::MOVi16_ga_pcrel? ARM::MOVi16 : ARM::t2MOVi16);
TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
unsigned TF = MI->getOperand(1).getTargetFlags();
bool isPIC = TF == ARMII::MO_LO16_NONLAZY_PIC;
const GlobalValue *GV = MI->getOperand(1).getGlobal();
MCSymbol *GVSym = GetARMGVSymbol(GV);
const MCExpr *GVSymExpr = MCSymbolRefExpr::Create(GVSym, OutContext);
if (isPIC) {
MCSymbol *LabelSym = getPICLabel(MAI->getPrivateGlobalPrefix(),
getFunctionNumber(),
MI->getOperand(2).getImm(), OutContext);
const MCExpr *LabelSymExpr= MCSymbolRefExpr::Create(LabelSym, OutContext);
unsigned PCAdj = (Opc == ARM::MOVi16_ga_pcrel) ? 8 : 4;
const MCExpr *PCRelExpr =
ARMMCExpr::CreateLower16(MCBinaryExpr::CreateSub(GVSymExpr,
MCBinaryExpr::CreateAdd(LabelSymExpr,
MCConstantExpr::Create(PCAdj, OutContext),
OutContext), OutContext), OutContext);
TmpInst.addOperand(MCOperand::CreateExpr(PCRelExpr));
} else {
const MCExpr *RefExpr= ARMMCExpr::CreateLower16(GVSymExpr, OutContext);
TmpInst.addOperand(MCOperand::CreateExpr(RefExpr));
}
// Add predicate operands.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
// Add 's' bit operand (always reg0 for this)
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
return;
}
case ARM::MOVTi16_ga_pcrel:
case ARM::t2MOVTi16_ga_pcrel: {
MCInst TmpInst;
TmpInst.setOpcode(Opc == ARM::MOVTi16_ga_pcrel
? ARM::MOVTi16 : ARM::t2MOVTi16);
TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(1).getReg()));
unsigned TF = MI->getOperand(2).getTargetFlags();
bool isPIC = TF == ARMII::MO_HI16_NONLAZY_PIC;
const GlobalValue *GV = MI->getOperand(2).getGlobal();
MCSymbol *GVSym = GetARMGVSymbol(GV);
const MCExpr *GVSymExpr = MCSymbolRefExpr::Create(GVSym, OutContext);
if (isPIC) {
MCSymbol *LabelSym = getPICLabel(MAI->getPrivateGlobalPrefix(),
getFunctionNumber(),
MI->getOperand(3).getImm(), OutContext);
const MCExpr *LabelSymExpr= MCSymbolRefExpr::Create(LabelSym, OutContext);
unsigned PCAdj = (Opc == ARM::MOVTi16_ga_pcrel) ? 8 : 4;
const MCExpr *PCRelExpr =
ARMMCExpr::CreateUpper16(MCBinaryExpr::CreateSub(GVSymExpr,
MCBinaryExpr::CreateAdd(LabelSymExpr,
MCConstantExpr::Create(PCAdj, OutContext),
OutContext), OutContext), OutContext);
TmpInst.addOperand(MCOperand::CreateExpr(PCRelExpr));
} else {
const MCExpr *RefExpr= ARMMCExpr::CreateUpper16(GVSymExpr, OutContext);
TmpInst.addOperand(MCOperand::CreateExpr(RefExpr));
}
// Add predicate operands.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
// Add 's' bit operand (always reg0 for this)
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
return;
}
case ARM::tPICADD: {
// This is a pseudo op for a label + instruction sequence, which looks like:
// LPC0:
// add r0, pc
// This adds the address of LPC0 to r0.
// Emit the label.
OutStreamer.EmitLabel(getPICLabel(MAI->getPrivateGlobalPrefix(),
getFunctionNumber(), MI->getOperand(2).getImm(),
OutContext));
// Form and emit the add.
MCInst AddInst;
AddInst.setOpcode(ARM::tADDhirr);
AddInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
AddInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
AddInst.addOperand(MCOperand::CreateReg(ARM::PC));
// Add predicate operands.
AddInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
AddInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(AddInst);
return;
}
case ARM::PICADD: {
// This is a pseudo op for a label + instruction sequence, which looks like:
// LPC0:
// add r0, pc, r0
// This adds the address of LPC0 to r0.
// Emit the label.
OutStreamer.EmitLabel(getPICLabel(MAI->getPrivateGlobalPrefix(),
getFunctionNumber(), MI->getOperand(2).getImm(),
OutContext));
// Form and emit the add.
MCInst AddInst;
AddInst.setOpcode(ARM::ADDrr);
AddInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
AddInst.addOperand(MCOperand::CreateReg(ARM::PC));
AddInst.addOperand(MCOperand::CreateReg(MI->getOperand(1).getReg()));
// Add predicate operands.
AddInst.addOperand(MCOperand::CreateImm(MI->getOperand(3).getImm()));
AddInst.addOperand(MCOperand::CreateReg(MI->getOperand(4).getReg()));
// Add 's' bit operand (always reg0 for this)
AddInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(AddInst);
return;
}
case ARM::PICSTR:
case ARM::PICSTRB:
case ARM::PICSTRH:
case ARM::PICLDR:
case ARM::PICLDRB:
case ARM::PICLDRH:
case ARM::PICLDRSB:
case ARM::PICLDRSH: {
// This is a pseudo op for a label + instruction sequence, which looks like:
// LPC0:
// OP r0, [pc, r0]
// The LCP0 label is referenced by a constant pool entry in order to get
// a PC-relative address at the ldr instruction.
// Emit the label.
OutStreamer.EmitLabel(getPICLabel(MAI->getPrivateGlobalPrefix(),
getFunctionNumber(), MI->getOperand(2).getImm(),
OutContext));
// Form and emit the load
unsigned Opcode;
switch (MI->getOpcode()) {
default:
llvm_unreachable("Unexpected opcode!");
case ARM::PICSTR: Opcode = ARM::STRrs; break;
case ARM::PICSTRB: Opcode = ARM::STRBrs; break;
case ARM::PICSTRH: Opcode = ARM::STRH; break;
case ARM::PICLDR: Opcode = ARM::LDRrs; break;
case ARM::PICLDRB: Opcode = ARM::LDRBrs; break;
case ARM::PICLDRH: Opcode = ARM::LDRH; break;
case ARM::PICLDRSB: Opcode = ARM::LDRSB; break;
case ARM::PICLDRSH: Opcode = ARM::LDRSH; break;
}
MCInst LdStInst;
LdStInst.setOpcode(Opcode);
LdStInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
LdStInst.addOperand(MCOperand::CreateReg(ARM::PC));
LdStInst.addOperand(MCOperand::CreateReg(MI->getOperand(1).getReg()));
LdStInst.addOperand(MCOperand::CreateImm(0));
// Add predicate operands.
LdStInst.addOperand(MCOperand::CreateImm(MI->getOperand(3).getImm()));
LdStInst.addOperand(MCOperand::CreateReg(MI->getOperand(4).getReg()));
OutStreamer.EmitInstruction(LdStInst);
return;
}
case ARM::CONSTPOOL_ENTRY: {
/// CONSTPOOL_ENTRY - This instruction represents a floating constant pool
/// in the function. The first operand is the ID# for this instruction, the
/// second is the index into the MachineConstantPool that this is, the third
/// is the size in bytes of this constant pool entry.
unsigned LabelId = (unsigned)MI->getOperand(0).getImm();
unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex();
EmitAlignment(2);
OutStreamer.EmitLabel(GetCPISymbol(LabelId));
const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx];
if (MCPE.isMachineConstantPoolEntry())
EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal);
else
EmitGlobalConstant(MCPE.Val.ConstVal);
return;
}
case ARM::t2BR_JT: {
// Lower and emit the instruction itself, then the jump table following it.
MCInst TmpInst;
TmpInst.setOpcode(ARM::tMOVgpr2gpr);
TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
// Add predicate operands.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
// Output the data for the jump table itself
EmitJump2Table(MI);
return;
}
case ARM::t2TBB_JT: {
// Lower and emit the instruction itself, then the jump table following it.
MCInst TmpInst;
TmpInst.setOpcode(ARM::t2TBB);
TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
// Add predicate operands.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
// Output the data for the jump table itself
EmitJump2Table(MI);
// Make sure the next instruction is 2-byte aligned.
EmitAlignment(1);
return;
}
case ARM::t2TBH_JT: {
// Lower and emit the instruction itself, then the jump table following it.
MCInst TmpInst;
TmpInst.setOpcode(ARM::t2TBH);
TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
// Add predicate operands.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
// Output the data for the jump table itself
EmitJump2Table(MI);
return;
}
case ARM::tBR_JTr:
case ARM::BR_JTr: {
// Lower and emit the instruction itself, then the jump table following it.
// mov pc, target
MCInst TmpInst;
unsigned Opc = MI->getOpcode() == ARM::BR_JTr ?
ARM::MOVr : ARM::tMOVgpr2gpr;
TmpInst.setOpcode(Opc);
TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
// Add predicate operands.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
// Add 's' bit operand (always reg0 for this)
if (Opc == ARM::MOVr)
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
// Make sure the Thumb jump table is 4-byte aligned.
if (Opc == ARM::tMOVgpr2gpr)
EmitAlignment(2);
// Output the data for the jump table itself
EmitJumpTable(MI);
return;
}
case ARM::BR_JTm: {
// Lower and emit the instruction itself, then the jump table following it.
// ldr pc, target
MCInst TmpInst;
if (MI->getOperand(1).getReg() == 0) {
// literal offset
TmpInst.setOpcode(ARM::LDRi12);
TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
TmpInst.addOperand(MCOperand::CreateImm(MI->getOperand(2).getImm()));
} else {
TmpInst.setOpcode(ARM::LDRrs);
TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(1).getReg()));
TmpInst.addOperand(MCOperand::CreateImm(0));
}
// Add predicate operands.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
// Output the data for the jump table itself
EmitJumpTable(MI);
return;
}
case ARM::BR_JTadd: {
// Lower and emit the instruction itself, then the jump table following it.
// add pc, target, idx
MCInst TmpInst;
TmpInst.setOpcode(ARM::ADDrr);
TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(1).getReg()));
// Add predicate operands.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
// Add 's' bit operand (always reg0 for this)
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
// Output the data for the jump table itself
EmitJumpTable(MI);
return;
}
case ARM::TRAP: {
// Non-Darwin binutils don't yet support the "trap" mnemonic.
// FIXME: Remove this special case when they do.
if (!Subtarget->isTargetDarwin()) {
//.long 0xe7ffdefe @ trap
uint32_t Val = 0xe7ffdefeUL;
OutStreamer.AddComment("trap");
OutStreamer.EmitIntValue(Val, 4);
return;
}
break;
}
case ARM::tTRAP: {
// Non-Darwin binutils don't yet support the "trap" mnemonic.
// FIXME: Remove this special case when they do.
if (!Subtarget->isTargetDarwin()) {
//.short 57086 @ trap
uint16_t Val = 0xdefe;
OutStreamer.AddComment("trap");
OutStreamer.EmitIntValue(Val, 2);
return;
}
break;
}
case ARM::t2Int_eh_sjlj_setjmp:
case ARM::t2Int_eh_sjlj_setjmp_nofp:
case ARM::tInt_eh_sjlj_setjmp: {
// Two incoming args: GPR:$src, GPR:$val
// mov $val, pc
// adds $val, #7
// str $val, [$src, #4]
// movs r0, #0
// b 1f
// movs r0, #1
// 1:
unsigned SrcReg = MI->getOperand(0).getReg();
unsigned ValReg = MI->getOperand(1).getReg();
MCSymbol *Label = GetARMSJLJEHLabel();
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::tMOVgpr2tgpr);
TmpInst.addOperand(MCOperand::CreateReg(ValReg));
TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
// 's' bit operand
TmpInst.addOperand(MCOperand::CreateReg(ARM::CPSR));
OutStreamer.AddComment("eh_setjmp begin");
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::tADDi3);
TmpInst.addOperand(MCOperand::CreateReg(ValReg));
// 's' bit operand
TmpInst.addOperand(MCOperand::CreateReg(ARM::CPSR));
TmpInst.addOperand(MCOperand::CreateReg(ValReg));
TmpInst.addOperand(MCOperand::CreateImm(7));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::tSTRi);
TmpInst.addOperand(MCOperand::CreateReg(ValReg));
TmpInst.addOperand(MCOperand::CreateReg(SrcReg));
// The offset immediate is #4. The operand value is scaled by 4 for the
// tSTR instruction.
TmpInst.addOperand(MCOperand::CreateImm(1));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::tMOVi8);
TmpInst.addOperand(MCOperand::CreateReg(ARM::R0));
TmpInst.addOperand(MCOperand::CreateReg(ARM::CPSR));
TmpInst.addOperand(MCOperand::CreateImm(0));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
{
const MCExpr *SymbolExpr = MCSymbolRefExpr::Create(Label, OutContext);
MCInst TmpInst;
TmpInst.setOpcode(ARM::tB);
TmpInst.addOperand(MCOperand::CreateExpr(SymbolExpr));
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::tMOVi8);
TmpInst.addOperand(MCOperand::CreateReg(ARM::R0));
TmpInst.addOperand(MCOperand::CreateReg(ARM::CPSR));
TmpInst.addOperand(MCOperand::CreateImm(1));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.AddComment("eh_setjmp end");
OutStreamer.EmitInstruction(TmpInst);
}
OutStreamer.EmitLabel(Label);
return;
}
case ARM::Int_eh_sjlj_setjmp_nofp:
case ARM::Int_eh_sjlj_setjmp: {
// Two incoming args: GPR:$src, GPR:$val
// add $val, pc, #8
// str $val, [$src, #+4]
// mov r0, #0
// add pc, pc, #0
// mov r0, #1
unsigned SrcReg = MI->getOperand(0).getReg();
unsigned ValReg = MI->getOperand(1).getReg();
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::ADDri);
TmpInst.addOperand(MCOperand::CreateReg(ValReg));
TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
TmpInst.addOperand(MCOperand::CreateImm(8));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
// 's' bit operand (always reg0 for this).
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.AddComment("eh_setjmp begin");
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::STRi12);
TmpInst.addOperand(MCOperand::CreateReg(ValReg));
TmpInst.addOperand(MCOperand::CreateReg(SrcReg));
TmpInst.addOperand(MCOperand::CreateImm(4));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::MOVi);
TmpInst.addOperand(MCOperand::CreateReg(ARM::R0));
TmpInst.addOperand(MCOperand::CreateImm(0));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
// 's' bit operand (always reg0 for this).
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::ADDri);
TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
TmpInst.addOperand(MCOperand::CreateImm(0));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
// 's' bit operand (always reg0 for this).
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::MOVi);
TmpInst.addOperand(MCOperand::CreateReg(ARM::R0));
TmpInst.addOperand(MCOperand::CreateImm(1));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
// 's' bit operand (always reg0 for this).
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.AddComment("eh_setjmp end");
OutStreamer.EmitInstruction(TmpInst);
}
return;
}
case ARM::Int_eh_sjlj_longjmp: {
// ldr sp, [$src, #8]
// ldr $scratch, [$src, #4]
// ldr r7, [$src]
// bx $scratch
unsigned SrcReg = MI->getOperand(0).getReg();
unsigned ScratchReg = MI->getOperand(1).getReg();
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::LDRi12);
TmpInst.addOperand(MCOperand::CreateReg(ARM::SP));
TmpInst.addOperand(MCOperand::CreateReg(SrcReg));
TmpInst.addOperand(MCOperand::CreateImm(8));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::LDRi12);
TmpInst.addOperand(MCOperand::CreateReg(ScratchReg));
TmpInst.addOperand(MCOperand::CreateReg(SrcReg));
TmpInst.addOperand(MCOperand::CreateImm(4));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::LDRi12);
TmpInst.addOperand(MCOperand::CreateReg(ARM::R7));
TmpInst.addOperand(MCOperand::CreateReg(SrcReg));
TmpInst.addOperand(MCOperand::CreateImm(0));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::BX);
TmpInst.addOperand(MCOperand::CreateReg(ScratchReg));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
return;
}
case ARM::tInt_eh_sjlj_longjmp: {
// ldr $scratch, [$src, #8]
// mov sp, $scratch
// ldr $scratch, [$src, #4]
// ldr r7, [$src]
// bx $scratch
unsigned SrcReg = MI->getOperand(0).getReg();
unsigned ScratchReg = MI->getOperand(1).getReg();
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::tLDRi);
TmpInst.addOperand(MCOperand::CreateReg(ScratchReg));
TmpInst.addOperand(MCOperand::CreateReg(SrcReg));
// The offset immediate is #8. The operand value is scaled by 4 for the
// tLDR instruction.
TmpInst.addOperand(MCOperand::CreateImm(2));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::tMOVtgpr2gpr);
TmpInst.addOperand(MCOperand::CreateReg(ARM::SP));
TmpInst.addOperand(MCOperand::CreateReg(ScratchReg));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::tLDRi);
TmpInst.addOperand(MCOperand::CreateReg(ScratchReg));
TmpInst.addOperand(MCOperand::CreateReg(SrcReg));
TmpInst.addOperand(MCOperand::CreateImm(1));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::tLDRr);
TmpInst.addOperand(MCOperand::CreateReg(ARM::R7));
TmpInst.addOperand(MCOperand::CreateReg(SrcReg));
TmpInst.addOperand(MCOperand::CreateReg(0));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::tBX);
TmpInst.addOperand(MCOperand::CreateReg(ScratchReg));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
return;
}
// Tail jump branches are really just branch instructions with additional
// code-gen attributes. Convert them to the canonical form here.
case ARM::TAILJMPd:
case ARM::TAILJMPdND: {
MCInst TmpInst, TmpInst2;
// Lower the instruction as-is to get the operands properly converted.
LowerARMMachineInstrToMCInst(MI, TmpInst2, *this);
TmpInst.setOpcode(ARM::Bcc);
TmpInst.addOperand(TmpInst2.getOperand(0));
// Add predicate operands.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.AddComment("TAILCALL");
OutStreamer.EmitInstruction(TmpInst);
return;
}
case ARM::tTAILJMPd:
case ARM::tTAILJMPdND: {
MCInst TmpInst, TmpInst2;
LowerARMMachineInstrToMCInst(MI, TmpInst2, *this);
// The Darwin toolchain doesn't support tail call relocations of 16-bit
// branches.
TmpInst.setOpcode(Opc == ARM::tTAILJMPd ? ARM::t2B : ARM::tB);
TmpInst.addOperand(TmpInst2.getOperand(0));
OutStreamer.AddComment("TAILCALL");
OutStreamer.EmitInstruction(TmpInst);
return;
}
case ARM::TAILJMPrND:
case ARM::tTAILJMPrND:
case ARM::TAILJMPr:
case ARM::tTAILJMPr: {
unsigned newOpc = (Opc == ARM::TAILJMPr || Opc == ARM::TAILJMPrND)
? ARM::BX : ARM::tBX;
MCInst TmpInst;
TmpInst.setOpcode(newOpc);
TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.AddComment("TAILCALL");
OutStreamer.EmitInstruction(TmpInst);
return;
}
// These are the pseudos created to comply with stricter operand restrictions
// on ARMv5. Lower them now to "normal" instructions, since all the
// restrictions are already satisfied.
case ARM::MULv5:
EmitPatchedInstruction(MI, ARM::MUL);
return;
case ARM::MLAv5:
EmitPatchedInstruction(MI, ARM::MLA);
return;
case ARM::SMULLv5:
EmitPatchedInstruction(MI, ARM::SMULL);
return;
case ARM::UMULLv5:
EmitPatchedInstruction(MI, ARM::UMULL);
return;
case ARM::SMLALv5:
EmitPatchedInstruction(MI, ARM::SMLAL);
return;
case ARM::UMLALv5:
EmitPatchedInstruction(MI, ARM::UMLAL);
return;
case ARM::UMAALv5:
EmitPatchedInstruction(MI, ARM::UMAAL);
return;
}
MCInst TmpInst;
LowerARMMachineInstrToMCInst(MI, TmpInst, *this);
// Emit unwinding stuff for frame-related instructions
if (EnableARMEHABI && MI->getFlag(MachineInstr::FrameSetup))
EmitUnwindingInstruction(MI);
OutStreamer.EmitInstruction(TmpInst);
}
//===----------------------------------------------------------------------===//
// Target Registry Stuff
//===----------------------------------------------------------------------===//
static MCInstPrinter *createARMMCInstPrinter(const Target &T,
TargetMachine &TM,
unsigned SyntaxVariant,
const MCAsmInfo &MAI) {
if (SyntaxVariant == 0)
return new ARMInstPrinter(TM, MAI);
return 0;
}
// Force static initialization.
extern "C" void LLVMInitializeARMAsmPrinter() {
RegisterAsmPrinter<ARMAsmPrinter> X(TheARMTarget);
RegisterAsmPrinter<ARMAsmPrinter> Y(TheThumbTarget);
TargetRegistry::RegisterMCInstPrinter(TheARMTarget, createARMMCInstPrinter);
TargetRegistry::RegisterMCInstPrinter(TheThumbTarget, createARMMCInstPrinter);
}