1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-26 04:32:44 +01:00
llvm-mirror/lib/CodeGen/DeadMachineInstructionElim.cpp
Duncan P. N. Exon Smith 701b7a130a CodeGen: Give MachineBasicBlock::reverse_iterator a handle to the current MI
Now that MachineBasicBlock::reverse_instr_iterator knows when it's at
the end (since r281168 and r281170), implement
MachineBasicBlock::reverse_iterator directly on top of an
ilist::reverse_iterator by adding an IsReverse template parameter to
MachineInstrBundleIterator.  This replaces another hard-to-reason-about
use of std::reverse_iterator on list iterators, matching the changes for
ilist::reverse_iterator from r280032 (see the "out of scope" section at
the end of that commit message).  MachineBasicBlock::reverse_iterator
now has a handle to the current node and has obvious invalidation
semantics.

r280032 has a more detailed explanation of how list-style reverse
iterators (invalidated when the pointed-at node is deleted) are
different from vector-style reverse iterators like std::reverse_iterator
(invalidated on every operation).  A great motivating example is this
commit's changes to lib/CodeGen/DeadMachineInstructionElim.cpp.

Note: If your out-of-tree backend deletes instructions while iterating
on a MachineBasicBlock::reverse_iterator or converts between
MachineBasicBlock::iterator and MachineBasicBlock::reverse_iterator,
you'll need to update your code in similar ways to r280032.  The
following table might help:

                  [Old]              ==>             [New]
        delete &*RI, RE = end()                   delete &*RI++
        RI->erase(), RE = end()                   RI++->erase()
      reverse_iterator(I)                 std::prev(I).getReverse()
      reverse_iterator(I)                          ++I.getReverse()
    --reverse_iterator(I)                            I.getReverse()
      reverse_iterator(std::next(I))                 I.getReverse()
                RI.base()                std::prev(RI).getReverse()
                RI.base()                         ++RI.getReverse()
              --RI.base()                           RI.getReverse()
     std::next(RI).base()                           RI.getReverse()

(For more details, have a look at r280032.)

llvm-svn: 281172
2016-09-11 18:51:28 +00:00

175 lines
6.1 KiB
C++

//===- DeadMachineInstructionElim.cpp - Remove dead machine instructions --===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This is an extremely simple MachineInstr-level dead-code-elimination pass.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/Passes.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"
using namespace llvm;
#define DEBUG_TYPE "codegen-dce"
STATISTIC(NumDeletes, "Number of dead instructions deleted");
namespace {
class DeadMachineInstructionElim : public MachineFunctionPass {
bool runOnMachineFunction(MachineFunction &MF) override;
const TargetRegisterInfo *TRI;
const MachineRegisterInfo *MRI;
const TargetInstrInfo *TII;
BitVector LivePhysRegs;
public:
static char ID; // Pass identification, replacement for typeid
DeadMachineInstructionElim() : MachineFunctionPass(ID) {
initializeDeadMachineInstructionElimPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
MachineFunctionPass::getAnalysisUsage(AU);
}
private:
bool isDead(const MachineInstr *MI) const;
};
}
char DeadMachineInstructionElim::ID = 0;
char &llvm::DeadMachineInstructionElimID = DeadMachineInstructionElim::ID;
INITIALIZE_PASS(DeadMachineInstructionElim, "dead-mi-elimination",
"Remove dead machine instructions", false, false)
bool DeadMachineInstructionElim::isDead(const MachineInstr *MI) const {
// Technically speaking inline asm without side effects and no defs can still
// be deleted. But there is so much bad inline asm code out there, we should
// let them be.
if (MI->isInlineAsm())
return false;
// Don't delete frame allocation labels.
if (MI->getOpcode() == TargetOpcode::LOCAL_ESCAPE)
return false;
// Don't delete instructions with side effects.
bool SawStore = false;
if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI())
return false;
// Examine each operand.
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
if (MO.isReg() && MO.isDef()) {
unsigned Reg = MO.getReg();
if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
// Don't delete live physreg defs, or any reserved register defs.
if (LivePhysRegs.test(Reg) || MRI->isReserved(Reg))
return false;
} else {
if (!MRI->use_nodbg_empty(Reg))
// This def has a non-debug use. Don't delete the instruction!
return false;
}
}
}
// If there are no defs with uses, the instruction is dead.
return true;
}
bool DeadMachineInstructionElim::runOnMachineFunction(MachineFunction &MF) {
if (skipFunction(*MF.getFunction()))
return false;
bool AnyChanges = false;
MRI = &MF.getRegInfo();
TRI = MF.getSubtarget().getRegisterInfo();
TII = MF.getSubtarget().getInstrInfo();
// Loop over all instructions in all blocks, from bottom to top, so that it's
// more likely that chains of dependent but ultimately dead instructions will
// be cleaned up.
for (MachineBasicBlock &MBB : make_range(MF.rbegin(), MF.rend())) {
// Start out assuming that reserved registers are live out of this block.
LivePhysRegs = MRI->getReservedRegs();
// Add live-ins from sucessors to LivePhysRegs. Normally, physregs are not
// live across blocks, but some targets (x86) can have flags live out of a
// block.
for (MachineBasicBlock::succ_iterator S = MBB.succ_begin(),
E = MBB.succ_end(); S != E; S++)
for (const auto &LI : (*S)->liveins())
LivePhysRegs.set(LI.PhysReg);
// Now scan the instructions and delete dead ones, tracking physreg
// liveness as we go.
for (MachineBasicBlock::reverse_iterator MII = MBB.rbegin(),
MIE = MBB.rend(); MII != MIE; ) {
MachineInstr *MI = &*MII++;
// If the instruction is dead, delete it!
if (isDead(MI)) {
DEBUG(dbgs() << "DeadMachineInstructionElim: DELETING: " << *MI);
// It is possible that some DBG_VALUE instructions refer to this
// instruction. They get marked as undef and will be deleted
// in the live debug variable analysis.
MI->eraseFromParentAndMarkDBGValuesForRemoval();
AnyChanges = true;
++NumDeletes;
continue;
}
// Record the physreg defs.
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
if (MO.isReg() && MO.isDef()) {
unsigned Reg = MO.getReg();
if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
// Check the subreg set, not the alias set, because a def
// of a super-register may still be partially live after
// this def.
for (MCSubRegIterator SR(Reg, TRI,/*IncludeSelf=*/true);
SR.isValid(); ++SR)
LivePhysRegs.reset(*SR);
}
} else if (MO.isRegMask()) {
// Register mask of preserved registers. All clobbers are dead.
LivePhysRegs.clearBitsNotInMask(MO.getRegMask());
}
}
// Record the physreg uses, after the defs, in case a physreg is
// both defined and used in the same instruction.
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
if (MO.isReg() && MO.isUse()) {
unsigned Reg = MO.getReg();
if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
LivePhysRegs.set(*AI);
}
}
}
}
}
LivePhysRegs.clear();
return AnyChanges;
}