mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-22 10:42:39 +01:00
dd3e030cca
Use the elementtype attribute introduced in D105407 for the llvm.preserve.array/struct.index intrinsics. It carries the element type of the GEP these intrinsics effectively encode. This patch: * Adds a verifier check that the attribute is required. * Adds it in the IRBuilder methods for these intrinsics. * Autoupgrades old bitcode without the attribute. * Updates the lowering code to use the attribute rather than the pointer element type. * Updates lots of tests to specify the attribute. * Adds -force-opaque-pointers to the intrinsic-array.ll test to demonstrate they work now. https://reviews.llvm.org/D106184
2123 lines
67 KiB
C++
2123 lines
67 KiB
C++
//===- Attributes.cpp - Implement AttributesList --------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// \file
|
|
// This file implements the Attribute, AttributeImpl, AttrBuilder,
|
|
// AttributeListImpl, and AttributeList classes.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "AttributeImpl.h"
|
|
#include "LLVMContextImpl.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/FoldingSet.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/StringSwitch.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/Config/llvm-config.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <climits>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <limits>
|
|
#include <string>
|
|
#include <tuple>
|
|
#include <utility>
|
|
|
|
using namespace llvm;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Attribute Construction Methods
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// allocsize has two integer arguments, but because they're both 32 bits, we can
|
|
// pack them into one 64-bit value, at the cost of making said value
|
|
// nonsensical.
|
|
//
|
|
// In order to do this, we need to reserve one value of the second (optional)
|
|
// allocsize argument to signify "not present."
|
|
static const unsigned AllocSizeNumElemsNotPresent = -1;
|
|
|
|
static uint64_t packAllocSizeArgs(unsigned ElemSizeArg,
|
|
const Optional<unsigned> &NumElemsArg) {
|
|
assert((!NumElemsArg.hasValue() ||
|
|
*NumElemsArg != AllocSizeNumElemsNotPresent) &&
|
|
"Attempting to pack a reserved value");
|
|
|
|
return uint64_t(ElemSizeArg) << 32 |
|
|
NumElemsArg.getValueOr(AllocSizeNumElemsNotPresent);
|
|
}
|
|
|
|
static std::pair<unsigned, Optional<unsigned>>
|
|
unpackAllocSizeArgs(uint64_t Num) {
|
|
unsigned NumElems = Num & std::numeric_limits<unsigned>::max();
|
|
unsigned ElemSizeArg = Num >> 32;
|
|
|
|
Optional<unsigned> NumElemsArg;
|
|
if (NumElems != AllocSizeNumElemsNotPresent)
|
|
NumElemsArg = NumElems;
|
|
return std::make_pair(ElemSizeArg, NumElemsArg);
|
|
}
|
|
|
|
static uint64_t packVScaleRangeArgs(unsigned MinValue, unsigned MaxValue) {
|
|
return uint64_t(MinValue) << 32 | MaxValue;
|
|
}
|
|
|
|
static std::pair<unsigned, unsigned> unpackVScaleRangeArgs(uint64_t Value) {
|
|
unsigned MaxValue = Value & std::numeric_limits<unsigned>::max();
|
|
unsigned MinValue = Value >> 32;
|
|
|
|
return std::make_pair(MinValue, MaxValue);
|
|
}
|
|
|
|
Attribute Attribute::get(LLVMContext &Context, Attribute::AttrKind Kind,
|
|
uint64_t Val) {
|
|
if (Val)
|
|
assert(Attribute::isIntAttrKind(Kind) && "Not an int attribute");
|
|
else
|
|
assert(Attribute::isEnumAttrKind(Kind) && "Not an enum attribute");
|
|
|
|
LLVMContextImpl *pImpl = Context.pImpl;
|
|
FoldingSetNodeID ID;
|
|
ID.AddInteger(Kind);
|
|
if (Val) ID.AddInteger(Val);
|
|
|
|
void *InsertPoint;
|
|
AttributeImpl *PA = pImpl->AttrsSet.FindNodeOrInsertPos(ID, InsertPoint);
|
|
|
|
if (!PA) {
|
|
// If we didn't find any existing attributes of the same shape then create a
|
|
// new one and insert it.
|
|
if (!Val)
|
|
PA = new (pImpl->Alloc) EnumAttributeImpl(Kind);
|
|
else
|
|
PA = new (pImpl->Alloc) IntAttributeImpl(Kind, Val);
|
|
pImpl->AttrsSet.InsertNode(PA, InsertPoint);
|
|
}
|
|
|
|
// Return the Attribute that we found or created.
|
|
return Attribute(PA);
|
|
}
|
|
|
|
Attribute Attribute::get(LLVMContext &Context, StringRef Kind, StringRef Val) {
|
|
LLVMContextImpl *pImpl = Context.pImpl;
|
|
FoldingSetNodeID ID;
|
|
ID.AddString(Kind);
|
|
if (!Val.empty()) ID.AddString(Val);
|
|
|
|
void *InsertPoint;
|
|
AttributeImpl *PA = pImpl->AttrsSet.FindNodeOrInsertPos(ID, InsertPoint);
|
|
|
|
if (!PA) {
|
|
// If we didn't find any existing attributes of the same shape then create a
|
|
// new one and insert it.
|
|
void *Mem =
|
|
pImpl->Alloc.Allocate(StringAttributeImpl::totalSizeToAlloc(Kind, Val),
|
|
alignof(StringAttributeImpl));
|
|
PA = new (Mem) StringAttributeImpl(Kind, Val);
|
|
pImpl->AttrsSet.InsertNode(PA, InsertPoint);
|
|
}
|
|
|
|
// Return the Attribute that we found or created.
|
|
return Attribute(PA);
|
|
}
|
|
|
|
Attribute Attribute::get(LLVMContext &Context, Attribute::AttrKind Kind,
|
|
Type *Ty) {
|
|
assert(Attribute::isTypeAttrKind(Kind) && "Not a type attribute");
|
|
LLVMContextImpl *pImpl = Context.pImpl;
|
|
FoldingSetNodeID ID;
|
|
ID.AddInteger(Kind);
|
|
ID.AddPointer(Ty);
|
|
|
|
void *InsertPoint;
|
|
AttributeImpl *PA = pImpl->AttrsSet.FindNodeOrInsertPos(ID, InsertPoint);
|
|
|
|
if (!PA) {
|
|
// If we didn't find any existing attributes of the same shape then create a
|
|
// new one and insert it.
|
|
PA = new (pImpl->Alloc) TypeAttributeImpl(Kind, Ty);
|
|
pImpl->AttrsSet.InsertNode(PA, InsertPoint);
|
|
}
|
|
|
|
// Return the Attribute that we found or created.
|
|
return Attribute(PA);
|
|
}
|
|
|
|
Attribute Attribute::getWithAlignment(LLVMContext &Context, Align A) {
|
|
assert(A <= llvm::Value::MaximumAlignment && "Alignment too large.");
|
|
return get(Context, Alignment, A.value());
|
|
}
|
|
|
|
Attribute Attribute::getWithStackAlignment(LLVMContext &Context, Align A) {
|
|
assert(A <= 0x100 && "Alignment too large.");
|
|
return get(Context, StackAlignment, A.value());
|
|
}
|
|
|
|
Attribute Attribute::getWithDereferenceableBytes(LLVMContext &Context,
|
|
uint64_t Bytes) {
|
|
assert(Bytes && "Bytes must be non-zero.");
|
|
return get(Context, Dereferenceable, Bytes);
|
|
}
|
|
|
|
Attribute Attribute::getWithDereferenceableOrNullBytes(LLVMContext &Context,
|
|
uint64_t Bytes) {
|
|
assert(Bytes && "Bytes must be non-zero.");
|
|
return get(Context, DereferenceableOrNull, Bytes);
|
|
}
|
|
|
|
Attribute Attribute::getWithByValType(LLVMContext &Context, Type *Ty) {
|
|
return get(Context, ByVal, Ty);
|
|
}
|
|
|
|
Attribute Attribute::getWithStructRetType(LLVMContext &Context, Type *Ty) {
|
|
return get(Context, StructRet, Ty);
|
|
}
|
|
|
|
Attribute Attribute::getWithByRefType(LLVMContext &Context, Type *Ty) {
|
|
return get(Context, ByRef, Ty);
|
|
}
|
|
|
|
Attribute Attribute::getWithPreallocatedType(LLVMContext &Context, Type *Ty) {
|
|
return get(Context, Preallocated, Ty);
|
|
}
|
|
|
|
Attribute Attribute::getWithInAllocaType(LLVMContext &Context, Type *Ty) {
|
|
return get(Context, InAlloca, Ty);
|
|
}
|
|
|
|
Attribute
|
|
Attribute::getWithAllocSizeArgs(LLVMContext &Context, unsigned ElemSizeArg,
|
|
const Optional<unsigned> &NumElemsArg) {
|
|
assert(!(ElemSizeArg == 0 && NumElemsArg && *NumElemsArg == 0) &&
|
|
"Invalid allocsize arguments -- given allocsize(0, 0)");
|
|
return get(Context, AllocSize, packAllocSizeArgs(ElemSizeArg, NumElemsArg));
|
|
}
|
|
|
|
Attribute Attribute::getWithVScaleRangeArgs(LLVMContext &Context,
|
|
unsigned MinValue,
|
|
unsigned MaxValue) {
|
|
return get(Context, VScaleRange, packVScaleRangeArgs(MinValue, MaxValue));
|
|
}
|
|
|
|
Attribute::AttrKind Attribute::getAttrKindFromName(StringRef AttrName) {
|
|
return StringSwitch<Attribute::AttrKind>(AttrName)
|
|
#define GET_ATTR_NAMES
|
|
#define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME) \
|
|
.Case(#DISPLAY_NAME, Attribute::ENUM_NAME)
|
|
#include "llvm/IR/Attributes.inc"
|
|
.Default(Attribute::None);
|
|
}
|
|
|
|
StringRef Attribute::getNameFromAttrKind(Attribute::AttrKind AttrKind) {
|
|
switch (AttrKind) {
|
|
#define GET_ATTR_NAMES
|
|
#define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME) \
|
|
case Attribute::ENUM_NAME: \
|
|
return #DISPLAY_NAME;
|
|
#include "llvm/IR/Attributes.inc"
|
|
case Attribute::None:
|
|
return "none";
|
|
default:
|
|
llvm_unreachable("invalid Kind");
|
|
}
|
|
}
|
|
|
|
bool Attribute::isExistingAttribute(StringRef Name) {
|
|
return StringSwitch<bool>(Name)
|
|
#define GET_ATTR_NAMES
|
|
#define ATTRIBUTE_ALL(ENUM_NAME, DISPLAY_NAME) .Case(#DISPLAY_NAME, true)
|
|
#include "llvm/IR/Attributes.inc"
|
|
.Default(false);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Attribute Accessor Methods
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool Attribute::isEnumAttribute() const {
|
|
return pImpl && pImpl->isEnumAttribute();
|
|
}
|
|
|
|
bool Attribute::isIntAttribute() const {
|
|
return pImpl && pImpl->isIntAttribute();
|
|
}
|
|
|
|
bool Attribute::isStringAttribute() const {
|
|
return pImpl && pImpl->isStringAttribute();
|
|
}
|
|
|
|
bool Attribute::isTypeAttribute() const {
|
|
return pImpl && pImpl->isTypeAttribute();
|
|
}
|
|
|
|
Attribute::AttrKind Attribute::getKindAsEnum() const {
|
|
if (!pImpl) return None;
|
|
assert((isEnumAttribute() || isIntAttribute() || isTypeAttribute()) &&
|
|
"Invalid attribute type to get the kind as an enum!");
|
|
return pImpl->getKindAsEnum();
|
|
}
|
|
|
|
uint64_t Attribute::getValueAsInt() const {
|
|
if (!pImpl) return 0;
|
|
assert(isIntAttribute() &&
|
|
"Expected the attribute to be an integer attribute!");
|
|
return pImpl->getValueAsInt();
|
|
}
|
|
|
|
bool Attribute::getValueAsBool() const {
|
|
if (!pImpl) return false;
|
|
assert(isStringAttribute() &&
|
|
"Expected the attribute to be a string attribute!");
|
|
return pImpl->getValueAsBool();
|
|
}
|
|
|
|
StringRef Attribute::getKindAsString() const {
|
|
if (!pImpl) return {};
|
|
assert(isStringAttribute() &&
|
|
"Invalid attribute type to get the kind as a string!");
|
|
return pImpl->getKindAsString();
|
|
}
|
|
|
|
StringRef Attribute::getValueAsString() const {
|
|
if (!pImpl) return {};
|
|
assert(isStringAttribute() &&
|
|
"Invalid attribute type to get the value as a string!");
|
|
return pImpl->getValueAsString();
|
|
}
|
|
|
|
Type *Attribute::getValueAsType() const {
|
|
if (!pImpl) return {};
|
|
assert(isTypeAttribute() &&
|
|
"Invalid attribute type to get the value as a type!");
|
|
return pImpl->getValueAsType();
|
|
}
|
|
|
|
|
|
bool Attribute::hasAttribute(AttrKind Kind) const {
|
|
return (pImpl && pImpl->hasAttribute(Kind)) || (!pImpl && Kind == None);
|
|
}
|
|
|
|
bool Attribute::hasAttribute(StringRef Kind) const {
|
|
if (!isStringAttribute()) return false;
|
|
return pImpl && pImpl->hasAttribute(Kind);
|
|
}
|
|
|
|
MaybeAlign Attribute::getAlignment() const {
|
|
assert(hasAttribute(Attribute::Alignment) &&
|
|
"Trying to get alignment from non-alignment attribute!");
|
|
return MaybeAlign(pImpl->getValueAsInt());
|
|
}
|
|
|
|
MaybeAlign Attribute::getStackAlignment() const {
|
|
assert(hasAttribute(Attribute::StackAlignment) &&
|
|
"Trying to get alignment from non-alignment attribute!");
|
|
return MaybeAlign(pImpl->getValueAsInt());
|
|
}
|
|
|
|
uint64_t Attribute::getDereferenceableBytes() const {
|
|
assert(hasAttribute(Attribute::Dereferenceable) &&
|
|
"Trying to get dereferenceable bytes from "
|
|
"non-dereferenceable attribute!");
|
|
return pImpl->getValueAsInt();
|
|
}
|
|
|
|
uint64_t Attribute::getDereferenceableOrNullBytes() const {
|
|
assert(hasAttribute(Attribute::DereferenceableOrNull) &&
|
|
"Trying to get dereferenceable bytes from "
|
|
"non-dereferenceable attribute!");
|
|
return pImpl->getValueAsInt();
|
|
}
|
|
|
|
std::pair<unsigned, Optional<unsigned>> Attribute::getAllocSizeArgs() const {
|
|
assert(hasAttribute(Attribute::AllocSize) &&
|
|
"Trying to get allocsize args from non-allocsize attribute");
|
|
return unpackAllocSizeArgs(pImpl->getValueAsInt());
|
|
}
|
|
|
|
std::pair<unsigned, unsigned> Attribute::getVScaleRangeArgs() const {
|
|
assert(hasAttribute(Attribute::VScaleRange) &&
|
|
"Trying to get vscale args from non-vscale attribute");
|
|
return unpackVScaleRangeArgs(pImpl->getValueAsInt());
|
|
}
|
|
|
|
std::string Attribute::getAsString(bool InAttrGrp) const {
|
|
if (!pImpl) return {};
|
|
|
|
if (isEnumAttribute())
|
|
return getNameFromAttrKind(getKindAsEnum()).str();
|
|
|
|
if (isTypeAttribute()) {
|
|
std::string Result = getNameFromAttrKind(getKindAsEnum()).str();
|
|
Result += '(';
|
|
raw_string_ostream OS(Result);
|
|
getValueAsType()->print(OS, false, true);
|
|
OS.flush();
|
|
Result += ')';
|
|
return Result;
|
|
}
|
|
|
|
// FIXME: These should be output like this:
|
|
//
|
|
// align=4
|
|
// alignstack=8
|
|
//
|
|
if (hasAttribute(Attribute::Alignment)) {
|
|
std::string Result;
|
|
Result += "align";
|
|
Result += (InAttrGrp) ? "=" : " ";
|
|
Result += utostr(getValueAsInt());
|
|
return Result;
|
|
}
|
|
|
|
auto AttrWithBytesToString = [&](const char *Name) {
|
|
std::string Result;
|
|
Result += Name;
|
|
if (InAttrGrp) {
|
|
Result += "=";
|
|
Result += utostr(getValueAsInt());
|
|
} else {
|
|
Result += "(";
|
|
Result += utostr(getValueAsInt());
|
|
Result += ")";
|
|
}
|
|
return Result;
|
|
};
|
|
|
|
if (hasAttribute(Attribute::StackAlignment))
|
|
return AttrWithBytesToString("alignstack");
|
|
|
|
if (hasAttribute(Attribute::Dereferenceable))
|
|
return AttrWithBytesToString("dereferenceable");
|
|
|
|
if (hasAttribute(Attribute::DereferenceableOrNull))
|
|
return AttrWithBytesToString("dereferenceable_or_null");
|
|
|
|
if (hasAttribute(Attribute::AllocSize)) {
|
|
unsigned ElemSize;
|
|
Optional<unsigned> NumElems;
|
|
std::tie(ElemSize, NumElems) = getAllocSizeArgs();
|
|
|
|
std::string Result = "allocsize(";
|
|
Result += utostr(ElemSize);
|
|
if (NumElems.hasValue()) {
|
|
Result += ',';
|
|
Result += utostr(*NumElems);
|
|
}
|
|
Result += ')';
|
|
return Result;
|
|
}
|
|
|
|
if (hasAttribute(Attribute::VScaleRange)) {
|
|
unsigned MinValue, MaxValue;
|
|
std::tie(MinValue, MaxValue) = getVScaleRangeArgs();
|
|
|
|
std::string Result = "vscale_range(";
|
|
Result += utostr(MinValue);
|
|
Result += ',';
|
|
Result += utostr(MaxValue);
|
|
Result += ')';
|
|
return Result;
|
|
}
|
|
|
|
// Convert target-dependent attributes to strings of the form:
|
|
//
|
|
// "kind"
|
|
// "kind" = "value"
|
|
//
|
|
if (isStringAttribute()) {
|
|
std::string Result;
|
|
{
|
|
raw_string_ostream OS(Result);
|
|
OS << '"' << getKindAsString() << '"';
|
|
|
|
// Since some attribute strings contain special characters that cannot be
|
|
// printable, those have to be escaped to make the attribute value
|
|
// printable as is. e.g. "\01__gnu_mcount_nc"
|
|
const auto &AttrVal = pImpl->getValueAsString();
|
|
if (!AttrVal.empty()) {
|
|
OS << "=\"";
|
|
printEscapedString(AttrVal, OS);
|
|
OS << "\"";
|
|
}
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
llvm_unreachable("Unknown attribute");
|
|
}
|
|
|
|
bool Attribute::hasParentContext(LLVMContext &C) const {
|
|
assert(isValid() && "invalid Attribute doesn't refer to any context");
|
|
FoldingSetNodeID ID;
|
|
pImpl->Profile(ID);
|
|
void *Unused;
|
|
return C.pImpl->AttrsSet.FindNodeOrInsertPos(ID, Unused) == pImpl;
|
|
}
|
|
|
|
bool Attribute::operator<(Attribute A) const {
|
|
if (!pImpl && !A.pImpl) return false;
|
|
if (!pImpl) return true;
|
|
if (!A.pImpl) return false;
|
|
return *pImpl < *A.pImpl;
|
|
}
|
|
|
|
void Attribute::Profile(FoldingSetNodeID &ID) const {
|
|
ID.AddPointer(pImpl);
|
|
}
|
|
|
|
enum AttributeProperty {
|
|
FnAttr = (1 << 0),
|
|
ParamAttr = (1 << 1),
|
|
RetAttr = (1 << 2),
|
|
};
|
|
|
|
#define GET_ATTR_PROP_TABLE
|
|
#include "llvm/IR/Attributes.inc"
|
|
|
|
static bool hasAttributeProperty(Attribute::AttrKind Kind,
|
|
AttributeProperty Prop) {
|
|
unsigned Index = Kind - 1;
|
|
assert(Index < sizeof(AttrPropTable) / sizeof(AttrPropTable[0]) &&
|
|
"Invalid attribute kind");
|
|
return AttrPropTable[Index] & Prop;
|
|
}
|
|
|
|
bool Attribute::canUseAsFnAttr(AttrKind Kind) {
|
|
return hasAttributeProperty(Kind, AttributeProperty::FnAttr);
|
|
}
|
|
|
|
bool Attribute::canUseAsParamAttr(AttrKind Kind) {
|
|
return hasAttributeProperty(Kind, AttributeProperty::ParamAttr);
|
|
}
|
|
|
|
bool Attribute::canUseAsRetAttr(AttrKind Kind) {
|
|
return hasAttributeProperty(Kind, AttributeProperty::RetAttr);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AttributeImpl Definition
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool AttributeImpl::hasAttribute(Attribute::AttrKind A) const {
|
|
if (isStringAttribute()) return false;
|
|
return getKindAsEnum() == A;
|
|
}
|
|
|
|
bool AttributeImpl::hasAttribute(StringRef Kind) const {
|
|
if (!isStringAttribute()) return false;
|
|
return getKindAsString() == Kind;
|
|
}
|
|
|
|
Attribute::AttrKind AttributeImpl::getKindAsEnum() const {
|
|
assert(isEnumAttribute() || isIntAttribute() || isTypeAttribute());
|
|
return static_cast<const EnumAttributeImpl *>(this)->getEnumKind();
|
|
}
|
|
|
|
uint64_t AttributeImpl::getValueAsInt() const {
|
|
assert(isIntAttribute());
|
|
return static_cast<const IntAttributeImpl *>(this)->getValue();
|
|
}
|
|
|
|
bool AttributeImpl::getValueAsBool() const {
|
|
assert(getValueAsString().empty() || getValueAsString() == "false" || getValueAsString() == "true");
|
|
return getValueAsString() == "true";
|
|
}
|
|
|
|
StringRef AttributeImpl::getKindAsString() const {
|
|
assert(isStringAttribute());
|
|
return static_cast<const StringAttributeImpl *>(this)->getStringKind();
|
|
}
|
|
|
|
StringRef AttributeImpl::getValueAsString() const {
|
|
assert(isStringAttribute());
|
|
return static_cast<const StringAttributeImpl *>(this)->getStringValue();
|
|
}
|
|
|
|
Type *AttributeImpl::getValueAsType() const {
|
|
assert(isTypeAttribute());
|
|
return static_cast<const TypeAttributeImpl *>(this)->getTypeValue();
|
|
}
|
|
|
|
bool AttributeImpl::operator<(const AttributeImpl &AI) const {
|
|
if (this == &AI)
|
|
return false;
|
|
|
|
// This sorts the attributes with Attribute::AttrKinds coming first (sorted
|
|
// relative to their enum value) and then strings.
|
|
if (!isStringAttribute()) {
|
|
if (AI.isStringAttribute())
|
|
return true;
|
|
if (getKindAsEnum() != AI.getKindAsEnum())
|
|
return getKindAsEnum() < AI.getKindAsEnum();
|
|
assert(!AI.isEnumAttribute() && "Non-unique attribute");
|
|
assert(!AI.isTypeAttribute() && "Comparison of types would be unstable");
|
|
// TODO: Is this actually needed?
|
|
assert(AI.isIntAttribute() && "Only possibility left");
|
|
return getValueAsInt() < AI.getValueAsInt();
|
|
}
|
|
|
|
if (!AI.isStringAttribute())
|
|
return false;
|
|
if (getKindAsString() == AI.getKindAsString())
|
|
return getValueAsString() < AI.getValueAsString();
|
|
return getKindAsString() < AI.getKindAsString();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AttributeSet Definition
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
AttributeSet AttributeSet::get(LLVMContext &C, const AttrBuilder &B) {
|
|
return AttributeSet(AttributeSetNode::get(C, B));
|
|
}
|
|
|
|
AttributeSet AttributeSet::get(LLVMContext &C, ArrayRef<Attribute> Attrs) {
|
|
return AttributeSet(AttributeSetNode::get(C, Attrs));
|
|
}
|
|
|
|
AttributeSet AttributeSet::addAttribute(LLVMContext &C,
|
|
Attribute::AttrKind Kind) const {
|
|
if (hasAttribute(Kind)) return *this;
|
|
AttrBuilder B;
|
|
B.addAttribute(Kind);
|
|
return addAttributes(C, AttributeSet::get(C, B));
|
|
}
|
|
|
|
AttributeSet AttributeSet::addAttribute(LLVMContext &C, StringRef Kind,
|
|
StringRef Value) const {
|
|
AttrBuilder B;
|
|
B.addAttribute(Kind, Value);
|
|
return addAttributes(C, AttributeSet::get(C, B));
|
|
}
|
|
|
|
AttributeSet AttributeSet::addAttributes(LLVMContext &C,
|
|
const AttributeSet AS) const {
|
|
if (!hasAttributes())
|
|
return AS;
|
|
|
|
if (!AS.hasAttributes())
|
|
return *this;
|
|
|
|
AttrBuilder B(AS);
|
|
for (const auto &I : *this)
|
|
B.addAttribute(I);
|
|
|
|
return get(C, B);
|
|
}
|
|
|
|
AttributeSet AttributeSet::removeAttribute(LLVMContext &C,
|
|
Attribute::AttrKind Kind) const {
|
|
if (!hasAttribute(Kind)) return *this;
|
|
AttrBuilder B(*this);
|
|
B.removeAttribute(Kind);
|
|
return get(C, B);
|
|
}
|
|
|
|
AttributeSet AttributeSet::removeAttribute(LLVMContext &C,
|
|
StringRef Kind) const {
|
|
if (!hasAttribute(Kind)) return *this;
|
|
AttrBuilder B(*this);
|
|
B.removeAttribute(Kind);
|
|
return get(C, B);
|
|
}
|
|
|
|
AttributeSet AttributeSet::removeAttributes(LLVMContext &C,
|
|
const AttrBuilder &Attrs) const {
|
|
AttrBuilder B(*this);
|
|
// If there is nothing to remove, directly return the original set.
|
|
if (!B.overlaps(Attrs))
|
|
return *this;
|
|
|
|
B.remove(Attrs);
|
|
return get(C, B);
|
|
}
|
|
|
|
unsigned AttributeSet::getNumAttributes() const {
|
|
return SetNode ? SetNode->getNumAttributes() : 0;
|
|
}
|
|
|
|
bool AttributeSet::hasAttribute(Attribute::AttrKind Kind) const {
|
|
return SetNode ? SetNode->hasAttribute(Kind) : false;
|
|
}
|
|
|
|
bool AttributeSet::hasAttribute(StringRef Kind) const {
|
|
return SetNode ? SetNode->hasAttribute(Kind) : false;
|
|
}
|
|
|
|
Attribute AttributeSet::getAttribute(Attribute::AttrKind Kind) const {
|
|
return SetNode ? SetNode->getAttribute(Kind) : Attribute();
|
|
}
|
|
|
|
Attribute AttributeSet::getAttribute(StringRef Kind) const {
|
|
return SetNode ? SetNode->getAttribute(Kind) : Attribute();
|
|
}
|
|
|
|
MaybeAlign AttributeSet::getAlignment() const {
|
|
return SetNode ? SetNode->getAlignment() : None;
|
|
}
|
|
|
|
MaybeAlign AttributeSet::getStackAlignment() const {
|
|
return SetNode ? SetNode->getStackAlignment() : None;
|
|
}
|
|
|
|
uint64_t AttributeSet::getDereferenceableBytes() const {
|
|
return SetNode ? SetNode->getDereferenceableBytes() : 0;
|
|
}
|
|
|
|
uint64_t AttributeSet::getDereferenceableOrNullBytes() const {
|
|
return SetNode ? SetNode->getDereferenceableOrNullBytes() : 0;
|
|
}
|
|
|
|
Type *AttributeSet::getByRefType() const {
|
|
return SetNode ? SetNode->getAttributeType(Attribute::ByRef) : nullptr;
|
|
}
|
|
|
|
Type *AttributeSet::getByValType() const {
|
|
return SetNode ? SetNode->getAttributeType(Attribute::ByVal) : nullptr;
|
|
}
|
|
|
|
Type *AttributeSet::getStructRetType() const {
|
|
return SetNode ? SetNode->getAttributeType(Attribute::StructRet) : nullptr;
|
|
}
|
|
|
|
Type *AttributeSet::getPreallocatedType() const {
|
|
return SetNode ? SetNode->getAttributeType(Attribute::Preallocated) : nullptr;
|
|
}
|
|
|
|
Type *AttributeSet::getInAllocaType() const {
|
|
return SetNode ? SetNode->getAttributeType(Attribute::InAlloca) : nullptr;
|
|
}
|
|
|
|
Type *AttributeSet::getElementType() const {
|
|
return SetNode ? SetNode->getAttributeType(Attribute::ElementType) : nullptr;
|
|
}
|
|
|
|
std::pair<unsigned, Optional<unsigned>> AttributeSet::getAllocSizeArgs() const {
|
|
return SetNode ? SetNode->getAllocSizeArgs()
|
|
: std::pair<unsigned, Optional<unsigned>>(0, 0);
|
|
}
|
|
|
|
std::pair<unsigned, unsigned> AttributeSet::getVScaleRangeArgs() const {
|
|
return SetNode ? SetNode->getVScaleRangeArgs()
|
|
: std::pair<unsigned, unsigned>(0, 0);
|
|
}
|
|
|
|
std::string AttributeSet::getAsString(bool InAttrGrp) const {
|
|
return SetNode ? SetNode->getAsString(InAttrGrp) : "";
|
|
}
|
|
|
|
bool AttributeSet::hasParentContext(LLVMContext &C) const {
|
|
assert(hasAttributes() && "empty AttributeSet doesn't refer to any context");
|
|
FoldingSetNodeID ID;
|
|
SetNode->Profile(ID);
|
|
void *Unused;
|
|
return C.pImpl->AttrsSetNodes.FindNodeOrInsertPos(ID, Unused) == SetNode;
|
|
}
|
|
|
|
AttributeSet::iterator AttributeSet::begin() const {
|
|
return SetNode ? SetNode->begin() : nullptr;
|
|
}
|
|
|
|
AttributeSet::iterator AttributeSet::end() const {
|
|
return SetNode ? SetNode->end() : nullptr;
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
LLVM_DUMP_METHOD void AttributeSet::dump() const {
|
|
dbgs() << "AS =\n";
|
|
dbgs() << " { ";
|
|
dbgs() << getAsString(true) << " }\n";
|
|
}
|
|
#endif
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AttributeSetNode Definition
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
AttributeSetNode::AttributeSetNode(ArrayRef<Attribute> Attrs)
|
|
: NumAttrs(Attrs.size()) {
|
|
// There's memory after the node where we can store the entries in.
|
|
llvm::copy(Attrs, getTrailingObjects<Attribute>());
|
|
|
|
for (const auto &I : *this) {
|
|
if (I.isStringAttribute())
|
|
StringAttrs.insert({ I.getKindAsString(), I });
|
|
else
|
|
AvailableAttrs.addAttribute(I.getKindAsEnum());
|
|
}
|
|
}
|
|
|
|
AttributeSetNode *AttributeSetNode::get(LLVMContext &C,
|
|
ArrayRef<Attribute> Attrs) {
|
|
SmallVector<Attribute, 8> SortedAttrs(Attrs.begin(), Attrs.end());
|
|
llvm::sort(SortedAttrs);
|
|
return getSorted(C, SortedAttrs);
|
|
}
|
|
|
|
AttributeSetNode *AttributeSetNode::getSorted(LLVMContext &C,
|
|
ArrayRef<Attribute> SortedAttrs) {
|
|
if (SortedAttrs.empty())
|
|
return nullptr;
|
|
|
|
// Build a key to look up the existing attributes.
|
|
LLVMContextImpl *pImpl = C.pImpl;
|
|
FoldingSetNodeID ID;
|
|
|
|
assert(llvm::is_sorted(SortedAttrs) && "Expected sorted attributes!");
|
|
for (const auto &Attr : SortedAttrs)
|
|
Attr.Profile(ID);
|
|
|
|
void *InsertPoint;
|
|
AttributeSetNode *PA =
|
|
pImpl->AttrsSetNodes.FindNodeOrInsertPos(ID, InsertPoint);
|
|
|
|
// If we didn't find any existing attributes of the same shape then create a
|
|
// new one and insert it.
|
|
if (!PA) {
|
|
// Coallocate entries after the AttributeSetNode itself.
|
|
void *Mem = ::operator new(totalSizeToAlloc<Attribute>(SortedAttrs.size()));
|
|
PA = new (Mem) AttributeSetNode(SortedAttrs);
|
|
pImpl->AttrsSetNodes.InsertNode(PA, InsertPoint);
|
|
}
|
|
|
|
// Return the AttributeSetNode that we found or created.
|
|
return PA;
|
|
}
|
|
|
|
AttributeSetNode *AttributeSetNode::get(LLVMContext &C, const AttrBuilder &B) {
|
|
// Add target-independent attributes.
|
|
SmallVector<Attribute, 8> Attrs;
|
|
for (Attribute::AttrKind Kind = Attribute::None;
|
|
Kind != Attribute::EndAttrKinds; Kind = Attribute::AttrKind(Kind + 1)) {
|
|
if (!B.contains(Kind))
|
|
continue;
|
|
|
|
if (Attribute::isTypeAttrKind(Kind)) {
|
|
Attrs.push_back(Attribute::get(C, Kind, B.getTypeAttr(Kind)));
|
|
continue;
|
|
}
|
|
|
|
Attribute Attr;
|
|
switch (Kind) {
|
|
case Attribute::Alignment:
|
|
assert(B.getAlignment() && "Alignment must be set");
|
|
Attr = Attribute::getWithAlignment(C, *B.getAlignment());
|
|
break;
|
|
case Attribute::StackAlignment:
|
|
assert(B.getStackAlignment() && "StackAlignment must be set");
|
|
Attr = Attribute::getWithStackAlignment(C, *B.getStackAlignment());
|
|
break;
|
|
case Attribute::Dereferenceable:
|
|
Attr = Attribute::getWithDereferenceableBytes(
|
|
C, B.getDereferenceableBytes());
|
|
break;
|
|
case Attribute::DereferenceableOrNull:
|
|
Attr = Attribute::getWithDereferenceableOrNullBytes(
|
|
C, B.getDereferenceableOrNullBytes());
|
|
break;
|
|
case Attribute::AllocSize: {
|
|
auto A = B.getAllocSizeArgs();
|
|
Attr = Attribute::getWithAllocSizeArgs(C, A.first, A.second);
|
|
break;
|
|
}
|
|
case Attribute::VScaleRange: {
|
|
auto A = B.getVScaleRangeArgs();
|
|
Attr = Attribute::getWithVScaleRangeArgs(C, A.first, A.second);
|
|
break;
|
|
}
|
|
default:
|
|
Attr = Attribute::get(C, Kind);
|
|
}
|
|
Attrs.push_back(Attr);
|
|
}
|
|
|
|
// Add target-dependent (string) attributes.
|
|
for (const auto &TDA : B.td_attrs())
|
|
Attrs.emplace_back(Attribute::get(C, TDA.first, TDA.second));
|
|
|
|
return getSorted(C, Attrs);
|
|
}
|
|
|
|
bool AttributeSetNode::hasAttribute(StringRef Kind) const {
|
|
return StringAttrs.count(Kind);
|
|
}
|
|
|
|
Optional<Attribute>
|
|
AttributeSetNode::findEnumAttribute(Attribute::AttrKind Kind) const {
|
|
// Do a quick presence check.
|
|
if (!hasAttribute(Kind))
|
|
return None;
|
|
|
|
// Attributes in a set are sorted by enum value, followed by string
|
|
// attributes. Binary search the one we want.
|
|
const Attribute *I =
|
|
std::lower_bound(begin(), end() - StringAttrs.size(), Kind,
|
|
[](Attribute A, Attribute::AttrKind Kind) {
|
|
return A.getKindAsEnum() < Kind;
|
|
});
|
|
assert(I != end() && I->hasAttribute(Kind) && "Presence check failed?");
|
|
return *I;
|
|
}
|
|
|
|
Attribute AttributeSetNode::getAttribute(Attribute::AttrKind Kind) const {
|
|
if (auto A = findEnumAttribute(Kind))
|
|
return *A;
|
|
return {};
|
|
}
|
|
|
|
Attribute AttributeSetNode::getAttribute(StringRef Kind) const {
|
|
return StringAttrs.lookup(Kind);
|
|
}
|
|
|
|
MaybeAlign AttributeSetNode::getAlignment() const {
|
|
if (auto A = findEnumAttribute(Attribute::Alignment))
|
|
return A->getAlignment();
|
|
return None;
|
|
}
|
|
|
|
MaybeAlign AttributeSetNode::getStackAlignment() const {
|
|
if (auto A = findEnumAttribute(Attribute::StackAlignment))
|
|
return A->getStackAlignment();
|
|
return None;
|
|
}
|
|
|
|
Type *AttributeSetNode::getAttributeType(Attribute::AttrKind Kind) const {
|
|
if (auto A = findEnumAttribute(Kind))
|
|
return A->getValueAsType();
|
|
return nullptr;
|
|
}
|
|
|
|
uint64_t AttributeSetNode::getDereferenceableBytes() const {
|
|
if (auto A = findEnumAttribute(Attribute::Dereferenceable))
|
|
return A->getDereferenceableBytes();
|
|
return 0;
|
|
}
|
|
|
|
uint64_t AttributeSetNode::getDereferenceableOrNullBytes() const {
|
|
if (auto A = findEnumAttribute(Attribute::DereferenceableOrNull))
|
|
return A->getDereferenceableOrNullBytes();
|
|
return 0;
|
|
}
|
|
|
|
std::pair<unsigned, Optional<unsigned>>
|
|
AttributeSetNode::getAllocSizeArgs() const {
|
|
if (auto A = findEnumAttribute(Attribute::AllocSize))
|
|
return A->getAllocSizeArgs();
|
|
return std::make_pair(0, 0);
|
|
}
|
|
|
|
std::pair<unsigned, unsigned> AttributeSetNode::getVScaleRangeArgs() const {
|
|
if (auto A = findEnumAttribute(Attribute::VScaleRange))
|
|
return A->getVScaleRangeArgs();
|
|
return std::make_pair(0, 0);
|
|
}
|
|
|
|
std::string AttributeSetNode::getAsString(bool InAttrGrp) const {
|
|
std::string Str;
|
|
for (iterator I = begin(), E = end(); I != E; ++I) {
|
|
if (I != begin())
|
|
Str += ' ';
|
|
Str += I->getAsString(InAttrGrp);
|
|
}
|
|
return Str;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AttributeListImpl Definition
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Map from AttributeList index to the internal array index. Adding one happens
|
|
/// to work, because -1 wraps around to 0.
|
|
static unsigned attrIdxToArrayIdx(unsigned Index) {
|
|
return Index + 1;
|
|
}
|
|
|
|
AttributeListImpl::AttributeListImpl(ArrayRef<AttributeSet> Sets)
|
|
: NumAttrSets(Sets.size()) {
|
|
assert(!Sets.empty() && "pointless AttributeListImpl");
|
|
|
|
// There's memory after the node where we can store the entries in.
|
|
llvm::copy(Sets, getTrailingObjects<AttributeSet>());
|
|
|
|
// Initialize AvailableFunctionAttrs and AvailableSomewhereAttrs
|
|
// summary bitsets.
|
|
for (const auto &I : Sets[attrIdxToArrayIdx(AttributeList::FunctionIndex)])
|
|
if (!I.isStringAttribute())
|
|
AvailableFunctionAttrs.addAttribute(I.getKindAsEnum());
|
|
|
|
for (const auto &Set : Sets)
|
|
for (const auto &I : Set)
|
|
if (!I.isStringAttribute())
|
|
AvailableSomewhereAttrs.addAttribute(I.getKindAsEnum());
|
|
}
|
|
|
|
void AttributeListImpl::Profile(FoldingSetNodeID &ID) const {
|
|
Profile(ID, makeArrayRef(begin(), end()));
|
|
}
|
|
|
|
void AttributeListImpl::Profile(FoldingSetNodeID &ID,
|
|
ArrayRef<AttributeSet> Sets) {
|
|
for (const auto &Set : Sets)
|
|
ID.AddPointer(Set.SetNode);
|
|
}
|
|
|
|
bool AttributeListImpl::hasAttrSomewhere(Attribute::AttrKind Kind,
|
|
unsigned *Index) const {
|
|
if (!AvailableSomewhereAttrs.hasAttribute(Kind))
|
|
return false;
|
|
|
|
if (Index) {
|
|
for (unsigned I = 0, E = NumAttrSets; I != E; ++I) {
|
|
if (begin()[I].hasAttribute(Kind)) {
|
|
*Index = I - 1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
LLVM_DUMP_METHOD void AttributeListImpl::dump() const {
|
|
AttributeList(const_cast<AttributeListImpl *>(this)).dump();
|
|
}
|
|
#endif
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AttributeList Construction and Mutation Methods
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
AttributeList AttributeList::getImpl(LLVMContext &C,
|
|
ArrayRef<AttributeSet> AttrSets) {
|
|
assert(!AttrSets.empty() && "pointless AttributeListImpl");
|
|
|
|
LLVMContextImpl *pImpl = C.pImpl;
|
|
FoldingSetNodeID ID;
|
|
AttributeListImpl::Profile(ID, AttrSets);
|
|
|
|
void *InsertPoint;
|
|
AttributeListImpl *PA =
|
|
pImpl->AttrsLists.FindNodeOrInsertPos(ID, InsertPoint);
|
|
|
|
// If we didn't find any existing attributes of the same shape then
|
|
// create a new one and insert it.
|
|
if (!PA) {
|
|
// Coallocate entries after the AttributeListImpl itself.
|
|
void *Mem = pImpl->Alloc.Allocate(
|
|
AttributeListImpl::totalSizeToAlloc<AttributeSet>(AttrSets.size()),
|
|
alignof(AttributeListImpl));
|
|
PA = new (Mem) AttributeListImpl(AttrSets);
|
|
pImpl->AttrsLists.InsertNode(PA, InsertPoint);
|
|
}
|
|
|
|
// Return the AttributesList that we found or created.
|
|
return AttributeList(PA);
|
|
}
|
|
|
|
AttributeList
|
|
AttributeList::get(LLVMContext &C,
|
|
ArrayRef<std::pair<unsigned, Attribute>> Attrs) {
|
|
// If there are no attributes then return a null AttributesList pointer.
|
|
if (Attrs.empty())
|
|
return {};
|
|
|
|
assert(llvm::is_sorted(Attrs,
|
|
[](const std::pair<unsigned, Attribute> &LHS,
|
|
const std::pair<unsigned, Attribute> &RHS) {
|
|
return LHS.first < RHS.first;
|
|
}) &&
|
|
"Misordered Attributes list!");
|
|
assert(llvm::all_of(Attrs,
|
|
[](const std::pair<unsigned, Attribute> &Pair) {
|
|
return Pair.second.isValid();
|
|
}) &&
|
|
"Pointless attribute!");
|
|
|
|
// Create a vector if (unsigned, AttributeSetNode*) pairs from the attributes
|
|
// list.
|
|
SmallVector<std::pair<unsigned, AttributeSet>, 8> AttrPairVec;
|
|
for (ArrayRef<std::pair<unsigned, Attribute>>::iterator I = Attrs.begin(),
|
|
E = Attrs.end(); I != E; ) {
|
|
unsigned Index = I->first;
|
|
SmallVector<Attribute, 4> AttrVec;
|
|
while (I != E && I->first == Index) {
|
|
AttrVec.push_back(I->second);
|
|
++I;
|
|
}
|
|
|
|
AttrPairVec.emplace_back(Index, AttributeSet::get(C, AttrVec));
|
|
}
|
|
|
|
return get(C, AttrPairVec);
|
|
}
|
|
|
|
AttributeList
|
|
AttributeList::get(LLVMContext &C,
|
|
ArrayRef<std::pair<unsigned, AttributeSet>> Attrs) {
|
|
// If there are no attributes then return a null AttributesList pointer.
|
|
if (Attrs.empty())
|
|
return {};
|
|
|
|
assert(llvm::is_sorted(Attrs,
|
|
[](const std::pair<unsigned, AttributeSet> &LHS,
|
|
const std::pair<unsigned, AttributeSet> &RHS) {
|
|
return LHS.first < RHS.first;
|
|
}) &&
|
|
"Misordered Attributes list!");
|
|
assert(llvm::none_of(Attrs,
|
|
[](const std::pair<unsigned, AttributeSet> &Pair) {
|
|
return !Pair.second.hasAttributes();
|
|
}) &&
|
|
"Pointless attribute!");
|
|
|
|
unsigned MaxIndex = Attrs.back().first;
|
|
// If the MaxIndex is FunctionIndex and there are other indices in front
|
|
// of it, we need to use the largest of those to get the right size.
|
|
if (MaxIndex == FunctionIndex && Attrs.size() > 1)
|
|
MaxIndex = Attrs[Attrs.size() - 2].first;
|
|
|
|
SmallVector<AttributeSet, 4> AttrVec(attrIdxToArrayIdx(MaxIndex) + 1);
|
|
for (const auto &Pair : Attrs)
|
|
AttrVec[attrIdxToArrayIdx(Pair.first)] = Pair.second;
|
|
|
|
return getImpl(C, AttrVec);
|
|
}
|
|
|
|
AttributeList AttributeList::get(LLVMContext &C, AttributeSet FnAttrs,
|
|
AttributeSet RetAttrs,
|
|
ArrayRef<AttributeSet> ArgAttrs) {
|
|
// Scan from the end to find the last argument with attributes. Most
|
|
// arguments don't have attributes, so it's nice if we can have fewer unique
|
|
// AttributeListImpls by dropping empty attribute sets at the end of the list.
|
|
unsigned NumSets = 0;
|
|
for (size_t I = ArgAttrs.size(); I != 0; --I) {
|
|
if (ArgAttrs[I - 1].hasAttributes()) {
|
|
NumSets = I + 2;
|
|
break;
|
|
}
|
|
}
|
|
if (NumSets == 0) {
|
|
// Check function and return attributes if we didn't have argument
|
|
// attributes.
|
|
if (RetAttrs.hasAttributes())
|
|
NumSets = 2;
|
|
else if (FnAttrs.hasAttributes())
|
|
NumSets = 1;
|
|
}
|
|
|
|
// If all attribute sets were empty, we can use the empty attribute list.
|
|
if (NumSets == 0)
|
|
return {};
|
|
|
|
SmallVector<AttributeSet, 8> AttrSets;
|
|
AttrSets.reserve(NumSets);
|
|
// If we have any attributes, we always have function attributes.
|
|
AttrSets.push_back(FnAttrs);
|
|
if (NumSets > 1)
|
|
AttrSets.push_back(RetAttrs);
|
|
if (NumSets > 2) {
|
|
// Drop the empty argument attribute sets at the end.
|
|
ArgAttrs = ArgAttrs.take_front(NumSets - 2);
|
|
llvm::append_range(AttrSets, ArgAttrs);
|
|
}
|
|
|
|
return getImpl(C, AttrSets);
|
|
}
|
|
|
|
AttributeList AttributeList::get(LLVMContext &C, unsigned Index,
|
|
const AttrBuilder &B) {
|
|
if (!B.hasAttributes())
|
|
return {};
|
|
Index = attrIdxToArrayIdx(Index);
|
|
SmallVector<AttributeSet, 8> AttrSets(Index + 1);
|
|
AttrSets[Index] = AttributeSet::get(C, B);
|
|
return getImpl(C, AttrSets);
|
|
}
|
|
|
|
AttributeList AttributeList::get(LLVMContext &C, unsigned Index,
|
|
ArrayRef<Attribute::AttrKind> Kinds) {
|
|
SmallVector<std::pair<unsigned, Attribute>, 8> Attrs;
|
|
for (const auto K : Kinds)
|
|
Attrs.emplace_back(Index, Attribute::get(C, K));
|
|
return get(C, Attrs);
|
|
}
|
|
|
|
AttributeList AttributeList::get(LLVMContext &C, unsigned Index,
|
|
ArrayRef<Attribute::AttrKind> Kinds,
|
|
ArrayRef<uint64_t> Values) {
|
|
assert(Kinds.size() == Values.size() && "Mismatched attribute values.");
|
|
SmallVector<std::pair<unsigned, Attribute>, 8> Attrs;
|
|
auto VI = Values.begin();
|
|
for (const auto K : Kinds)
|
|
Attrs.emplace_back(Index, Attribute::get(C, K, *VI++));
|
|
return get(C, Attrs);
|
|
}
|
|
|
|
AttributeList AttributeList::get(LLVMContext &C, unsigned Index,
|
|
ArrayRef<StringRef> Kinds) {
|
|
SmallVector<std::pair<unsigned, Attribute>, 8> Attrs;
|
|
for (const auto &K : Kinds)
|
|
Attrs.emplace_back(Index, Attribute::get(C, K));
|
|
return get(C, Attrs);
|
|
}
|
|
|
|
AttributeList AttributeList::get(LLVMContext &C,
|
|
ArrayRef<AttributeList> Attrs) {
|
|
if (Attrs.empty())
|
|
return {};
|
|
if (Attrs.size() == 1)
|
|
return Attrs[0];
|
|
|
|
unsigned MaxSize = 0;
|
|
for (const auto &List : Attrs)
|
|
MaxSize = std::max(MaxSize, List.getNumAttrSets());
|
|
|
|
// If every list was empty, there is no point in merging the lists.
|
|
if (MaxSize == 0)
|
|
return {};
|
|
|
|
SmallVector<AttributeSet, 8> NewAttrSets(MaxSize);
|
|
for (unsigned I = 0; I < MaxSize; ++I) {
|
|
AttrBuilder CurBuilder;
|
|
for (const auto &List : Attrs)
|
|
CurBuilder.merge(List.getAttributes(I - 1));
|
|
NewAttrSets[I] = AttributeSet::get(C, CurBuilder);
|
|
}
|
|
|
|
return getImpl(C, NewAttrSets);
|
|
}
|
|
|
|
AttributeList AttributeList::addAttribute(LLVMContext &C, unsigned Index,
|
|
Attribute::AttrKind Kind) const {
|
|
if (hasAttribute(Index, Kind)) return *this;
|
|
AttributeSet Attrs = getAttributes(Index);
|
|
// TODO: Insert at correct position and avoid sort.
|
|
SmallVector<Attribute, 8> NewAttrs(Attrs.begin(), Attrs.end());
|
|
NewAttrs.push_back(Attribute::get(C, Kind));
|
|
return setAttributes(C, Index, AttributeSet::get(C, NewAttrs));
|
|
}
|
|
|
|
AttributeList AttributeList::addAttribute(LLVMContext &C, unsigned Index,
|
|
StringRef Kind,
|
|
StringRef Value) const {
|
|
AttrBuilder B;
|
|
B.addAttribute(Kind, Value);
|
|
return addAttributes(C, Index, B);
|
|
}
|
|
|
|
AttributeList AttributeList::addAttribute(LLVMContext &C, unsigned Index,
|
|
Attribute A) const {
|
|
AttrBuilder B;
|
|
B.addAttribute(A);
|
|
return addAttributes(C, Index, B);
|
|
}
|
|
|
|
AttributeList AttributeList::setAttributes(LLVMContext &C, unsigned Index,
|
|
AttributeSet Attrs) const {
|
|
Index = attrIdxToArrayIdx(Index);
|
|
SmallVector<AttributeSet, 4> AttrSets(this->begin(), this->end());
|
|
if (Index >= AttrSets.size())
|
|
AttrSets.resize(Index + 1);
|
|
AttrSets[Index] = Attrs;
|
|
return AttributeList::getImpl(C, AttrSets);
|
|
}
|
|
|
|
AttributeList AttributeList::addAttributes(LLVMContext &C, unsigned Index,
|
|
const AttrBuilder &B) const {
|
|
if (!B.hasAttributes())
|
|
return *this;
|
|
|
|
if (!pImpl)
|
|
return AttributeList::get(C, {{Index, AttributeSet::get(C, B)}});
|
|
|
|
#ifndef NDEBUG
|
|
// FIXME it is not obvious how this should work for alignment. For now, say
|
|
// we can't change a known alignment.
|
|
const MaybeAlign OldAlign = getAttributes(Index).getAlignment();
|
|
const MaybeAlign NewAlign = B.getAlignment();
|
|
assert((!OldAlign || !NewAlign || OldAlign == NewAlign) &&
|
|
"Attempt to change alignment!");
|
|
#endif
|
|
|
|
AttrBuilder Merged(getAttributes(Index));
|
|
Merged.merge(B);
|
|
return setAttributes(C, Index, AttributeSet::get(C, Merged));
|
|
}
|
|
|
|
AttributeList AttributeList::addParamAttribute(LLVMContext &C,
|
|
ArrayRef<unsigned> ArgNos,
|
|
Attribute A) const {
|
|
assert(llvm::is_sorted(ArgNos));
|
|
|
|
SmallVector<AttributeSet, 4> AttrSets(this->begin(), this->end());
|
|
unsigned MaxIndex = attrIdxToArrayIdx(ArgNos.back() + FirstArgIndex);
|
|
if (MaxIndex >= AttrSets.size())
|
|
AttrSets.resize(MaxIndex + 1);
|
|
|
|
for (unsigned ArgNo : ArgNos) {
|
|
unsigned Index = attrIdxToArrayIdx(ArgNo + FirstArgIndex);
|
|
AttrBuilder B(AttrSets[Index]);
|
|
B.addAttribute(A);
|
|
AttrSets[Index] = AttributeSet::get(C, B);
|
|
}
|
|
|
|
return getImpl(C, AttrSets);
|
|
}
|
|
|
|
AttributeList AttributeList::removeAttribute(LLVMContext &C, unsigned Index,
|
|
Attribute::AttrKind Kind) const {
|
|
if (!hasAttribute(Index, Kind)) return *this;
|
|
|
|
Index = attrIdxToArrayIdx(Index);
|
|
SmallVector<AttributeSet, 4> AttrSets(this->begin(), this->end());
|
|
assert(Index < AttrSets.size());
|
|
|
|
AttrSets[Index] = AttrSets[Index].removeAttribute(C, Kind);
|
|
|
|
return getImpl(C, AttrSets);
|
|
}
|
|
|
|
AttributeList AttributeList::removeAttribute(LLVMContext &C, unsigned Index,
|
|
StringRef Kind) const {
|
|
if (!hasAttribute(Index, Kind)) return *this;
|
|
|
|
Index = attrIdxToArrayIdx(Index);
|
|
SmallVector<AttributeSet, 4> AttrSets(this->begin(), this->end());
|
|
assert(Index < AttrSets.size());
|
|
|
|
AttrSets[Index] = AttrSets[Index].removeAttribute(C, Kind);
|
|
|
|
return getImpl(C, AttrSets);
|
|
}
|
|
|
|
AttributeList
|
|
AttributeList::removeAttributes(LLVMContext &C, unsigned Index,
|
|
const AttrBuilder &AttrsToRemove) const {
|
|
AttributeSet Attrs = getAttributes(Index);
|
|
AttributeSet NewAttrs = Attrs.removeAttributes(C, AttrsToRemove);
|
|
// If nothing was removed, return the original list.
|
|
if (Attrs == NewAttrs)
|
|
return *this;
|
|
return setAttributes(C, Index, NewAttrs);
|
|
}
|
|
|
|
AttributeList AttributeList::removeAttributes(LLVMContext &C,
|
|
unsigned WithoutIndex) const {
|
|
if (!pImpl)
|
|
return {};
|
|
WithoutIndex = attrIdxToArrayIdx(WithoutIndex);
|
|
if (WithoutIndex >= getNumAttrSets())
|
|
return *this;
|
|
SmallVector<AttributeSet, 4> AttrSets(this->begin(), this->end());
|
|
AttrSets[WithoutIndex] = AttributeSet();
|
|
return getImpl(C, AttrSets);
|
|
}
|
|
|
|
AttributeList
|
|
AttributeList::removeParamUndefImplyingAttributes(LLVMContext &C,
|
|
unsigned ArgNo) const {
|
|
AttrBuilder B;
|
|
B.addAttribute(Attribute::NoUndef);
|
|
B.addAttribute(Attribute::NonNull);
|
|
B.addDereferenceableAttr(1);
|
|
B.addDereferenceableOrNullAttr(1);
|
|
return removeParamAttributes(C, ArgNo, B);
|
|
}
|
|
|
|
AttributeList AttributeList::addDereferenceableAttr(LLVMContext &C,
|
|
unsigned Index,
|
|
uint64_t Bytes) const {
|
|
AttrBuilder B;
|
|
B.addDereferenceableAttr(Bytes);
|
|
return addAttributes(C, Index, B);
|
|
}
|
|
|
|
AttributeList
|
|
AttributeList::addDereferenceableOrNullAttr(LLVMContext &C, unsigned Index,
|
|
uint64_t Bytes) const {
|
|
AttrBuilder B;
|
|
B.addDereferenceableOrNullAttr(Bytes);
|
|
return addAttributes(C, Index, B);
|
|
}
|
|
|
|
AttributeList
|
|
AttributeList::addAllocSizeAttr(LLVMContext &C, unsigned Index,
|
|
unsigned ElemSizeArg,
|
|
const Optional<unsigned> &NumElemsArg) {
|
|
AttrBuilder B;
|
|
B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
|
|
return addAttributes(C, Index, B);
|
|
}
|
|
|
|
AttributeList AttributeList::addVScaleRangeAttr(LLVMContext &C, unsigned Index,
|
|
unsigned MinValue,
|
|
unsigned MaxValue) {
|
|
AttrBuilder B;
|
|
B.addVScaleRangeAttr(MinValue, MaxValue);
|
|
return addAttributes(C, Index, B);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AttributeList Accessor Methods
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
AttributeSet AttributeList::getParamAttributes(unsigned ArgNo) const {
|
|
return getAttributes(ArgNo + FirstArgIndex);
|
|
}
|
|
|
|
AttributeSet AttributeList::getRetAttributes() const {
|
|
return getAttributes(ReturnIndex);
|
|
}
|
|
|
|
AttributeSet AttributeList::getFnAttributes() const {
|
|
return getAttributes(FunctionIndex);
|
|
}
|
|
|
|
bool AttributeList::hasAttribute(unsigned Index,
|
|
Attribute::AttrKind Kind) const {
|
|
return getAttributes(Index).hasAttribute(Kind);
|
|
}
|
|
|
|
bool AttributeList::hasAttribute(unsigned Index, StringRef Kind) const {
|
|
return getAttributes(Index).hasAttribute(Kind);
|
|
}
|
|
|
|
bool AttributeList::hasAttributes(unsigned Index) const {
|
|
return getAttributes(Index).hasAttributes();
|
|
}
|
|
|
|
bool AttributeList::hasFnAttribute(Attribute::AttrKind Kind) const {
|
|
return pImpl && pImpl->hasFnAttribute(Kind);
|
|
}
|
|
|
|
bool AttributeList::hasFnAttribute(StringRef Kind) const {
|
|
return hasAttribute(AttributeList::FunctionIndex, Kind);
|
|
}
|
|
|
|
bool AttributeList::hasParamAttribute(unsigned ArgNo,
|
|
Attribute::AttrKind Kind) const {
|
|
return hasAttribute(ArgNo + FirstArgIndex, Kind);
|
|
}
|
|
|
|
bool AttributeList::hasAttrSomewhere(Attribute::AttrKind Attr,
|
|
unsigned *Index) const {
|
|
return pImpl && pImpl->hasAttrSomewhere(Attr, Index);
|
|
}
|
|
|
|
Attribute AttributeList::getAttribute(unsigned Index,
|
|
Attribute::AttrKind Kind) const {
|
|
return getAttributes(Index).getAttribute(Kind);
|
|
}
|
|
|
|
Attribute AttributeList::getAttribute(unsigned Index, StringRef Kind) const {
|
|
return getAttributes(Index).getAttribute(Kind);
|
|
}
|
|
|
|
MaybeAlign AttributeList::getRetAlignment() const {
|
|
return getAttributes(ReturnIndex).getAlignment();
|
|
}
|
|
|
|
MaybeAlign AttributeList::getParamAlignment(unsigned ArgNo) const {
|
|
return getAttributes(ArgNo + FirstArgIndex).getAlignment();
|
|
}
|
|
|
|
MaybeAlign AttributeList::getParamStackAlignment(unsigned ArgNo) const {
|
|
return getAttributes(ArgNo + FirstArgIndex).getStackAlignment();
|
|
}
|
|
|
|
Type *AttributeList::getParamByValType(unsigned Index) const {
|
|
return getAttributes(Index+FirstArgIndex).getByValType();
|
|
}
|
|
|
|
Type *AttributeList::getParamStructRetType(unsigned Index) const {
|
|
return getAttributes(Index + FirstArgIndex).getStructRetType();
|
|
}
|
|
|
|
Type *AttributeList::getParamByRefType(unsigned Index) const {
|
|
return getAttributes(Index + FirstArgIndex).getByRefType();
|
|
}
|
|
|
|
Type *AttributeList::getParamPreallocatedType(unsigned Index) const {
|
|
return getAttributes(Index + FirstArgIndex).getPreallocatedType();
|
|
}
|
|
|
|
Type *AttributeList::getParamInAllocaType(unsigned Index) const {
|
|
return getAttributes(Index + FirstArgIndex).getInAllocaType();
|
|
}
|
|
|
|
Type *AttributeList::getParamElementType(unsigned Index) const {
|
|
return getAttributes(Index + FirstArgIndex).getElementType();
|
|
}
|
|
|
|
MaybeAlign AttributeList::getStackAlignment(unsigned Index) const {
|
|
return getAttributes(Index).getStackAlignment();
|
|
}
|
|
|
|
uint64_t AttributeList::getDereferenceableBytes(unsigned Index) const {
|
|
return getAttributes(Index).getDereferenceableBytes();
|
|
}
|
|
|
|
uint64_t AttributeList::getDereferenceableOrNullBytes(unsigned Index) const {
|
|
return getAttributes(Index).getDereferenceableOrNullBytes();
|
|
}
|
|
|
|
std::pair<unsigned, Optional<unsigned>>
|
|
AttributeList::getAllocSizeArgs(unsigned Index) const {
|
|
return getAttributes(Index).getAllocSizeArgs();
|
|
}
|
|
|
|
std::pair<unsigned, unsigned>
|
|
AttributeList::getVScaleRangeArgs(unsigned Index) const {
|
|
return getAttributes(Index).getVScaleRangeArgs();
|
|
}
|
|
|
|
std::string AttributeList::getAsString(unsigned Index, bool InAttrGrp) const {
|
|
return getAttributes(Index).getAsString(InAttrGrp);
|
|
}
|
|
|
|
AttributeSet AttributeList::getAttributes(unsigned Index) const {
|
|
Index = attrIdxToArrayIdx(Index);
|
|
if (!pImpl || Index >= getNumAttrSets())
|
|
return {};
|
|
return pImpl->begin()[Index];
|
|
}
|
|
|
|
bool AttributeList::hasParentContext(LLVMContext &C) const {
|
|
assert(!isEmpty() && "an empty attribute list has no parent context");
|
|
FoldingSetNodeID ID;
|
|
pImpl->Profile(ID);
|
|
void *Unused;
|
|
return C.pImpl->AttrsLists.FindNodeOrInsertPos(ID, Unused) == pImpl;
|
|
}
|
|
|
|
AttributeList::iterator AttributeList::begin() const {
|
|
return pImpl ? pImpl->begin() : nullptr;
|
|
}
|
|
|
|
AttributeList::iterator AttributeList::end() const {
|
|
return pImpl ? pImpl->end() : nullptr;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AttributeList Introspection Methods
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
unsigned AttributeList::getNumAttrSets() const {
|
|
return pImpl ? pImpl->NumAttrSets : 0;
|
|
}
|
|
|
|
void AttributeList::print(raw_ostream &O) const {
|
|
O << "AttributeList[\n";
|
|
|
|
for (unsigned i = index_begin(), e = index_end(); i != e; ++i) {
|
|
if (!getAttributes(i).hasAttributes())
|
|
continue;
|
|
O << " { ";
|
|
switch (i) {
|
|
case AttrIndex::ReturnIndex:
|
|
O << "return";
|
|
break;
|
|
case AttrIndex::FunctionIndex:
|
|
O << "function";
|
|
break;
|
|
default:
|
|
O << "arg(" << i - AttrIndex::FirstArgIndex << ")";
|
|
}
|
|
O << " => " << getAsString(i) << " }\n";
|
|
}
|
|
|
|
O << "]\n";
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
LLVM_DUMP_METHOD void AttributeList::dump() const { print(dbgs()); }
|
|
#endif
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AttrBuilder Method Implementations
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// FIXME: Remove this ctor, use AttributeSet.
|
|
AttrBuilder::AttrBuilder(AttributeList AL, unsigned Index) {
|
|
AttributeSet AS = AL.getAttributes(Index);
|
|
for (const auto &A : AS)
|
|
addAttribute(A);
|
|
}
|
|
|
|
AttrBuilder::AttrBuilder(AttributeSet AS) {
|
|
for (const auto &A : AS)
|
|
addAttribute(A);
|
|
}
|
|
|
|
void AttrBuilder::clear() {
|
|
Attrs.reset();
|
|
TargetDepAttrs.clear();
|
|
Alignment.reset();
|
|
StackAlignment.reset();
|
|
DerefBytes = DerefOrNullBytes = 0;
|
|
AllocSizeArgs = 0;
|
|
VScaleRangeArgs = 0;
|
|
TypeAttrs = {};
|
|
}
|
|
|
|
Optional<unsigned>
|
|
AttrBuilder::kindToTypeIndex(Attribute::AttrKind Kind) const {
|
|
if (Attribute::isTypeAttrKind(Kind))
|
|
return Kind - Attribute::FirstTypeAttr;
|
|
return None;
|
|
}
|
|
|
|
AttrBuilder &AttrBuilder::addAttribute(Attribute Attr) {
|
|
if (Attr.isStringAttribute()) {
|
|
addAttribute(Attr.getKindAsString(), Attr.getValueAsString());
|
|
return *this;
|
|
}
|
|
|
|
Attribute::AttrKind Kind = Attr.getKindAsEnum();
|
|
Attrs[Kind] = true;
|
|
|
|
if (Optional<unsigned> TypeIndex = kindToTypeIndex(Kind))
|
|
TypeAttrs[*TypeIndex] = Attr.getValueAsType();
|
|
else if (Kind == Attribute::Alignment)
|
|
Alignment = Attr.getAlignment();
|
|
else if (Kind == Attribute::StackAlignment)
|
|
StackAlignment = Attr.getStackAlignment();
|
|
else if (Kind == Attribute::Dereferenceable)
|
|
DerefBytes = Attr.getDereferenceableBytes();
|
|
else if (Kind == Attribute::DereferenceableOrNull)
|
|
DerefOrNullBytes = Attr.getDereferenceableOrNullBytes();
|
|
else if (Kind == Attribute::AllocSize)
|
|
AllocSizeArgs = Attr.getValueAsInt();
|
|
else if (Kind == Attribute::VScaleRange)
|
|
VScaleRangeArgs = Attr.getValueAsInt();
|
|
|
|
return *this;
|
|
}
|
|
|
|
AttrBuilder &AttrBuilder::addAttribute(StringRef A, StringRef V) {
|
|
TargetDepAttrs[A] = V;
|
|
return *this;
|
|
}
|
|
|
|
AttrBuilder &AttrBuilder::removeAttribute(Attribute::AttrKind Val) {
|
|
assert((unsigned)Val < Attribute::EndAttrKinds && "Attribute out of range!");
|
|
Attrs[Val] = false;
|
|
|
|
if (Optional<unsigned> TypeIndex = kindToTypeIndex(Val))
|
|
TypeAttrs[*TypeIndex] = nullptr;
|
|
else if (Val == Attribute::Alignment)
|
|
Alignment.reset();
|
|
else if (Val == Attribute::StackAlignment)
|
|
StackAlignment.reset();
|
|
else if (Val == Attribute::Dereferenceable)
|
|
DerefBytes = 0;
|
|
else if (Val == Attribute::DereferenceableOrNull)
|
|
DerefOrNullBytes = 0;
|
|
else if (Val == Attribute::AllocSize)
|
|
AllocSizeArgs = 0;
|
|
else if (Val == Attribute::VScaleRange)
|
|
VScaleRangeArgs = 0;
|
|
|
|
return *this;
|
|
}
|
|
|
|
AttrBuilder &AttrBuilder::removeAttributes(AttributeList A, uint64_t Index) {
|
|
remove(A.getAttributes(Index));
|
|
return *this;
|
|
}
|
|
|
|
AttrBuilder &AttrBuilder::removeAttribute(StringRef A) {
|
|
auto I = TargetDepAttrs.find(A);
|
|
if (I != TargetDepAttrs.end())
|
|
TargetDepAttrs.erase(I);
|
|
return *this;
|
|
}
|
|
|
|
std::pair<unsigned, Optional<unsigned>> AttrBuilder::getAllocSizeArgs() const {
|
|
return unpackAllocSizeArgs(AllocSizeArgs);
|
|
}
|
|
|
|
std::pair<unsigned, unsigned> AttrBuilder::getVScaleRangeArgs() const {
|
|
return unpackVScaleRangeArgs(VScaleRangeArgs);
|
|
}
|
|
|
|
AttrBuilder &AttrBuilder::addAlignmentAttr(MaybeAlign Align) {
|
|
if (!Align)
|
|
return *this;
|
|
|
|
assert(*Align <= llvm::Value::MaximumAlignment && "Alignment too large.");
|
|
|
|
Attrs[Attribute::Alignment] = true;
|
|
Alignment = Align;
|
|
return *this;
|
|
}
|
|
|
|
AttrBuilder &AttrBuilder::addStackAlignmentAttr(MaybeAlign Align) {
|
|
// Default alignment, allow the target to define how to align it.
|
|
if (!Align)
|
|
return *this;
|
|
|
|
assert(*Align <= 0x100 && "Alignment too large.");
|
|
|
|
Attrs[Attribute::StackAlignment] = true;
|
|
StackAlignment = Align;
|
|
return *this;
|
|
}
|
|
|
|
AttrBuilder &AttrBuilder::addDereferenceableAttr(uint64_t Bytes) {
|
|
if (Bytes == 0) return *this;
|
|
|
|
Attrs[Attribute::Dereferenceable] = true;
|
|
DerefBytes = Bytes;
|
|
return *this;
|
|
}
|
|
|
|
AttrBuilder &AttrBuilder::addDereferenceableOrNullAttr(uint64_t Bytes) {
|
|
if (Bytes == 0)
|
|
return *this;
|
|
|
|
Attrs[Attribute::DereferenceableOrNull] = true;
|
|
DerefOrNullBytes = Bytes;
|
|
return *this;
|
|
}
|
|
|
|
AttrBuilder &AttrBuilder::addAllocSizeAttr(unsigned ElemSize,
|
|
const Optional<unsigned> &NumElems) {
|
|
return addAllocSizeAttrFromRawRepr(packAllocSizeArgs(ElemSize, NumElems));
|
|
}
|
|
|
|
AttrBuilder &AttrBuilder::addAllocSizeAttrFromRawRepr(uint64_t RawArgs) {
|
|
// (0, 0) is our "not present" value, so we need to check for it here.
|
|
assert(RawArgs && "Invalid allocsize arguments -- given allocsize(0, 0)");
|
|
|
|
Attrs[Attribute::AllocSize] = true;
|
|
// Reuse existing machinery to store this as a single 64-bit integer so we can
|
|
// save a few bytes over using a pair<unsigned, Optional<unsigned>>.
|
|
AllocSizeArgs = RawArgs;
|
|
return *this;
|
|
}
|
|
|
|
AttrBuilder &AttrBuilder::addVScaleRangeAttr(unsigned MinValue,
|
|
unsigned MaxValue) {
|
|
return addVScaleRangeAttrFromRawRepr(packVScaleRangeArgs(MinValue, MaxValue));
|
|
}
|
|
|
|
AttrBuilder &AttrBuilder::addVScaleRangeAttrFromRawRepr(uint64_t RawArgs) {
|
|
// (0, 0) is not present hence ignore this case
|
|
if (RawArgs == 0)
|
|
return *this;
|
|
|
|
Attrs[Attribute::VScaleRange] = true;
|
|
// Reuse existing machinery to store this as a single 64-bit integer so we can
|
|
// save a few bytes over using a pair<unsigned, unsigned>.
|
|
VScaleRangeArgs = RawArgs;
|
|
return *this;
|
|
}
|
|
|
|
Type *AttrBuilder::getTypeAttr(Attribute::AttrKind Kind) const {
|
|
Optional<unsigned> TypeIndex = kindToTypeIndex(Kind);
|
|
assert(TypeIndex && "Not a type attribute");
|
|
return TypeAttrs[*TypeIndex];
|
|
}
|
|
|
|
AttrBuilder &AttrBuilder::addTypeAttr(Attribute::AttrKind Kind, Type *Ty) {
|
|
Optional<unsigned> TypeIndex = kindToTypeIndex(Kind);
|
|
assert(TypeIndex && "Not a type attribute");
|
|
Attrs[Kind] = true;
|
|
TypeAttrs[*TypeIndex] = Ty;
|
|
return *this;
|
|
}
|
|
|
|
AttrBuilder &AttrBuilder::addByValAttr(Type *Ty) {
|
|
return addTypeAttr(Attribute::ByVal, Ty);
|
|
}
|
|
|
|
AttrBuilder &AttrBuilder::addStructRetAttr(Type *Ty) {
|
|
return addTypeAttr(Attribute::StructRet, Ty);
|
|
}
|
|
|
|
AttrBuilder &AttrBuilder::addByRefAttr(Type *Ty) {
|
|
return addTypeAttr(Attribute::ByRef, Ty);
|
|
}
|
|
|
|
AttrBuilder &AttrBuilder::addPreallocatedAttr(Type *Ty) {
|
|
return addTypeAttr(Attribute::Preallocated, Ty);
|
|
}
|
|
|
|
AttrBuilder &AttrBuilder::addInAllocaAttr(Type *Ty) {
|
|
return addTypeAttr(Attribute::InAlloca, Ty);
|
|
}
|
|
|
|
AttrBuilder &AttrBuilder::merge(const AttrBuilder &B) {
|
|
// FIXME: What if both have alignments, but they don't match?!
|
|
if (!Alignment)
|
|
Alignment = B.Alignment;
|
|
|
|
if (!StackAlignment)
|
|
StackAlignment = B.StackAlignment;
|
|
|
|
if (!DerefBytes)
|
|
DerefBytes = B.DerefBytes;
|
|
|
|
if (!DerefOrNullBytes)
|
|
DerefOrNullBytes = B.DerefOrNullBytes;
|
|
|
|
if (!AllocSizeArgs)
|
|
AllocSizeArgs = B.AllocSizeArgs;
|
|
|
|
if (!VScaleRangeArgs)
|
|
VScaleRangeArgs = B.VScaleRangeArgs;
|
|
|
|
for (unsigned Index = 0; Index < Attribute::NumTypeAttrKinds; ++Index)
|
|
if (!TypeAttrs[Index])
|
|
TypeAttrs[Index] = B.TypeAttrs[Index];
|
|
|
|
Attrs |= B.Attrs;
|
|
|
|
for (const auto &I : B.td_attrs())
|
|
TargetDepAttrs[I.first] = I.second;
|
|
|
|
return *this;
|
|
}
|
|
|
|
AttrBuilder &AttrBuilder::remove(const AttrBuilder &B) {
|
|
// FIXME: What if both have alignments, but they don't match?!
|
|
if (B.Alignment)
|
|
Alignment.reset();
|
|
|
|
if (B.StackAlignment)
|
|
StackAlignment.reset();
|
|
|
|
if (B.DerefBytes)
|
|
DerefBytes = 0;
|
|
|
|
if (B.DerefOrNullBytes)
|
|
DerefOrNullBytes = 0;
|
|
|
|
if (B.AllocSizeArgs)
|
|
AllocSizeArgs = 0;
|
|
|
|
if (B.VScaleRangeArgs)
|
|
VScaleRangeArgs = 0;
|
|
|
|
for (unsigned Index = 0; Index < Attribute::NumTypeAttrKinds; ++Index)
|
|
if (B.TypeAttrs[Index])
|
|
TypeAttrs[Index] = nullptr;
|
|
|
|
Attrs &= ~B.Attrs;
|
|
|
|
for (const auto &I : B.td_attrs())
|
|
TargetDepAttrs.erase(I.first);
|
|
|
|
return *this;
|
|
}
|
|
|
|
bool AttrBuilder::overlaps(const AttrBuilder &B) const {
|
|
// First check if any of the target independent attributes overlap.
|
|
if ((Attrs & B.Attrs).any())
|
|
return true;
|
|
|
|
// Then check if any target dependent ones do.
|
|
for (const auto &I : td_attrs())
|
|
if (B.contains(I.first))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool AttrBuilder::contains(StringRef A) const {
|
|
return TargetDepAttrs.find(A) != TargetDepAttrs.end();
|
|
}
|
|
|
|
bool AttrBuilder::hasAttributes() const {
|
|
return !Attrs.none() || !TargetDepAttrs.empty();
|
|
}
|
|
|
|
bool AttrBuilder::hasAttributes(AttributeList AL, uint64_t Index) const {
|
|
AttributeSet AS = AL.getAttributes(Index);
|
|
|
|
for (const auto &Attr : AS) {
|
|
if (Attr.isEnumAttribute() || Attr.isIntAttribute()) {
|
|
if (contains(Attr.getKindAsEnum()))
|
|
return true;
|
|
} else {
|
|
assert(Attr.isStringAttribute() && "Invalid attribute kind!");
|
|
return contains(Attr.getKindAsString());
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool AttrBuilder::hasAlignmentAttr() const {
|
|
return Alignment != 0;
|
|
}
|
|
|
|
bool AttrBuilder::operator==(const AttrBuilder &B) const {
|
|
if (Attrs != B.Attrs)
|
|
return false;
|
|
|
|
for (const auto &TDA : TargetDepAttrs)
|
|
if (B.TargetDepAttrs.find(TDA.first) == B.TargetDepAttrs.end())
|
|
return false;
|
|
|
|
return Alignment == B.Alignment && StackAlignment == B.StackAlignment &&
|
|
DerefBytes == B.DerefBytes && TypeAttrs == B.TypeAttrs &&
|
|
VScaleRangeArgs == B.VScaleRangeArgs;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AttributeFuncs Function Defintions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Which attributes cannot be applied to a type.
|
|
AttrBuilder AttributeFuncs::typeIncompatible(Type *Ty) {
|
|
AttrBuilder Incompatible;
|
|
|
|
if (!Ty->isIntegerTy())
|
|
// Attribute that only apply to integers.
|
|
Incompatible.addAttribute(Attribute::SExt)
|
|
.addAttribute(Attribute::ZExt);
|
|
|
|
if (!Ty->isPointerTy())
|
|
// Attribute that only apply to pointers.
|
|
Incompatible.addAttribute(Attribute::Nest)
|
|
.addAttribute(Attribute::NoAlias)
|
|
.addAttribute(Attribute::NoCapture)
|
|
.addAttribute(Attribute::NonNull)
|
|
.addAttribute(Attribute::ReadNone)
|
|
.addAttribute(Attribute::ReadOnly)
|
|
.addAttribute(Attribute::SwiftError)
|
|
.addAlignmentAttr(1) // the int here is ignored
|
|
.addDereferenceableAttr(1) // the int here is ignored
|
|
.addDereferenceableOrNullAttr(1) // the int here is ignored
|
|
.addPreallocatedAttr(Ty)
|
|
.addInAllocaAttr(Ty)
|
|
.addByValAttr(Ty)
|
|
.addStructRetAttr(Ty)
|
|
.addByRefAttr(Ty)
|
|
.addTypeAttr(Attribute::ElementType, Ty);
|
|
|
|
// Some attributes can apply to all "values" but there are no `void` values.
|
|
if (Ty->isVoidTy())
|
|
Incompatible.addAttribute(Attribute::NoUndef);
|
|
|
|
return Incompatible;
|
|
}
|
|
|
|
template<typename AttrClass>
|
|
static bool isEqual(const Function &Caller, const Function &Callee) {
|
|
return Caller.getFnAttribute(AttrClass::getKind()) ==
|
|
Callee.getFnAttribute(AttrClass::getKind());
|
|
}
|
|
|
|
/// Compute the logical AND of the attributes of the caller and the
|
|
/// callee.
|
|
///
|
|
/// This function sets the caller's attribute to false if the callee's attribute
|
|
/// is false.
|
|
template<typename AttrClass>
|
|
static void setAND(Function &Caller, const Function &Callee) {
|
|
if (AttrClass::isSet(Caller, AttrClass::getKind()) &&
|
|
!AttrClass::isSet(Callee, AttrClass::getKind()))
|
|
AttrClass::set(Caller, AttrClass::getKind(), false);
|
|
}
|
|
|
|
/// Compute the logical OR of the attributes of the caller and the
|
|
/// callee.
|
|
///
|
|
/// This function sets the caller's attribute to true if the callee's attribute
|
|
/// is true.
|
|
template<typename AttrClass>
|
|
static void setOR(Function &Caller, const Function &Callee) {
|
|
if (!AttrClass::isSet(Caller, AttrClass::getKind()) &&
|
|
AttrClass::isSet(Callee, AttrClass::getKind()))
|
|
AttrClass::set(Caller, AttrClass::getKind(), true);
|
|
}
|
|
|
|
/// If the inlined function had a higher stack protection level than the
|
|
/// calling function, then bump up the caller's stack protection level.
|
|
static void adjustCallerSSPLevel(Function &Caller, const Function &Callee) {
|
|
// If upgrading the SSP attribute, clear out the old SSP Attributes first.
|
|
// Having multiple SSP attributes doesn't actually hurt, but it adds useless
|
|
// clutter to the IR.
|
|
AttrBuilder OldSSPAttr;
|
|
OldSSPAttr.addAttribute(Attribute::StackProtect)
|
|
.addAttribute(Attribute::StackProtectStrong)
|
|
.addAttribute(Attribute::StackProtectReq);
|
|
|
|
if (Callee.hasFnAttribute(Attribute::StackProtectReq)) {
|
|
Caller.removeAttributes(AttributeList::FunctionIndex, OldSSPAttr);
|
|
Caller.addFnAttr(Attribute::StackProtectReq);
|
|
} else if (Callee.hasFnAttribute(Attribute::StackProtectStrong) &&
|
|
!Caller.hasFnAttribute(Attribute::StackProtectReq)) {
|
|
Caller.removeAttributes(AttributeList::FunctionIndex, OldSSPAttr);
|
|
Caller.addFnAttr(Attribute::StackProtectStrong);
|
|
} else if (Callee.hasFnAttribute(Attribute::StackProtect) &&
|
|
!Caller.hasFnAttribute(Attribute::StackProtectReq) &&
|
|
!Caller.hasFnAttribute(Attribute::StackProtectStrong))
|
|
Caller.addFnAttr(Attribute::StackProtect);
|
|
}
|
|
|
|
/// If the inlined function required stack probes, then ensure that
|
|
/// the calling function has those too.
|
|
static void adjustCallerStackProbes(Function &Caller, const Function &Callee) {
|
|
if (!Caller.hasFnAttribute("probe-stack") &&
|
|
Callee.hasFnAttribute("probe-stack")) {
|
|
Caller.addFnAttr(Callee.getFnAttribute("probe-stack"));
|
|
}
|
|
}
|
|
|
|
/// If the inlined function defines the size of guard region
|
|
/// on the stack, then ensure that the calling function defines a guard region
|
|
/// that is no larger.
|
|
static void
|
|
adjustCallerStackProbeSize(Function &Caller, const Function &Callee) {
|
|
Attribute CalleeAttr = Callee.getFnAttribute("stack-probe-size");
|
|
if (CalleeAttr.isValid()) {
|
|
Attribute CallerAttr = Caller.getFnAttribute("stack-probe-size");
|
|
if (CallerAttr.isValid()) {
|
|
uint64_t CallerStackProbeSize, CalleeStackProbeSize;
|
|
CallerAttr.getValueAsString().getAsInteger(0, CallerStackProbeSize);
|
|
CalleeAttr.getValueAsString().getAsInteger(0, CalleeStackProbeSize);
|
|
|
|
if (CallerStackProbeSize > CalleeStackProbeSize) {
|
|
Caller.addFnAttr(CalleeAttr);
|
|
}
|
|
} else {
|
|
Caller.addFnAttr(CalleeAttr);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// If the inlined function defines a min legal vector width, then ensure
|
|
/// the calling function has the same or larger min legal vector width. If the
|
|
/// caller has the attribute, but the callee doesn't, we need to remove the
|
|
/// attribute from the caller since we can't make any guarantees about the
|
|
/// caller's requirements.
|
|
/// This function is called after the inlining decision has been made so we have
|
|
/// to merge the attribute this way. Heuristics that would use
|
|
/// min-legal-vector-width to determine inline compatibility would need to be
|
|
/// handled as part of inline cost analysis.
|
|
static void
|
|
adjustMinLegalVectorWidth(Function &Caller, const Function &Callee) {
|
|
Attribute CallerAttr = Caller.getFnAttribute("min-legal-vector-width");
|
|
if (CallerAttr.isValid()) {
|
|
Attribute CalleeAttr = Callee.getFnAttribute("min-legal-vector-width");
|
|
if (CalleeAttr.isValid()) {
|
|
uint64_t CallerVectorWidth, CalleeVectorWidth;
|
|
CallerAttr.getValueAsString().getAsInteger(0, CallerVectorWidth);
|
|
CalleeAttr.getValueAsString().getAsInteger(0, CalleeVectorWidth);
|
|
if (CallerVectorWidth < CalleeVectorWidth)
|
|
Caller.addFnAttr(CalleeAttr);
|
|
} else {
|
|
// If the callee doesn't have the attribute then we don't know anything
|
|
// and must drop the attribute from the caller.
|
|
Caller.removeFnAttr("min-legal-vector-width");
|
|
}
|
|
}
|
|
}
|
|
|
|
/// If the inlined function has null_pointer_is_valid attribute,
|
|
/// set this attribute in the caller post inlining.
|
|
static void
|
|
adjustNullPointerValidAttr(Function &Caller, const Function &Callee) {
|
|
if (Callee.nullPointerIsDefined() && !Caller.nullPointerIsDefined()) {
|
|
Caller.addFnAttr(Attribute::NullPointerIsValid);
|
|
}
|
|
}
|
|
|
|
struct EnumAttr {
|
|
static bool isSet(const Function &Fn,
|
|
Attribute::AttrKind Kind) {
|
|
return Fn.hasFnAttribute(Kind);
|
|
}
|
|
|
|
static void set(Function &Fn,
|
|
Attribute::AttrKind Kind, bool Val) {
|
|
if (Val)
|
|
Fn.addFnAttr(Kind);
|
|
else
|
|
Fn.removeFnAttr(Kind);
|
|
}
|
|
};
|
|
|
|
struct StrBoolAttr {
|
|
static bool isSet(const Function &Fn,
|
|
StringRef Kind) {
|
|
auto A = Fn.getFnAttribute(Kind);
|
|
return A.getValueAsString().equals("true");
|
|
}
|
|
|
|
static void set(Function &Fn,
|
|
StringRef Kind, bool Val) {
|
|
Fn.addFnAttr(Kind, Val ? "true" : "false");
|
|
}
|
|
};
|
|
|
|
#define GET_ATTR_NAMES
|
|
#define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME) \
|
|
struct ENUM_NAME##Attr : EnumAttr { \
|
|
static enum Attribute::AttrKind getKind() { \
|
|
return llvm::Attribute::ENUM_NAME; \
|
|
} \
|
|
};
|
|
#define ATTRIBUTE_STRBOOL(ENUM_NAME, DISPLAY_NAME) \
|
|
struct ENUM_NAME##Attr : StrBoolAttr { \
|
|
static StringRef getKind() { return #DISPLAY_NAME; } \
|
|
};
|
|
#include "llvm/IR/Attributes.inc"
|
|
|
|
#define GET_ATTR_COMPAT_FUNC
|
|
#include "llvm/IR/Attributes.inc"
|
|
|
|
bool AttributeFuncs::areInlineCompatible(const Function &Caller,
|
|
const Function &Callee) {
|
|
return hasCompatibleFnAttrs(Caller, Callee);
|
|
}
|
|
|
|
bool AttributeFuncs::areOutlineCompatible(const Function &A,
|
|
const Function &B) {
|
|
return hasCompatibleFnAttrs(A, B);
|
|
}
|
|
|
|
void AttributeFuncs::mergeAttributesForInlining(Function &Caller,
|
|
const Function &Callee) {
|
|
mergeFnAttrs(Caller, Callee);
|
|
}
|
|
|
|
void AttributeFuncs::mergeAttributesForOutlining(Function &Base,
|
|
const Function &ToMerge) {
|
|
|
|
// We merge functions so that they meet the most general case.
|
|
// For example, if the NoNansFPMathAttr is set in one function, but not in
|
|
// the other, in the merged function we can say that the NoNansFPMathAttr
|
|
// is not set.
|
|
// However if we have the SpeculativeLoadHardeningAttr set true in one
|
|
// function, but not the other, we make sure that the function retains
|
|
// that aspect in the merged function.
|
|
mergeFnAttrs(Base, ToMerge);
|
|
}
|