mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 20:23:11 +01:00
7259cc60c4
Remove the LoadHiAddr pseudo-instruction. Optimization of stores to and loads from statics. Force JIT to use new non-PIC codepaths. llvm-svn: 22494
3966 lines
148 KiB
C++
3966 lines
148 KiB
C++
//===-- PPC32ISelSimple.cpp - A simple instruction selector PowerPC32 -----===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "isel"
|
|
#include "PowerPC.h"
|
|
#include "PowerPCInstrBuilder.h"
|
|
#include "PowerPCInstrInfo.h"
|
|
#include "PPC32TargetMachine.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/CodeGen/IntrinsicLowering.h"
|
|
#include "llvm/CodeGen/MachineConstantPool.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/SSARegMap.h"
|
|
#include "llvm/Target/MRegisterInfo.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Support/GetElementPtrTypeIterator.h"
|
|
#include "llvm/Support/InstVisitor.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include <vector>
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
/// TypeClass - Used by the PowerPC backend to group LLVM types by their basic
|
|
/// PPC Representation.
|
|
///
|
|
enum TypeClass {
|
|
cByte, cShort, cInt, cFP32, cFP64, cLong
|
|
};
|
|
}
|
|
|
|
/// getClass - Turn a primitive type into a "class" number which is based on the
|
|
/// size of the type, and whether or not it is floating point.
|
|
///
|
|
static inline TypeClass getClass(const Type *Ty) {
|
|
switch (Ty->getTypeID()) {
|
|
case Type::SByteTyID:
|
|
case Type::UByteTyID: return cByte; // Byte operands are class #0
|
|
case Type::ShortTyID:
|
|
case Type::UShortTyID: return cShort; // Short operands are class #1
|
|
case Type::IntTyID:
|
|
case Type::UIntTyID:
|
|
case Type::PointerTyID: return cInt; // Ints and pointers are class #2
|
|
|
|
case Type::FloatTyID: return cFP32; // Single float is #3
|
|
case Type::DoubleTyID: return cFP64; // Double Point is #4
|
|
|
|
case Type::LongTyID:
|
|
case Type::ULongTyID: return cLong; // Longs are class #5
|
|
default:
|
|
assert(0 && "Invalid type to getClass!");
|
|
return cByte; // not reached
|
|
}
|
|
}
|
|
|
|
// getClassB - Just like getClass, but treat boolean values as ints.
|
|
static inline TypeClass getClassB(const Type *Ty) {
|
|
if (Ty == Type::BoolTy) return cByte;
|
|
return getClass(Ty);
|
|
}
|
|
|
|
namespace {
|
|
struct PPC32ISel : public FunctionPass, InstVisitor<PPC32ISel> {
|
|
PPC32TargetMachine &TM;
|
|
MachineFunction *F; // The function we are compiling into
|
|
MachineBasicBlock *BB; // The current MBB we are compiling
|
|
int VarArgsFrameIndex; // FrameIndex for start of varargs area
|
|
|
|
/// CollapsedGepOp - This struct is for recording the intermediate results
|
|
/// used to calculate the base, index, and offset of a GEP instruction.
|
|
struct CollapsedGepOp {
|
|
ConstantSInt *offset; // the current offset into the struct/array
|
|
Value *index; // the index of the array element
|
|
ConstantUInt *size; // the size of each array element
|
|
CollapsedGepOp(ConstantSInt *o, Value *i, ConstantUInt *s) :
|
|
offset(o), index(i), size(s) {}
|
|
};
|
|
|
|
/// FoldedGEP - This struct is for recording the necessary information to
|
|
/// emit the GEP in a load or store instruction, used by emitGEPOperation.
|
|
struct FoldedGEP {
|
|
unsigned base;
|
|
unsigned index;
|
|
ConstantSInt *offset;
|
|
FoldedGEP() : base(0), index(0), offset(0) {}
|
|
FoldedGEP(unsigned b, unsigned i, ConstantSInt *o) :
|
|
base(b), index(i), offset(o) {}
|
|
};
|
|
|
|
/// RlwimiRec - This struct is for recording the arguments to a PowerPC
|
|
/// rlwimi instruction to be output for a particular Instruction::Or when
|
|
/// we recognize the pattern for rlwimi, starting with a shift or and.
|
|
struct RlwimiRec {
|
|
Value *Target, *Insert;
|
|
unsigned Shift, MB, ME;
|
|
RlwimiRec() : Target(0), Insert(0), Shift(0), MB(0), ME(0) {}
|
|
RlwimiRec(Value *tgt, Value *ins, unsigned s, unsigned b, unsigned e) :
|
|
Target(tgt), Insert(ins), Shift(s), MB(b), ME(e) {}
|
|
};
|
|
|
|
// External functions we may use in compiling the Module
|
|
Function *fmodfFn, *fmodFn, *__cmpdi2Fn, *__moddi3Fn, *__divdi3Fn,
|
|
*__umoddi3Fn, *__udivdi3Fn, *__fixsfdiFn, *__fixdfdiFn, *__fixunssfdiFn,
|
|
*__fixunsdfdiFn, *__floatdisfFn, *__floatdidfFn, *mallocFn, *freeFn;
|
|
|
|
// Mapping between Values and SSA Regs
|
|
std::map<Value*, unsigned> RegMap;
|
|
|
|
// MBBMap - Mapping between LLVM BB -> Machine BB
|
|
std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
|
|
|
|
// AllocaMap - Mapping from fixed sized alloca instructions to the
|
|
// FrameIndex for the alloca.
|
|
std::map<AllocaInst*, unsigned> AllocaMap;
|
|
|
|
// GEPMap - Mapping between basic blocks and GEP definitions
|
|
std::map<GetElementPtrInst*, FoldedGEP> GEPMap;
|
|
|
|
// RlwimiMap - Mapping between BinaryOperand (Or) instructions and info
|
|
// needed to properly emit a rlwimi instruction in its place.
|
|
std::map<Instruction *, RlwimiRec> InsertMap;
|
|
|
|
// A rlwimi instruction is the combination of at least three instructions.
|
|
// Keep a vector of instructions to skip around so that we do not try to
|
|
// emit instructions that were folded into a rlwimi.
|
|
std::vector<Instruction *> SkipList;
|
|
|
|
// A Reg to hold the base address used for global loads and stores, and a
|
|
// flag to set whether or not we need to emit it for this function.
|
|
unsigned GlobalBaseReg;
|
|
bool GlobalBaseInitialized;
|
|
|
|
PPC32ISel(TargetMachine &tm):TM(reinterpret_cast<PPC32TargetMachine&>(tm)),
|
|
F(0), BB(0) {}
|
|
|
|
bool doInitialization(Module &M) {
|
|
// Add external functions that we may call
|
|
Type *i = Type::IntTy;
|
|
Type *d = Type::DoubleTy;
|
|
Type *f = Type::FloatTy;
|
|
Type *l = Type::LongTy;
|
|
Type *ul = Type::ULongTy;
|
|
Type *voidPtr = PointerType::get(Type::SByteTy);
|
|
// float fmodf(float, float);
|
|
fmodfFn = M.getOrInsertFunction("fmodf", f, f, f, 0);
|
|
// double fmod(double, double);
|
|
fmodFn = M.getOrInsertFunction("fmod", d, d, d, 0);
|
|
// int __cmpdi2(long, long);
|
|
__cmpdi2Fn = M.getOrInsertFunction("__cmpdi2", i, l, l, 0);
|
|
// long __moddi3(long, long);
|
|
__moddi3Fn = M.getOrInsertFunction("__moddi3", l, l, l, 0);
|
|
// long __divdi3(long, long);
|
|
__divdi3Fn = M.getOrInsertFunction("__divdi3", l, l, l, 0);
|
|
// unsigned long __umoddi3(unsigned long, unsigned long);
|
|
__umoddi3Fn = M.getOrInsertFunction("__umoddi3", ul, ul, ul, 0);
|
|
// unsigned long __udivdi3(unsigned long, unsigned long);
|
|
__udivdi3Fn = M.getOrInsertFunction("__udivdi3", ul, ul, ul, 0);
|
|
// long __fixsfdi(float)
|
|
__fixsfdiFn = M.getOrInsertFunction("__fixsfdi", l, f, 0);
|
|
// long __fixdfdi(double)
|
|
__fixdfdiFn = M.getOrInsertFunction("__fixdfdi", l, d, 0);
|
|
// unsigned long __fixunssfdi(float)
|
|
__fixunssfdiFn = M.getOrInsertFunction("__fixunssfdi", ul, f, 0);
|
|
// unsigned long __fixunsdfdi(double)
|
|
__fixunsdfdiFn = M.getOrInsertFunction("__fixunsdfdi", ul, d, 0);
|
|
// float __floatdisf(long)
|
|
__floatdisfFn = M.getOrInsertFunction("__floatdisf", f, l, 0);
|
|
// double __floatdidf(long)
|
|
__floatdidfFn = M.getOrInsertFunction("__floatdidf", d, l, 0);
|
|
// void* malloc(size_t)
|
|
mallocFn = M.getOrInsertFunction("malloc", voidPtr, Type::UIntTy, 0);
|
|
// void free(void*)
|
|
freeFn = M.getOrInsertFunction("free", Type::VoidTy, voidPtr, 0);
|
|
return true;
|
|
}
|
|
|
|
/// runOnFunction - Top level implementation of instruction selection for
|
|
/// the entire function.
|
|
///
|
|
bool runOnFunction(Function &Fn) {
|
|
// First pass over the function, lower any unknown intrinsic functions
|
|
// with the IntrinsicLowering class.
|
|
LowerUnknownIntrinsicFunctionCalls(Fn);
|
|
|
|
F = &MachineFunction::construct(&Fn, TM);
|
|
|
|
// Create all of the machine basic blocks for the function...
|
|
for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
|
|
F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
|
|
|
|
BB = &F->front();
|
|
|
|
// Make sure we re-emit a set of the global base reg if necessary
|
|
GlobalBaseInitialized = false;
|
|
|
|
// Copy incoming arguments off of the stack...
|
|
LoadArgumentsToVirtualRegs(Fn);
|
|
|
|
// Instruction select everything except PHI nodes
|
|
visit(Fn);
|
|
|
|
// Select the PHI nodes
|
|
SelectPHINodes();
|
|
|
|
GEPMap.clear();
|
|
RegMap.clear();
|
|
MBBMap.clear();
|
|
InsertMap.clear();
|
|
AllocaMap.clear();
|
|
SkipList.clear();
|
|
F = 0;
|
|
// We always build a machine code representation for the function
|
|
return true;
|
|
}
|
|
|
|
virtual const char *getPassName() const {
|
|
return "PowerPC Simple Instruction Selection";
|
|
}
|
|
|
|
/// visitBasicBlock - This method is called when we are visiting a new basic
|
|
/// block. This simply creates a new MachineBasicBlock to emit code into
|
|
/// and adds it to the current MachineFunction. Subsequent visit* for
|
|
/// instructions will be invoked for all instructions in the basic block.
|
|
///
|
|
void visitBasicBlock(BasicBlock &LLVM_BB) {
|
|
BB = MBBMap[&LLVM_BB];
|
|
}
|
|
|
|
/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
|
|
/// function, lowering any calls to unknown intrinsic functions into the
|
|
/// equivalent LLVM code.
|
|
///
|
|
void LowerUnknownIntrinsicFunctionCalls(Function &F);
|
|
|
|
/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
|
|
/// from the stack into virtual registers.
|
|
///
|
|
void LoadArgumentsToVirtualRegs(Function &F);
|
|
|
|
/// SelectPHINodes - Insert machine code to generate phis. This is tricky
|
|
/// because we have to generate our sources into the source basic blocks,
|
|
/// not the current one.
|
|
///
|
|
void SelectPHINodes();
|
|
|
|
// Visitation methods for various instructions. These methods simply emit
|
|
// fixed PowerPC code for each instruction.
|
|
|
|
// Control flow operators.
|
|
void visitReturnInst(ReturnInst &RI);
|
|
void visitBranchInst(BranchInst &BI);
|
|
void visitUnreachableInst(UnreachableInst &UI) {}
|
|
|
|
struct ValueRecord {
|
|
Value *Val;
|
|
unsigned Reg;
|
|
const Type *Ty;
|
|
ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
|
|
ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
|
|
};
|
|
|
|
void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
|
|
const std::vector<ValueRecord> &Args, bool isVarArg);
|
|
void visitCallInst(CallInst &I);
|
|
void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
|
|
|
|
// Arithmetic operators
|
|
void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
|
|
void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
|
|
void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
|
|
void visitMul(BinaryOperator &B);
|
|
|
|
void visitDiv(BinaryOperator &B) { visitDivRem(B); }
|
|
void visitRem(BinaryOperator &B) { visitDivRem(B); }
|
|
void visitDivRem(BinaryOperator &B);
|
|
|
|
// Bitwise operators
|
|
void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
|
|
void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
|
|
void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
|
|
|
|
// Comparison operators...
|
|
void visitSetCondInst(SetCondInst &I);
|
|
void EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
|
|
MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator MBBI);
|
|
void visitSelectInst(SelectInst &SI);
|
|
|
|
|
|
// Memory Instructions
|
|
void visitLoadInst(LoadInst &I);
|
|
void visitStoreInst(StoreInst &I);
|
|
void visitGetElementPtrInst(GetElementPtrInst &I);
|
|
void visitAllocaInst(AllocaInst &I);
|
|
void visitMallocInst(MallocInst &I);
|
|
void visitFreeInst(FreeInst &I);
|
|
|
|
// Other operators
|
|
void visitShiftInst(ShiftInst &I);
|
|
void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
|
|
void visitCastInst(CastInst &I);
|
|
void visitVAArgInst(VAArgInst &I);
|
|
|
|
void visitInstruction(Instruction &I) {
|
|
std::cerr << "Cannot instruction select: " << I;
|
|
abort();
|
|
}
|
|
|
|
unsigned ExtendOrClear(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IP,
|
|
Value *Op0);
|
|
|
|
/// promote32 - Make a value 32-bits wide, and put it somewhere.
|
|
///
|
|
void promote32(unsigned targetReg, const ValueRecord &VR);
|
|
|
|
/// emitGEPOperation - Common code shared between visitGetElementPtrInst and
|
|
/// constant expression GEP support.
|
|
///
|
|
void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
|
|
GetElementPtrInst *GEPI, bool foldGEP);
|
|
|
|
/// emitCastOperation - Common code shared between visitCastInst and
|
|
/// constant expression cast support.
|
|
///
|
|
void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
|
|
Value *Src, const Type *DestTy, unsigned TargetReg);
|
|
|
|
|
|
/// emitBitfieldInsert - return true if we were able to fold the sequence of
|
|
/// instructions into a bitfield insert (rlwimi).
|
|
bool emitBitfieldInsert(User *OpUser, unsigned DestReg);
|
|
|
|
/// emitBitfieldExtract - return true if we were able to fold the sequence
|
|
/// of instructions into a bitfield extract (rlwinm).
|
|
bool emitBitfieldExtract(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IP,
|
|
User *OpUser, unsigned DestReg);
|
|
|
|
/// emitBinaryConstOperation - Used by several functions to emit simple
|
|
/// arithmetic and logical operations with constants on a register rather
|
|
/// than a Value.
|
|
///
|
|
void emitBinaryConstOperation(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IP,
|
|
unsigned Op0Reg, ConstantInt *Op1,
|
|
unsigned Opcode, unsigned DestReg);
|
|
|
|
/// emitSimpleBinaryOperation - Implement simple binary operators for
|
|
/// integral types. OperatorClass is one of: 0 for Add, 1 for Sub,
|
|
/// 2 for And, 3 for Or, 4 for Xor.
|
|
///
|
|
void emitSimpleBinaryOperation(MachineBasicBlock *BB,
|
|
MachineBasicBlock::iterator IP,
|
|
BinaryOperator *BO, Value *Op0, Value *Op1,
|
|
unsigned OperatorClass, unsigned TargetReg);
|
|
|
|
/// emitBinaryFPOperation - This method handles emission of floating point
|
|
/// Add (0), Sub (1), Mul (2), and Div (3) operations.
|
|
void emitBinaryFPOperation(MachineBasicBlock *BB,
|
|
MachineBasicBlock::iterator IP,
|
|
Value *Op0, Value *Op1,
|
|
unsigned OperatorClass, unsigned TargetReg);
|
|
|
|
void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
|
|
Value *Op0, Value *Op1, unsigned TargetReg);
|
|
|
|
void doMultiply(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IP,
|
|
unsigned DestReg, Value *Op0, Value *Op1);
|
|
|
|
/// doMultiplyConst - This method will multiply the value in Op0Reg by the
|
|
/// value of the ContantInt *CI
|
|
void doMultiplyConst(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IP,
|
|
unsigned DestReg, Value *Op0, ConstantInt *CI);
|
|
|
|
void emitDivRemOperation(MachineBasicBlock *BB,
|
|
MachineBasicBlock::iterator IP,
|
|
Value *Op0, Value *Op1, bool isDiv,
|
|
unsigned TargetReg);
|
|
|
|
/// emitSetCCOperation - Common code shared between visitSetCondInst and
|
|
/// constant expression support.
|
|
///
|
|
void emitSetCCOperation(MachineBasicBlock *BB,
|
|
MachineBasicBlock::iterator IP,
|
|
Value *Op0, Value *Op1, unsigned Opcode,
|
|
unsigned TargetReg);
|
|
|
|
/// emitShiftOperation - Common code shared between visitShiftInst and
|
|
/// constant expression support.
|
|
///
|
|
void emitShiftOperation(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IP,
|
|
Value *Op, Value *ShiftAmount, bool isLeftShift,
|
|
const Type *ResultTy, ShiftInst *SI,
|
|
unsigned DestReg);
|
|
|
|
/// emitSelectOperation - Common code shared between visitSelectInst and the
|
|
/// constant expression support.
|
|
///
|
|
void emitSelectOperation(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IP,
|
|
Value *Cond, Value *TrueVal, Value *FalseVal,
|
|
unsigned DestReg);
|
|
|
|
/// getGlobalBaseReg - Output the instructions required to put the
|
|
/// base address to use for accessing globals into a register. Returns the
|
|
/// register containing the base address.
|
|
///
|
|
unsigned getGlobalBaseReg();
|
|
|
|
/// copyConstantToRegister - Output the instructions required to put the
|
|
/// specified constant into the specified register.
|
|
///
|
|
void copyConstantToRegister(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator MBBI,
|
|
Constant *C, unsigned Reg);
|
|
|
|
void emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
|
|
unsigned LHS, unsigned RHS);
|
|
|
|
/// makeAnotherReg - This method returns the next register number we haven't
|
|
/// yet used.
|
|
///
|
|
/// Long values are handled somewhat specially. They are always allocated
|
|
/// as pairs of 32 bit integer values. The register number returned is the
|
|
/// high 32 bits of the long value, and the regNum+1 is the low 32 bits.
|
|
///
|
|
unsigned makeAnotherReg(const Type *Ty) {
|
|
assert(dynamic_cast<const PPC32RegisterInfo*>(TM.getRegisterInfo()) &&
|
|
"Current target doesn't have PPC reg info??");
|
|
const PPC32RegisterInfo *PPCRI =
|
|
static_cast<const PPC32RegisterInfo*>(TM.getRegisterInfo());
|
|
if (Ty == Type::LongTy || Ty == Type::ULongTy) {
|
|
const TargetRegisterClass *RC = PPCRI->getRegClassForType(Type::IntTy);
|
|
// Create the upper part
|
|
F->getSSARegMap()->createVirtualRegister(RC);
|
|
// Create the lower part.
|
|
return F->getSSARegMap()->createVirtualRegister(RC)-1;
|
|
}
|
|
|
|
// Add the mapping of regnumber => reg class to MachineFunction
|
|
const TargetRegisterClass *RC = PPCRI->getRegClassForType(Ty);
|
|
return F->getSSARegMap()->createVirtualRegister(RC);
|
|
}
|
|
|
|
/// getReg - This method turns an LLVM value into a register number.
|
|
///
|
|
unsigned getReg(Value &V) { return getReg(&V); } // Allow references
|
|
unsigned getReg(Value *V) {
|
|
// Just append to the end of the current bb.
|
|
MachineBasicBlock::iterator It = BB->end();
|
|
return getReg(V, BB, It);
|
|
}
|
|
unsigned getReg(Value *V, MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IPt);
|
|
|
|
/// canUseAsImmediateForOpcode - This method returns whether a ConstantInt
|
|
/// is okay to use as an immediate argument to a certain binary operation
|
|
bool canUseAsImmediateForOpcode(ConstantInt *CI, unsigned Opcode,
|
|
bool Shifted);
|
|
|
|
/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
|
|
/// that is to be statically allocated with the initial stack frame
|
|
/// adjustment.
|
|
unsigned getFixedSizedAllocaFI(AllocaInst *AI);
|
|
};
|
|
}
|
|
|
|
/// dyn_castFixedAlloca - If the specified value is a fixed size alloca
|
|
/// instruction in the entry block, return it. Otherwise, return a null
|
|
/// pointer.
|
|
static AllocaInst *dyn_castFixedAlloca(Value *V) {
|
|
if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
|
|
BasicBlock *BB = AI->getParent();
|
|
if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front())
|
|
return AI;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/// getReg - This method turns an LLVM value into a register number.
|
|
///
|
|
unsigned PPC32ISel::getReg(Value *V, MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IPt) {
|
|
if (Constant *C = dyn_cast<Constant>(V)) {
|
|
unsigned Reg = makeAnotherReg(V->getType());
|
|
copyConstantToRegister(MBB, IPt, C, Reg);
|
|
return Reg;
|
|
} else if (CastInst *CI = dyn_cast<CastInst>(V)) {
|
|
// Do not emit noop casts at all, unless it's a double -> float cast.
|
|
if (getClassB(CI->getType()) == getClassB(CI->getOperand(0)->getType()))
|
|
return getReg(CI->getOperand(0), MBB, IPt);
|
|
} else if (AllocaInst *AI = dyn_castFixedAlloca(V)) {
|
|
unsigned Reg = makeAnotherReg(V->getType());
|
|
unsigned FI = getFixedSizedAllocaFI(AI);
|
|
addFrameReference(BuildMI(*MBB, IPt, PPC::ADDI, 2, Reg), FI, 0, false);
|
|
return Reg;
|
|
}
|
|
|
|
unsigned &Reg = RegMap[V];
|
|
if (Reg == 0) {
|
|
Reg = makeAnotherReg(V->getType());
|
|
RegMap[V] = Reg;
|
|
}
|
|
|
|
return Reg;
|
|
}
|
|
|
|
/// canUseAsImmediateForOpcode - This method returns whether a ConstantInt
|
|
/// is okay to use as an immediate argument to a certain binary operator.
|
|
/// The shifted argument determines if the immediate is suitable to be used with
|
|
/// the PowerPC instructions such as addis which concatenate 16 bits of the
|
|
/// immediate with 16 bits of zeroes.
|
|
///
|
|
bool PPC32ISel::canUseAsImmediateForOpcode(ConstantInt *CI, unsigned Opcode,
|
|
bool Shifted) {
|
|
ConstantSInt *Op1Cs;
|
|
ConstantUInt *Op1Cu;
|
|
|
|
// For shifted immediates, any value with the low halfword cleared may be used
|
|
if (Shifted) {
|
|
if (((int32_t)CI->getRawValue() & 0x0000FFFF) == 0)
|
|
return true;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
// Treat subfic like addi for the purposes of constant validation
|
|
if (Opcode == 5) Opcode = 0;
|
|
|
|
// addi, subfic, compare, and non-indexed load take SIMM
|
|
bool cond1 = (Opcode < 2)
|
|
&& ((int32_t)CI->getRawValue() <= 32767)
|
|
&& ((int32_t)CI->getRawValue() >= -32768);
|
|
|
|
// ANDIo, ORI, and XORI take unsigned values
|
|
bool cond2 = (Opcode >= 2)
|
|
&& (Op1Cs = dyn_cast<ConstantSInt>(CI))
|
|
&& (Op1Cs->getValue() >= 0)
|
|
&& (Op1Cs->getValue() <= 65535);
|
|
|
|
// ANDIo, ORI, and XORI take UIMMs, so they can be larger
|
|
bool cond3 = (Opcode >= 2)
|
|
&& (Op1Cu = dyn_cast<ConstantUInt>(CI))
|
|
&& (Op1Cu->getValue() <= 65535);
|
|
|
|
if (cond1 || cond2 || cond3)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
|
|
/// that is to be statically allocated with the initial stack frame
|
|
/// adjustment.
|
|
unsigned PPC32ISel::getFixedSizedAllocaFI(AllocaInst *AI) {
|
|
// Already computed this?
|
|
std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI);
|
|
if (I != AllocaMap.end() && I->first == AI) return I->second;
|
|
|
|
const Type *Ty = AI->getAllocatedType();
|
|
ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize());
|
|
unsigned TySize = TM.getTargetData().getTypeSize(Ty);
|
|
TySize *= CUI->getValue(); // Get total allocated size...
|
|
unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
|
|
|
|
// Create a new stack object using the frame manager...
|
|
int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
|
|
AllocaMap.insert(I, std::make_pair(AI, FrameIdx));
|
|
return FrameIdx;
|
|
}
|
|
|
|
|
|
/// getGlobalBaseReg - Output the instructions required to put the
|
|
/// base address to use for accessing globals into a register.
|
|
///
|
|
unsigned PPC32ISel::getGlobalBaseReg() {
|
|
if (!GlobalBaseInitialized) {
|
|
// Insert the set of GlobalBaseReg into the first MBB of the function
|
|
MachineBasicBlock &FirstMBB = F->front();
|
|
MachineBasicBlock::iterator MBBI = FirstMBB.begin();
|
|
GlobalBaseReg = makeAnotherReg(Type::IntTy);
|
|
BuildMI(FirstMBB, MBBI, PPC::MovePCtoLR, 0, PPC::LR);
|
|
BuildMI(FirstMBB, MBBI, PPC::MFLR, 1, GlobalBaseReg).addReg(PPC::LR);
|
|
GlobalBaseInitialized = true;
|
|
}
|
|
return GlobalBaseReg;
|
|
}
|
|
|
|
/// copyConstantToRegister - Output the instructions required to put the
|
|
/// specified constant into the specified register.
|
|
///
|
|
void PPC32ISel::copyConstantToRegister(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IP,
|
|
Constant *C, unsigned R) {
|
|
if (isa<UndefValue>(C)) {
|
|
BuildMI(*MBB, IP, PPC::IMPLICIT_DEF, 0, R);
|
|
if (getClassB(C->getType()) == cLong)
|
|
BuildMI(*MBB, IP, PPC::IMPLICIT_DEF, 0, R+1);
|
|
return;
|
|
}
|
|
if (C->getType()->isIntegral()) {
|
|
unsigned Class = getClassB(C->getType());
|
|
|
|
if (Class == cLong) {
|
|
if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(C)) {
|
|
uint64_t uval = CUI->getValue();
|
|
unsigned hiUVal = uval >> 32;
|
|
unsigned loUVal = uval;
|
|
ConstantUInt *CUHi = ConstantUInt::get(Type::UIntTy, hiUVal);
|
|
ConstantUInt *CULo = ConstantUInt::get(Type::UIntTy, loUVal);
|
|
copyConstantToRegister(MBB, IP, CUHi, R);
|
|
copyConstantToRegister(MBB, IP, CULo, R+1);
|
|
return;
|
|
} else if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(C)) {
|
|
int64_t sval = CSI->getValue();
|
|
int hiSVal = sval >> 32;
|
|
int loSVal = sval;
|
|
ConstantSInt *CSHi = ConstantSInt::get(Type::IntTy, hiSVal);
|
|
ConstantSInt *CSLo = ConstantSInt::get(Type::IntTy, loSVal);
|
|
copyConstantToRegister(MBB, IP, CSHi, R);
|
|
copyConstantToRegister(MBB, IP, CSLo, R+1);
|
|
return;
|
|
} else {
|
|
std::cerr << "Unhandled long constant type!\n";
|
|
abort();
|
|
}
|
|
}
|
|
|
|
assert(Class <= cInt && "Type not handled yet!");
|
|
|
|
// Handle bool
|
|
if (C->getType() == Type::BoolTy) {
|
|
BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(C == ConstantBool::True);
|
|
return;
|
|
}
|
|
|
|
// Handle int
|
|
if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(C)) {
|
|
unsigned uval = CUI->getValue();
|
|
if (uval < 32768) {
|
|
BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(uval);
|
|
} else {
|
|
unsigned Temp = makeAnotherReg(Type::IntTy);
|
|
BuildMI(*MBB, IP, PPC::LIS, 1, Temp).addSImm(uval >> 16);
|
|
BuildMI(*MBB, IP, PPC::ORI, 2, R).addReg(Temp).addImm(uval & 0xFFFF);
|
|
}
|
|
return;
|
|
} else if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(C)) {
|
|
int sval = CSI->getValue();
|
|
if (sval < 32768 && sval >= -32768) {
|
|
BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(sval);
|
|
} else {
|
|
unsigned Temp = makeAnotherReg(Type::IntTy);
|
|
BuildMI(*MBB, IP, PPC::LIS, 1, Temp).addSImm(sval >> 16);
|
|
BuildMI(*MBB, IP, PPC::ORI, 2, R).addReg(Temp).addImm(sval & 0xFFFF);
|
|
}
|
|
return;
|
|
}
|
|
std::cerr << "Unhandled integer constant!\n";
|
|
abort();
|
|
} else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
|
|
// We need to spill the constant to memory...
|
|
MachineConstantPool *CP = F->getConstantPool();
|
|
unsigned CPI = CP->getConstantPoolIndex(CFP);
|
|
const Type *Ty = CFP->getType();
|
|
|
|
assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
|
|
|
|
// Load addr of constant to reg; constant is located at base + distance
|
|
unsigned Reg1 = makeAnotherReg(Type::IntTy);
|
|
unsigned Opcode = (Ty == Type::FloatTy) ? PPC::LFS : PPC::LFD;
|
|
// Move value at base + distance into return reg
|
|
BuildMI(*MBB, IP, PPC::ADDIS, 2, Reg1)
|
|
.addReg(getGlobalBaseReg()).addConstantPoolIndex(CPI);
|
|
BuildMI(*MBB, IP, Opcode, 2, R).addConstantPoolIndex(CPI).addReg(Reg1);
|
|
} else if (isa<ConstantPointerNull>(C)) {
|
|
// Copy zero (null pointer) to the register.
|
|
BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(0);
|
|
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
|
|
// GV is located at base + distance
|
|
unsigned TmpReg = makeAnotherReg(GV->getType());
|
|
|
|
// Move value at base + distance into return reg
|
|
BuildMI(*MBB, IP, PPC::ADDIS, 2, TmpReg)
|
|
.addReg(getGlobalBaseReg()).addGlobalAddress(GV);
|
|
|
|
if (GV->hasWeakLinkage() || GV->isExternal()) {
|
|
BuildMI(*MBB, IP, PPC::LWZ, 2, R).addGlobalAddress(GV).addReg(TmpReg);
|
|
} else {
|
|
BuildMI(*MBB, IP, PPC::LA, 2, R).addReg(TmpReg).addGlobalAddress(GV);
|
|
}
|
|
} else {
|
|
std::cerr << "Offending constant: " << *C << "\n";
|
|
assert(0 && "Type not handled yet!");
|
|
}
|
|
}
|
|
|
|
/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
|
|
/// the stack into virtual registers.
|
|
void PPC32ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
|
|
unsigned ArgOffset = 24;
|
|
unsigned GPR_remaining = 8;
|
|
unsigned FPR_remaining = 13;
|
|
unsigned GPR_idx = 0, FPR_idx = 0;
|
|
static const unsigned GPR[] = {
|
|
PPC::R3, PPC::R4, PPC::R5, PPC::R6,
|
|
PPC::R7, PPC::R8, PPC::R9, PPC::R10,
|
|
};
|
|
static const unsigned FPR[] = {
|
|
PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
|
|
PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
|
|
};
|
|
|
|
MachineFrameInfo *MFI = F->getFrameInfo();
|
|
|
|
for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end();
|
|
I != E; ++I) {
|
|
bool ArgLive = !I->use_empty();
|
|
unsigned Reg = ArgLive ? getReg(*I) : 0;
|
|
int FI; // Frame object index
|
|
|
|
switch (getClassB(I->getType())) {
|
|
case cByte:
|
|
if (ArgLive) {
|
|
FI = MFI->CreateFixedObject(4, ArgOffset);
|
|
if (GPR_remaining > 0) {
|
|
F->addLiveIn(GPR[GPR_idx]);
|
|
BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx])
|
|
.addReg(GPR[GPR_idx]);
|
|
} else {
|
|
addFrameReference(BuildMI(BB, PPC::LBZ, 2, Reg), FI);
|
|
}
|
|
}
|
|
break;
|
|
case cShort:
|
|
if (ArgLive) {
|
|
FI = MFI->CreateFixedObject(4, ArgOffset);
|
|
if (GPR_remaining > 0) {
|
|
F->addLiveIn(GPR[GPR_idx]);
|
|
BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx])
|
|
.addReg(GPR[GPR_idx]);
|
|
} else {
|
|
addFrameReference(BuildMI(BB, PPC::LHZ, 2, Reg), FI);
|
|
}
|
|
}
|
|
break;
|
|
case cInt:
|
|
if (ArgLive) {
|
|
FI = MFI->CreateFixedObject(4, ArgOffset);
|
|
if (GPR_remaining > 0) {
|
|
F->addLiveIn(GPR[GPR_idx]);
|
|
BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx])
|
|
.addReg(GPR[GPR_idx]);
|
|
} else {
|
|
addFrameReference(BuildMI(BB, PPC::LWZ, 2, Reg), FI);
|
|
}
|
|
}
|
|
break;
|
|
case cLong:
|
|
if (ArgLive) {
|
|
FI = MFI->CreateFixedObject(8, ArgOffset);
|
|
if (GPR_remaining > 1) {
|
|
F->addLiveIn(GPR[GPR_idx]);
|
|
F->addLiveIn(GPR[GPR_idx+1]);
|
|
BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx])
|
|
.addReg(GPR[GPR_idx]);
|
|
BuildMI(BB, PPC::OR, 2, Reg+1).addReg(GPR[GPR_idx+1])
|
|
.addReg(GPR[GPR_idx+1]);
|
|
} else {
|
|
addFrameReference(BuildMI(BB, PPC::LWZ, 2, Reg), FI);
|
|
addFrameReference(BuildMI(BB, PPC::LWZ, 2, Reg+1), FI, 4);
|
|
}
|
|
}
|
|
// longs require 4 additional bytes and use 2 GPRs
|
|
ArgOffset += 4;
|
|
if (GPR_remaining > 1) {
|
|
GPR_remaining--;
|
|
GPR_idx++;
|
|
}
|
|
break;
|
|
case cFP32:
|
|
if (ArgLive) {
|
|
FI = MFI->CreateFixedObject(4, ArgOffset);
|
|
|
|
if (FPR_remaining > 0) {
|
|
F->addLiveIn(FPR[FPR_idx]);
|
|
BuildMI(BB, PPC::FMR, 1, Reg).addReg(FPR[FPR_idx]);
|
|
FPR_remaining--;
|
|
FPR_idx++;
|
|
} else {
|
|
addFrameReference(BuildMI(BB, PPC::LFS, 2, Reg), FI);
|
|
}
|
|
}
|
|
break;
|
|
case cFP64:
|
|
if (ArgLive) {
|
|
FI = MFI->CreateFixedObject(8, ArgOffset);
|
|
|
|
if (FPR_remaining > 0) {
|
|
F->addLiveIn(FPR[FPR_idx]);
|
|
BuildMI(BB, PPC::FMR, 1, Reg).addReg(FPR[FPR_idx]);
|
|
FPR_remaining--;
|
|
FPR_idx++;
|
|
} else {
|
|
addFrameReference(BuildMI(BB, PPC::LFD, 2, Reg), FI);
|
|
}
|
|
}
|
|
|
|
// doubles require 4 additional bytes and use 2 GPRs of param space
|
|
ArgOffset += 4;
|
|
if (GPR_remaining > 0) {
|
|
GPR_remaining--;
|
|
GPR_idx++;
|
|
}
|
|
break;
|
|
default:
|
|
assert(0 && "Unhandled argument type!");
|
|
}
|
|
ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
|
|
if (GPR_remaining > 0) {
|
|
GPR_remaining--; // uses up 2 GPRs
|
|
GPR_idx++;
|
|
}
|
|
}
|
|
|
|
// If the function takes variable number of arguments, add a frame offset for
|
|
// the start of the first vararg value... this is used to expand
|
|
// llvm.va_start.
|
|
if (Fn.getFunctionType()->isVarArg())
|
|
VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset);
|
|
|
|
if (Fn.getReturnType() != Type::VoidTy)
|
|
switch (getClassB(Fn.getReturnType())) {
|
|
case cByte:
|
|
case cShort:
|
|
case cInt:
|
|
F->addLiveOut(PPC::R3);
|
|
break;
|
|
case cLong:
|
|
F->addLiveOut(PPC::R3);
|
|
F->addLiveOut(PPC::R4);
|
|
break;
|
|
case cFP32:
|
|
case cFP64:
|
|
F->addLiveOut(PPC::F1);
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
/// SelectPHINodes - Insert machine code to generate phis. This is tricky
|
|
/// because we have to generate our sources into the source basic blocks, not
|
|
/// the current one.
|
|
///
|
|
void PPC32ISel::SelectPHINodes() {
|
|
const TargetInstrInfo &TII = *TM.getInstrInfo();
|
|
const Function &LF = *F->getFunction(); // The LLVM function...
|
|
|
|
MachineBasicBlock::iterator MFLRIt = F->begin()->begin();
|
|
if (GlobalBaseInitialized) {
|
|
// If we emitted a MFLR for the global base reg, get an iterator to an
|
|
// instruction after it.
|
|
while (MFLRIt->getOpcode() != PPC::MFLR)
|
|
++MFLRIt;
|
|
++MFLRIt; // step one MI past it.
|
|
}
|
|
|
|
for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
|
|
const BasicBlock *BB = I;
|
|
MachineBasicBlock &MBB = *MBBMap[I];
|
|
|
|
// Loop over all of the PHI nodes in the LLVM basic block...
|
|
MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
|
|
for (BasicBlock::const_iterator I = BB->begin();
|
|
PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
|
|
|
|
// Create a new machine instr PHI node, and insert it.
|
|
unsigned PHIReg = getReg(*PN);
|
|
MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
|
|
PPC::PHI, PN->getNumOperands(), PHIReg);
|
|
|
|
MachineInstr *LongPhiMI = 0;
|
|
if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy)
|
|
LongPhiMI = BuildMI(MBB, PHIInsertPoint,
|
|
PPC::PHI, PN->getNumOperands(), PHIReg+1);
|
|
|
|
// PHIValues - Map of blocks to incoming virtual registers. We use this
|
|
// so that we only initialize one incoming value for a particular block,
|
|
// even if the block has multiple entries in the PHI node.
|
|
//
|
|
std::map<MachineBasicBlock*, unsigned> PHIValues;
|
|
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
|
|
MachineBasicBlock *PredMBB = 0;
|
|
for (MachineBasicBlock::pred_iterator PI = MBB.pred_begin (),
|
|
PE = MBB.pred_end (); PI != PE; ++PI)
|
|
if (PN->getIncomingBlock(i) == (*PI)->getBasicBlock()) {
|
|
PredMBB = *PI;
|
|
break;
|
|
}
|
|
assert (PredMBB && "Couldn't find incoming machine-cfg edge for phi");
|
|
|
|
unsigned ValReg;
|
|
std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
|
|
PHIValues.lower_bound(PredMBB);
|
|
|
|
if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
|
|
// We already inserted an initialization of the register for this
|
|
// predecessor. Recycle it.
|
|
ValReg = EntryIt->second;
|
|
} else {
|
|
// Get the incoming value into a virtual register.
|
|
//
|
|
Value *Val = PN->getIncomingValue(i);
|
|
|
|
// If this is a constant or GlobalValue, we may have to insert code
|
|
// into the basic block to compute it into a virtual register.
|
|
if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val)) ||
|
|
isa<GlobalValue>(Val)) {
|
|
// Simple constants get emitted at the end of the basic block,
|
|
// before any terminator instructions. We "know" that the code to
|
|
// move a constant into a register will never clobber any flags.
|
|
ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator());
|
|
} else {
|
|
// Because we don't want to clobber any values which might be in
|
|
// physical registers with the computation of this constant (which
|
|
// might be arbitrarily complex if it is a constant expression),
|
|
// just insert the computation at the top of the basic block.
|
|
MachineBasicBlock::iterator PI = PredMBB->begin();
|
|
|
|
// Skip over any PHI nodes though!
|
|
while (PI != PredMBB->end() && PI->getOpcode() == PPC::PHI)
|
|
++PI;
|
|
|
|
// If this is the entry block, and if the entry block contains a
|
|
// MFLR instruction, emit this operation after it. This is needed
|
|
// because global addresses use it.
|
|
if (PredMBB == F->begin())
|
|
PI = MFLRIt;
|
|
|
|
ValReg = getReg(Val, PredMBB, PI);
|
|
}
|
|
|
|
// Remember that we inserted a value for this PHI for this predecessor
|
|
PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
|
|
}
|
|
|
|
PhiMI->addRegOperand(ValReg);
|
|
PhiMI->addMachineBasicBlockOperand(PredMBB);
|
|
if (LongPhiMI) {
|
|
LongPhiMI->addRegOperand(ValReg+1);
|
|
LongPhiMI->addMachineBasicBlockOperand(PredMBB);
|
|
}
|
|
}
|
|
|
|
// Now that we emitted all of the incoming values for the PHI node, make
|
|
// sure to reposition the InsertPoint after the PHI that we just added.
|
|
// This is needed because we might have inserted a constant into this
|
|
// block, right after the PHI's which is before the old insert point!
|
|
PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI;
|
|
++PHIInsertPoint;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold
|
|
// it into the conditional branch or select instruction which is the only user
|
|
// of the cc instruction. This is the case if the conditional branch is the
|
|
// only user of the setcc, and if the setcc is in the same basic block as the
|
|
// conditional branch.
|
|
//
|
|
static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) {
|
|
if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
|
|
if (SCI->hasOneUse()) {
|
|
Instruction *User = cast<Instruction>(SCI->use_back());
|
|
if ((isa<BranchInst>(User) ||
|
|
(isa<SelectInst>(User) && User->getOperand(0) == V)) &&
|
|
SCI->getParent() == User->getParent())
|
|
return SCI;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// canFoldGEPIntoLoadOrStore - Return the GEP instruction if we can fold it into
|
|
// the load or store instruction that is the only user of the GEP.
|
|
//
|
|
static GetElementPtrInst *canFoldGEPIntoLoadOrStore(Value *V) {
|
|
if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
|
|
bool AllUsesAreMem = true;
|
|
for (Value::use_iterator I = GEPI->use_begin(), E = GEPI->use_end();
|
|
I != E; ++I) {
|
|
Instruction *User = cast<Instruction>(*I);
|
|
|
|
// If the GEP is the target of a store, but not the source, then we are ok
|
|
// to fold it.
|
|
if (isa<StoreInst>(User) &&
|
|
GEPI->getParent() == User->getParent() &&
|
|
User->getOperand(0) != GEPI &&
|
|
User->getOperand(1) == GEPI)
|
|
continue;
|
|
|
|
// If the GEP is the source of a load, then we're always ok to fold it
|
|
if (isa<LoadInst>(User) &&
|
|
GEPI->getParent() == User->getParent() &&
|
|
User->getOperand(0) == GEPI)
|
|
continue;
|
|
|
|
// if we got to this point, than the instruction was not a load or store
|
|
// that we are capable of folding the GEP into.
|
|
AllUsesAreMem = false;
|
|
break;
|
|
}
|
|
if (AllUsesAreMem)
|
|
return GEPI;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
// Return a fixed numbering for setcc instructions which does not depend on the
|
|
// order of the opcodes.
|
|
//
|
|
static unsigned getSetCCNumber(unsigned Opcode) {
|
|
switch (Opcode) {
|
|
default: assert(0 && "Unknown setcc instruction!");
|
|
case Instruction::SetEQ: return 0;
|
|
case Instruction::SetNE: return 1;
|
|
case Instruction::SetLT: return 2;
|
|
case Instruction::SetGE: return 3;
|
|
case Instruction::SetGT: return 4;
|
|
case Instruction::SetLE: return 5;
|
|
}
|
|
}
|
|
|
|
static unsigned getPPCOpcodeForSetCCOpcode(unsigned Opcode) {
|
|
switch (Opcode) {
|
|
default: assert(0 && "Unknown setcc instruction!");
|
|
case Instruction::SetEQ: return PPC::BEQ;
|
|
case Instruction::SetNE: return PPC::BNE;
|
|
case Instruction::SetLT: return PPC::BLT;
|
|
case Instruction::SetGE: return PPC::BGE;
|
|
case Instruction::SetGT: return PPC::BGT;
|
|
case Instruction::SetLE: return PPC::BLE;
|
|
}
|
|
}
|
|
|
|
/// emitUCOM - emits an unordered FP compare.
|
|
void PPC32ISel::emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
|
|
unsigned LHS, unsigned RHS) {
|
|
BuildMI(*MBB, IP, PPC::FCMPU, 2, PPC::CR0).addReg(LHS).addReg(RHS);
|
|
}
|
|
|
|
unsigned PPC32ISel::ExtendOrClear(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IP,
|
|
Value *Op0) {
|
|
const Type *CompTy = Op0->getType();
|
|
unsigned Reg = getReg(Op0, MBB, IP);
|
|
unsigned Class = getClassB(CompTy);
|
|
|
|
// Since we know that boolean values will be either zero or one, we don't
|
|
// have to extend or clear them.
|
|
if (CompTy == Type::BoolTy)
|
|
return Reg;
|
|
|
|
// Before we do a comparison or SetCC, we have to make sure that we truncate
|
|
// the source registers appropriately.
|
|
if (Class == cByte) {
|
|
unsigned TmpReg = makeAnotherReg(CompTy);
|
|
if (CompTy->isSigned())
|
|
BuildMI(*MBB, IP, PPC::EXTSB, 1, TmpReg).addReg(Reg);
|
|
else
|
|
BuildMI(*MBB, IP, PPC::RLWINM, 4, TmpReg).addReg(Reg).addImm(0)
|
|
.addImm(24).addImm(31);
|
|
Reg = TmpReg;
|
|
} else if (Class == cShort) {
|
|
unsigned TmpReg = makeAnotherReg(CompTy);
|
|
if (CompTy->isSigned())
|
|
BuildMI(*MBB, IP, PPC::EXTSH, 1, TmpReg).addReg(Reg);
|
|
else
|
|
BuildMI(*MBB, IP, PPC::RLWINM, 4, TmpReg).addReg(Reg).addImm(0)
|
|
.addImm(16).addImm(31);
|
|
Reg = TmpReg;
|
|
}
|
|
return Reg;
|
|
}
|
|
|
|
/// EmitComparison - emits a comparison of the two operands. The result is in
|
|
/// CR0.
|
|
///
|
|
void PPC32ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
|
|
MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IP) {
|
|
// The arguments are already supposed to be of the same type.
|
|
const Type *CompTy = Op0->getType();
|
|
unsigned Class = getClassB(CompTy);
|
|
unsigned Op0r = ExtendOrClear(MBB, IP, Op0);
|
|
|
|
// Use crand for lt, gt and crandc for le, ge
|
|
unsigned CROpcode = (OpNum == 2 || OpNum == 4) ? PPC::CRAND : PPC::CRANDC;
|
|
// ? cr1[lt] : cr1[gt]
|
|
unsigned CR1field = (OpNum == 2 || OpNum == 3) ? 0 : 1;
|
|
// ? cr0[lt] : cr0[gt]
|
|
unsigned CR0field = (OpNum == 2 || OpNum == 5) ? 0 : 1;
|
|
unsigned Opcode = CompTy->isSigned() ? PPC::CMPW : PPC::CMPLW;
|
|
unsigned OpcodeImm = CompTy->isSigned() ? PPC::CMPWI : PPC::CMPLWI;
|
|
|
|
// Special case handling of: cmp R, i
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
|
|
if (Class == cByte || Class == cShort || Class == cInt) {
|
|
unsigned Op1v = CI->getRawValue() & 0xFFFF;
|
|
unsigned OpClass = (CompTy->isSigned()) ? 0 : 2;
|
|
|
|
// Treat compare like ADDI for the purposes of immediate suitability
|
|
if (canUseAsImmediateForOpcode(CI, OpClass, false)) {
|
|
BuildMI(*MBB, IP, OpcodeImm, 2, PPC::CR0).addReg(Op0r).addSImm(Op1v);
|
|
} else {
|
|
unsigned Op1r = getReg(Op1, MBB, IP);
|
|
BuildMI(*MBB, IP, Opcode, 2, PPC::CR0).addReg(Op0r).addReg(Op1r);
|
|
}
|
|
return;
|
|
} else {
|
|
assert(Class == cLong && "Unknown integer class!");
|
|
unsigned LowCst = CI->getRawValue();
|
|
unsigned HiCst = CI->getRawValue() >> 32;
|
|
if (OpNum < 2) { // seteq, setne
|
|
unsigned LoLow = makeAnotherReg(Type::IntTy);
|
|
unsigned LoTmp = makeAnotherReg(Type::IntTy);
|
|
unsigned HiLow = makeAnotherReg(Type::IntTy);
|
|
unsigned HiTmp = makeAnotherReg(Type::IntTy);
|
|
unsigned FinalTmp = makeAnotherReg(Type::IntTy);
|
|
|
|
BuildMI(*MBB, IP, PPC::XORI, 2, LoLow).addReg(Op0r+1)
|
|
.addImm(LowCst & 0xFFFF);
|
|
BuildMI(*MBB, IP, PPC::XORIS, 2, LoTmp).addReg(LoLow)
|
|
.addImm(LowCst >> 16);
|
|
BuildMI(*MBB, IP, PPC::XORI, 2, HiLow).addReg(Op0r)
|
|
.addImm(HiCst & 0xFFFF);
|
|
BuildMI(*MBB, IP, PPC::XORIS, 2, HiTmp).addReg(HiLow)
|
|
.addImm(HiCst >> 16);
|
|
BuildMI(*MBB, IP, PPC::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
|
|
return;
|
|
} else {
|
|
unsigned ConstReg = makeAnotherReg(CompTy);
|
|
copyConstantToRegister(MBB, IP, CI, ConstReg);
|
|
|
|
// cr0 = r3 ccOpcode r5 or (r3 == r5 AND r4 ccOpcode r6)
|
|
BuildMI(*MBB, IP, Opcode, 2, PPC::CR0).addReg(Op0r)
|
|
.addReg(ConstReg);
|
|
BuildMI(*MBB, IP, Opcode, 2, PPC::CR1).addReg(Op0r+1)
|
|
.addReg(ConstReg+1);
|
|
BuildMI(*MBB, IP, PPC::CRAND, 5, PPC::CR0).addImm(2)
|
|
.addReg(PPC::CR0).addImm(2).addReg(PPC::CR1).addImm(CR1field);
|
|
BuildMI(*MBB, IP, PPC::CROR, 5, PPC::CR0).addImm(CR0field)
|
|
.addReg(PPC::CR0).addImm(CR0field).addReg(PPC::CR0).addImm(2);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
unsigned Op1r = getReg(Op1, MBB, IP);
|
|
|
|
switch (Class) {
|
|
default: assert(0 && "Unknown type class!");
|
|
case cByte:
|
|
case cShort:
|
|
case cInt:
|
|
BuildMI(*MBB, IP, Opcode, 2, PPC::CR0).addReg(Op0r).addReg(Op1r);
|
|
break;
|
|
|
|
case cFP32:
|
|
case cFP64:
|
|
emitUCOM(MBB, IP, Op0r, Op1r);
|
|
break;
|
|
|
|
case cLong:
|
|
if (OpNum < 2) { // seteq, setne
|
|
unsigned LoTmp = makeAnotherReg(Type::IntTy);
|
|
unsigned HiTmp = makeAnotherReg(Type::IntTy);
|
|
unsigned FinalTmp = makeAnotherReg(Type::IntTy);
|
|
BuildMI(*MBB, IP, PPC::XOR, 2, HiTmp).addReg(Op0r).addReg(Op1r);
|
|
BuildMI(*MBB, IP, PPC::XOR, 2, LoTmp).addReg(Op0r+1).addReg(Op1r+1);
|
|
BuildMI(*MBB, IP, PPC::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
|
|
break; // Allow the sete or setne to be generated from flags set by OR
|
|
} else {
|
|
unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
|
|
unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
|
|
|
|
// cr0 = r3 ccOpcode r5 or (r3 == r5 AND r4 ccOpcode r6)
|
|
BuildMI(*MBB, IP, Opcode, 2, PPC::CR0).addReg(Op0r).addReg(Op1r);
|
|
BuildMI(*MBB, IP, Opcode, 2, PPC::CR1).addReg(Op0r+1).addReg(Op1r+1);
|
|
BuildMI(*MBB, IP, PPC::CRAND, 5, PPC::CR0).addImm(2)
|
|
.addReg(PPC::CR0).addImm(2).addReg(PPC::CR1).addImm(CR1field);
|
|
BuildMI(*MBB, IP, PPC::CROR, 5, PPC::CR0).addImm(CR0field)
|
|
.addReg(PPC::CR0).addImm(CR0field).addReg(PPC::CR0).addImm(2);
|
|
return;
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
/// visitSetCondInst - emit code to calculate the condition via
|
|
/// EmitComparison(), and possibly store a 0 or 1 to a register as a result
|
|
///
|
|
void PPC32ISel::visitSetCondInst(SetCondInst &I) {
|
|
if (canFoldSetCCIntoBranchOrSelect(&I))
|
|
return;
|
|
|
|
MachineBasicBlock::iterator MI = BB->end();
|
|
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
|
|
const Type *Ty = Op0->getType();
|
|
unsigned Class = getClassB(Ty);
|
|
unsigned Opcode = I.getOpcode();
|
|
unsigned OpNum = getSetCCNumber(Opcode);
|
|
unsigned DestReg = getReg(I);
|
|
|
|
// If the comparison type is byte, short, or int, then we can emit a
|
|
// branchless version of the SetCC that puts 0 (false) or 1 (true) in the
|
|
// destination register.
|
|
if (Class <= cInt) {
|
|
ConstantInt *CI = dyn_cast<ConstantInt>(Op1);
|
|
|
|
if (CI && CI->getRawValue() == 0) {
|
|
unsigned Op0Reg = ExtendOrClear(BB, MI, Op0);
|
|
|
|
// comparisons against constant zero and negative one often have shorter
|
|
// and/or faster sequences than the set-and-branch general case, handled
|
|
// below.
|
|
switch(OpNum) {
|
|
case 0: { // eq0
|
|
unsigned TempReg = makeAnotherReg(Type::IntTy);
|
|
BuildMI(*BB, MI, PPC::CNTLZW, 1, TempReg).addReg(Op0Reg);
|
|
BuildMI(*BB, MI, PPC::RLWINM, 4, DestReg).addReg(TempReg).addImm(27)
|
|
.addImm(5).addImm(31);
|
|
break;
|
|
}
|
|
case 1: { // ne0
|
|
unsigned TempReg = makeAnotherReg(Type::IntTy);
|
|
BuildMI(*BB, MI, PPC::ADDIC, 2, TempReg).addReg(Op0Reg).addSImm(-1);
|
|
BuildMI(*BB, MI, PPC::SUBFE, 2, DestReg).addReg(TempReg).addReg(Op0Reg);
|
|
break;
|
|
}
|
|
case 2: { // lt0, always false if unsigned
|
|
if (Ty->isSigned())
|
|
BuildMI(*BB, MI, PPC::RLWINM, 4, DestReg).addReg(Op0Reg).addImm(1)
|
|
.addImm(31).addImm(31);
|
|
else
|
|
BuildMI(*BB, MI, PPC::LI, 1, DestReg).addSImm(0);
|
|
break;
|
|
}
|
|
case 3: { // ge0, always true if unsigned
|
|
if (Ty->isSigned()) {
|
|
unsigned TempReg = makeAnotherReg(Type::IntTy);
|
|
BuildMI(*BB, MI, PPC::RLWINM, 4, TempReg).addReg(Op0Reg).addImm(1)
|
|
.addImm(31).addImm(31);
|
|
BuildMI(*BB, MI, PPC::XORI, 2, DestReg).addReg(TempReg).addImm(1);
|
|
} else {
|
|
BuildMI(*BB, MI, PPC::LI, 1, DestReg).addSImm(1);
|
|
}
|
|
break;
|
|
}
|
|
case 4: { // gt0, equivalent to ne0 if unsigned
|
|
unsigned Temp1 = makeAnotherReg(Type::IntTy);
|
|
unsigned Temp2 = makeAnotherReg(Type::IntTy);
|
|
if (Ty->isSigned()) {
|
|
BuildMI(*BB, MI, PPC::NEG, 2, Temp1).addReg(Op0Reg);
|
|
BuildMI(*BB, MI, PPC::ANDC, 2, Temp2).addReg(Temp1).addReg(Op0Reg);
|
|
BuildMI(*BB, MI, PPC::RLWINM, 4, DestReg).addReg(Temp2).addImm(1)
|
|
.addImm(31).addImm(31);
|
|
} else {
|
|
BuildMI(*BB, MI, PPC::ADDIC, 2, Temp1).addReg(Op0Reg).addSImm(-1);
|
|
BuildMI(*BB, MI, PPC::SUBFE, 2, DestReg).addReg(Temp1).addReg(Op0Reg);
|
|
}
|
|
break;
|
|
}
|
|
case 5: { // le0, equivalent to eq0 if unsigned
|
|
unsigned Temp1 = makeAnotherReg(Type::IntTy);
|
|
unsigned Temp2 = makeAnotherReg(Type::IntTy);
|
|
if (Ty->isSigned()) {
|
|
BuildMI(*BB, MI, PPC::NEG, 2, Temp1).addReg(Op0Reg);
|
|
BuildMI(*BB, MI, PPC::ORC, 2, Temp2).addReg(Op0Reg).addReg(Temp1);
|
|
BuildMI(*BB, MI, PPC::RLWINM, 4, DestReg).addReg(Temp2).addImm(1)
|
|
.addImm(31).addImm(31);
|
|
} else {
|
|
BuildMI(*BB, MI, PPC::CNTLZW, 1, Temp1).addReg(Op0Reg);
|
|
BuildMI(*BB, MI, PPC::RLWINM, 4, DestReg).addReg(Temp1).addImm(27)
|
|
.addImm(5).addImm(31);
|
|
}
|
|
break;
|
|
}
|
|
} // switch
|
|
return;
|
|
}
|
|
}
|
|
unsigned PPCOpcode = getPPCOpcodeForSetCCOpcode(Opcode);
|
|
|
|
// Create an iterator with which to insert the MBB for copying the false value
|
|
// and the MBB to hold the PHI instruction for this SetCC.
|
|
MachineBasicBlock *thisMBB = BB;
|
|
const BasicBlock *LLVM_BB = BB->getBasicBlock();
|
|
ilist<MachineBasicBlock>::iterator It = BB;
|
|
++It;
|
|
|
|
// thisMBB:
|
|
// ...
|
|
// cmpTY cr0, r1, r2
|
|
// %TrueValue = li 1
|
|
// bCC sinkMBB
|
|
EmitComparison(OpNum, Op0, Op1, BB, BB->end());
|
|
unsigned TrueValue = makeAnotherReg(I.getType());
|
|
BuildMI(BB, PPC::LI, 1, TrueValue).addSImm(1);
|
|
MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
|
|
BuildMI(BB, PPCOpcode, 2).addReg(PPC::CR0).addMBB(sinkMBB);
|
|
F->getBasicBlockList().insert(It, copy0MBB);
|
|
F->getBasicBlockList().insert(It, sinkMBB);
|
|
// Update machine-CFG edges
|
|
BB->addSuccessor(copy0MBB);
|
|
BB->addSuccessor(sinkMBB);
|
|
|
|
// copy0MBB:
|
|
// %FalseValue = li 0
|
|
// fallthrough
|
|
BB = copy0MBB;
|
|
unsigned FalseValue = makeAnotherReg(I.getType());
|
|
BuildMI(BB, PPC::LI, 1, FalseValue).addSImm(0);
|
|
// Update machine-CFG edges
|
|
BB->addSuccessor(sinkMBB);
|
|
|
|
// sinkMBB:
|
|
// %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
|
|
// ...
|
|
BB = sinkMBB;
|
|
BuildMI(BB, PPC::PHI, 4, DestReg).addReg(FalseValue)
|
|
.addMBB(copy0MBB).addReg(TrueValue).addMBB(thisMBB);
|
|
}
|
|
|
|
void PPC32ISel::visitSelectInst(SelectInst &SI) {
|
|
unsigned DestReg = getReg(SI);
|
|
MachineBasicBlock::iterator MII = BB->end();
|
|
emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(),
|
|
SI.getFalseValue(), DestReg);
|
|
}
|
|
|
|
/// emitSelect - Common code shared between visitSelectInst and the constant
|
|
/// expression support.
|
|
void PPC32ISel::emitSelectOperation(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IP,
|
|
Value *Cond, Value *TrueVal,
|
|
Value *FalseVal, unsigned DestReg) {
|
|
unsigned SelectClass = getClassB(TrueVal->getType());
|
|
unsigned Opcode;
|
|
|
|
// See if we can fold the setcc into the select instruction, or if we have
|
|
// to get the register of the Cond value
|
|
if (SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(Cond)) {
|
|
// We successfully folded the setcc into the select instruction.
|
|
unsigned OpNum = getSetCCNumber(SCI->getOpcode());
|
|
if (OpNum >= 2 && OpNum <= 5) {
|
|
unsigned SetCondClass = getClassB(SCI->getOperand(0)->getType());
|
|
if ((SetCondClass == cFP32 || SetCondClass == cFP64) &&
|
|
(SelectClass == cFP32 || SelectClass == cFP64)) {
|
|
unsigned CondReg = getReg(SCI->getOperand(0), MBB, IP);
|
|
unsigned TrueReg = getReg(TrueVal, MBB, IP);
|
|
unsigned FalseReg = getReg(FalseVal, MBB, IP);
|
|
// if the comparison of the floating point value used to for the select
|
|
// is against 0, then we can emit an fsel without subtraction.
|
|
ConstantFP *Op1C = dyn_cast<ConstantFP>(SCI->getOperand(1));
|
|
if (Op1C && (Op1C->isExactlyValue(-0.0) || Op1C->isExactlyValue(0.0))) {
|
|
switch(OpNum) {
|
|
case 2: // LT
|
|
BuildMI(*MBB, IP, PPC::FSEL, 3, DestReg).addReg(CondReg)
|
|
.addReg(FalseReg).addReg(TrueReg);
|
|
break;
|
|
case 3: // GE == !LT
|
|
BuildMI(*MBB, IP, PPC::FSEL, 3, DestReg).addReg(CondReg)
|
|
.addReg(TrueReg).addReg(FalseReg);
|
|
break;
|
|
case 4: { // GT
|
|
unsigned NegatedReg = makeAnotherReg(SCI->getOperand(0)->getType());
|
|
BuildMI(*MBB, IP, PPC::FNEG, 1, NegatedReg).addReg(CondReg);
|
|
BuildMI(*MBB, IP, PPC::FSEL, 3, DestReg).addReg(NegatedReg)
|
|
.addReg(FalseReg).addReg(TrueReg);
|
|
}
|
|
break;
|
|
case 5: { // LE == !GT
|
|
unsigned NegatedReg = makeAnotherReg(SCI->getOperand(0)->getType());
|
|
BuildMI(*MBB, IP, PPC::FNEG, 1, NegatedReg).addReg(CondReg);
|
|
BuildMI(*MBB, IP, PPC::FSEL, 3, DestReg).addReg(NegatedReg)
|
|
.addReg(TrueReg).addReg(FalseReg);
|
|
}
|
|
break;
|
|
default:
|
|
assert(0 && "Invalid SetCC opcode to fsel");
|
|
abort();
|
|
break;
|
|
}
|
|
} else {
|
|
unsigned OtherCondReg = getReg(SCI->getOperand(1), MBB, IP);
|
|
unsigned SelectReg = makeAnotherReg(SCI->getOperand(0)->getType());
|
|
switch(OpNum) {
|
|
case 2: // LT
|
|
BuildMI(*MBB, IP, PPC::FSUB, 2, SelectReg).addReg(CondReg)
|
|
.addReg(OtherCondReg);
|
|
BuildMI(*MBB, IP, PPC::FSEL, 3, DestReg).addReg(SelectReg)
|
|
.addReg(FalseReg).addReg(TrueReg);
|
|
break;
|
|
case 3: // GE == !LT
|
|
BuildMI(*MBB, IP, PPC::FSUB, 2, SelectReg).addReg(CondReg)
|
|
.addReg(OtherCondReg);
|
|
BuildMI(*MBB, IP, PPC::FSEL, 3, DestReg).addReg(SelectReg)
|
|
.addReg(TrueReg).addReg(FalseReg);
|
|
break;
|
|
case 4: // GT
|
|
BuildMI(*MBB, IP, PPC::FSUB, 2, SelectReg).addReg(OtherCondReg)
|
|
.addReg(CondReg);
|
|
BuildMI(*MBB, IP, PPC::FSEL, 3, DestReg).addReg(SelectReg)
|
|
.addReg(FalseReg).addReg(TrueReg);
|
|
break;
|
|
case 5: // LE == !GT
|
|
BuildMI(*MBB, IP, PPC::FSUB, 2, SelectReg).addReg(OtherCondReg)
|
|
.addReg(CondReg);
|
|
BuildMI(*MBB, IP, PPC::FSEL, 3, DestReg).addReg(SelectReg)
|
|
.addReg(TrueReg).addReg(FalseReg);
|
|
break;
|
|
default:
|
|
assert(0 && "Invalid SetCC opcode to fsel");
|
|
abort();
|
|
break;
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
EmitComparison(OpNum, SCI->getOperand(0),SCI->getOperand(1),MBB,IP);
|
|
Opcode = getPPCOpcodeForSetCCOpcode(SCI->getOpcode());
|
|
} else {
|
|
unsigned CondReg = getReg(Cond, MBB, IP);
|
|
BuildMI(*MBB, IP, PPC::CMPWI, 2, PPC::CR0).addReg(CondReg).addSImm(0);
|
|
Opcode = getPPCOpcodeForSetCCOpcode(Instruction::SetNE);
|
|
}
|
|
|
|
MachineBasicBlock *thisMBB = BB;
|
|
const BasicBlock *LLVM_BB = BB->getBasicBlock();
|
|
ilist<MachineBasicBlock>::iterator It = BB;
|
|
++It;
|
|
|
|
// thisMBB:
|
|
// ...
|
|
// TrueVal = ...
|
|
// cmpTY cr0, r1, r2
|
|
// bCC copy1MBB
|
|
// fallthrough --> copy0MBB
|
|
MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
|
|
unsigned TrueValue = getReg(TrueVal);
|
|
BuildMI(BB, Opcode, 2).addReg(PPC::CR0).addMBB(sinkMBB);
|
|
F->getBasicBlockList().insert(It, copy0MBB);
|
|
F->getBasicBlockList().insert(It, sinkMBB);
|
|
// Update machine-CFG edges
|
|
BB->addSuccessor(copy0MBB);
|
|
BB->addSuccessor(sinkMBB);
|
|
|
|
// copy0MBB:
|
|
// %FalseValue = ...
|
|
// # fallthrough to sinkMBB
|
|
BB = copy0MBB;
|
|
unsigned FalseValue = getReg(FalseVal);
|
|
// Update machine-CFG edges
|
|
BB->addSuccessor(sinkMBB);
|
|
|
|
// sinkMBB:
|
|
// %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
|
|
// ...
|
|
BB = sinkMBB;
|
|
BuildMI(BB, PPC::PHI, 4, DestReg).addReg(FalseValue)
|
|
.addMBB(copy0MBB).addReg(TrueValue).addMBB(thisMBB);
|
|
|
|
// For a register pair representing a long value, define the top part.
|
|
if (getClassB(TrueVal->getType()) == cLong)
|
|
BuildMI(BB, PPC::PHI, 4, DestReg+1).addReg(FalseValue+1)
|
|
.addMBB(copy0MBB).addReg(TrueValue+1).addMBB(thisMBB);
|
|
}
|
|
|
|
|
|
|
|
/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
|
|
/// operand, in the specified target register.
|
|
///
|
|
void PPC32ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
|
|
bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy;
|
|
|
|
Value *Val = VR.Val;
|
|
const Type *Ty = VR.Ty;
|
|
if (Val) {
|
|
if (Constant *C = dyn_cast<Constant>(Val)) {
|
|
Val = ConstantExpr::getCast(C, Type::IntTy);
|
|
if (isa<ConstantExpr>(Val)) // Could not fold
|
|
Val = C;
|
|
else
|
|
Ty = Type::IntTy; // Folded!
|
|
}
|
|
|
|
// If this is a simple constant, just emit a load directly to avoid the copy
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
|
|
copyConstantToRegister(BB, BB->end(), CI, targetReg);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Make sure we have the register number for this value...
|
|
unsigned Reg = Val ? getReg(Val) : VR.Reg;
|
|
switch (getClassB(Ty)) {
|
|
case cByte:
|
|
// Extend value into target register (8->32)
|
|
if (Ty == Type::BoolTy)
|
|
BuildMI(BB, PPC::OR, 2, targetReg).addReg(Reg).addReg(Reg);
|
|
else if (isUnsigned)
|
|
BuildMI(BB, PPC::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
|
|
.addZImm(24).addZImm(31);
|
|
else
|
|
BuildMI(BB, PPC::EXTSB, 1, targetReg).addReg(Reg);
|
|
break;
|
|
case cShort:
|
|
// Extend value into target register (16->32)
|
|
if (isUnsigned)
|
|
BuildMI(BB, PPC::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
|
|
.addZImm(16).addZImm(31);
|
|
else
|
|
BuildMI(BB, PPC::EXTSH, 1, targetReg).addReg(Reg);
|
|
break;
|
|
case cInt:
|
|
// Move value into target register (32->32)
|
|
BuildMI(BB, PPC::OR, 2, targetReg).addReg(Reg).addReg(Reg);
|
|
break;
|
|
default:
|
|
assert(0 && "Unpromotable operand class in promote32");
|
|
}
|
|
}
|
|
|
|
/// visitReturnInst - implemented with BLR
|
|
///
|
|
void PPC32ISel::visitReturnInst(ReturnInst &I) {
|
|
// Only do the processing if this is a non-void return
|
|
if (I.getNumOperands() > 0) {
|
|
Value *RetVal = I.getOperand(0);
|
|
switch (getClassB(RetVal->getType())) {
|
|
case cByte: // integral return values: extend or move into r3 and return
|
|
case cShort:
|
|
case cInt:
|
|
promote32(PPC::R3, ValueRecord(RetVal));
|
|
break;
|
|
case cFP32:
|
|
case cFP64: { // Floats & Doubles: Return in f1
|
|
unsigned RetReg = getReg(RetVal);
|
|
BuildMI(BB, PPC::FMR, 1, PPC::F1).addReg(RetReg);
|
|
break;
|
|
}
|
|
case cLong: {
|
|
unsigned RetReg = getReg(RetVal);
|
|
BuildMI(BB, PPC::OR, 2, PPC::R3).addReg(RetReg).addReg(RetReg);
|
|
BuildMI(BB, PPC::OR, 2, PPC::R4).addReg(RetReg+1).addReg(RetReg+1);
|
|
break;
|
|
}
|
|
default:
|
|
visitInstruction(I);
|
|
}
|
|
}
|
|
BuildMI(BB, PPC::BLR, 1).addImm(0);
|
|
}
|
|
|
|
// getBlockAfter - Return the basic block which occurs lexically after the
|
|
// specified one.
|
|
static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
|
|
Function::iterator I = BB; ++I; // Get iterator to next block
|
|
return I != BB->getParent()->end() ? &*I : 0;
|
|
}
|
|
|
|
/// visitBranchInst - Handle conditional and unconditional branches here. Note
|
|
/// that since code layout is frozen at this point, that if we are trying to
|
|
/// jump to a block that is the immediate successor of the current block, we can
|
|
/// just make a fall-through (but we don't currently).
|
|
///
|
|
void PPC32ISel::visitBranchInst(BranchInst &BI) {
|
|
// Update machine-CFG edges
|
|
BB->addSuccessor(MBBMap[BI.getSuccessor(0)]);
|
|
if (BI.isConditional())
|
|
BB->addSuccessor(MBBMap[BI.getSuccessor(1)]);
|
|
|
|
BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
|
|
|
|
if (!BI.isConditional()) { // Unconditional branch?
|
|
if (BI.getSuccessor(0) != NextBB)
|
|
BuildMI(BB, PPC::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
|
|
return;
|
|
}
|
|
|
|
// See if we can fold the setcc into the branch itself...
|
|
SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition());
|
|
if (SCI == 0) {
|
|
// Nope, cannot fold setcc into this branch. Emit a branch on a condition
|
|
// computed some other way...
|
|
unsigned condReg = getReg(BI.getCondition());
|
|
BuildMI(BB, PPC::CMPLI, 3, PPC::CR0).addImm(0).addReg(condReg)
|
|
.addImm(0);
|
|
if (BI.getSuccessor(1) == NextBB) {
|
|
if (BI.getSuccessor(0) != NextBB)
|
|
BuildMI(BB, PPC::COND_BRANCH, 4).addReg(PPC::CR0).addImm(PPC::BNE)
|
|
.addMBB(MBBMap[BI.getSuccessor(0)])
|
|
.addMBB(MBBMap[BI.getSuccessor(1)]);
|
|
} else {
|
|
BuildMI(BB, PPC::COND_BRANCH, 4).addReg(PPC::CR0).addImm(PPC::BEQ)
|
|
.addMBB(MBBMap[BI.getSuccessor(1)])
|
|
.addMBB(MBBMap[BI.getSuccessor(0)]);
|
|
if (BI.getSuccessor(0) != NextBB)
|
|
BuildMI(BB, PPC::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
|
|
}
|
|
return;
|
|
}
|
|
|
|
unsigned OpNum = getSetCCNumber(SCI->getOpcode());
|
|
unsigned Opcode = getPPCOpcodeForSetCCOpcode(SCI->getOpcode());
|
|
MachineBasicBlock::iterator MII = BB->end();
|
|
EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
|
|
|
|
if (BI.getSuccessor(0) != NextBB) {
|
|
BuildMI(BB, PPC::COND_BRANCH, 4).addReg(PPC::CR0).addImm(Opcode)
|
|
.addMBB(MBBMap[BI.getSuccessor(0)])
|
|
.addMBB(MBBMap[BI.getSuccessor(1)]);
|
|
if (BI.getSuccessor(1) != NextBB)
|
|
BuildMI(BB, PPC::B, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
|
|
} else {
|
|
// Change to the inverse condition...
|
|
if (BI.getSuccessor(1) != NextBB) {
|
|
Opcode = PPC32InstrInfo::invertPPCBranchOpcode(Opcode);
|
|
BuildMI(BB, PPC::COND_BRANCH, 4).addReg(PPC::CR0).addImm(Opcode)
|
|
.addMBB(MBBMap[BI.getSuccessor(1)])
|
|
.addMBB(MBBMap[BI.getSuccessor(0)]);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// doCall - This emits an abstract call instruction, setting up the arguments
|
|
/// and the return value as appropriate. For the actual function call itself,
|
|
/// it inserts the specified CallMI instruction into the stream.
|
|
///
|
|
/// FIXME: See Documentation at the following URL for "correct" behavior
|
|
/// <http://developer.apple.com/documentation/DeveloperTools/Conceptual/MachORuntime/PowerPCConventions/chapter_3_section_5.html>
|
|
void PPC32ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
|
|
const std::vector<ValueRecord> &Args, bool isVarArg) {
|
|
// Count how many bytes are to be pushed on the stack, including the linkage
|
|
// area, and parameter passing area.
|
|
unsigned NumBytes = 24;
|
|
unsigned ArgOffset = 24;
|
|
|
|
if (!Args.empty()) {
|
|
for (unsigned i = 0, e = Args.size(); i != e; ++i)
|
|
switch (getClassB(Args[i].Ty)) {
|
|
case cByte: case cShort: case cInt:
|
|
NumBytes += 4; break;
|
|
case cLong:
|
|
NumBytes += 8; break;
|
|
case cFP32:
|
|
NumBytes += 4; break;
|
|
case cFP64:
|
|
NumBytes += 8; break;
|
|
break;
|
|
default: assert(0 && "Unknown class!");
|
|
}
|
|
|
|
// Just to be safe, we'll always reserve the full 24 bytes of linkage area
|
|
// plus 32 bytes of argument space in case any called code gets funky on us.
|
|
if (NumBytes < 56) NumBytes = 56;
|
|
|
|
// Adjust the stack pointer for the new arguments...
|
|
// These operations are automatically eliminated by the prolog/epilog pass
|
|
BuildMI(BB, PPC::ADJCALLSTACKDOWN, 1).addImm(NumBytes);
|
|
|
|
// Arguments go on the stack in reverse order, as specified by the ABI.
|
|
// Offset to the paramater area on the stack is 24.
|
|
int GPR_remaining = 8, FPR_remaining = 13;
|
|
unsigned GPR_idx = 0, FPR_idx = 0;
|
|
static const unsigned GPR[] = {
|
|
PPC::R3, PPC::R4, PPC::R5, PPC::R6,
|
|
PPC::R7, PPC::R8, PPC::R9, PPC::R10,
|
|
};
|
|
static const unsigned FPR[] = {
|
|
PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6,
|
|
PPC::F7, PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12,
|
|
PPC::F13
|
|
};
|
|
|
|
for (unsigned i = 0, e = Args.size(); i != e; ++i) {
|
|
unsigned ArgReg;
|
|
switch (getClassB(Args[i].Ty)) {
|
|
case cByte:
|
|
case cShort:
|
|
// Promote arg to 32 bits wide into a temporary register...
|
|
ArgReg = makeAnotherReg(Type::UIntTy);
|
|
promote32(ArgReg, Args[i]);
|
|
|
|
// Reg or stack?
|
|
if (GPR_remaining > 0) {
|
|
BuildMI(BB, PPC::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
|
|
.addReg(ArgReg);
|
|
CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
|
|
}
|
|
if (GPR_remaining <= 0 || isVarArg) {
|
|
BuildMI(BB, PPC::STW, 3).addReg(ArgReg).addSImm(ArgOffset)
|
|
.addReg(PPC::R1);
|
|
}
|
|
break;
|
|
case cInt:
|
|
ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
|
|
|
|
// Reg or stack?
|
|
if (GPR_remaining > 0) {
|
|
BuildMI(BB, PPC::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
|
|
.addReg(ArgReg);
|
|
CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
|
|
}
|
|
if (GPR_remaining <= 0 || isVarArg) {
|
|
BuildMI(BB, PPC::STW, 3).addReg(ArgReg).addSImm(ArgOffset)
|
|
.addReg(PPC::R1);
|
|
}
|
|
break;
|
|
case cLong:
|
|
ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
|
|
|
|
// Reg or stack? Note that PPC calling conventions state that long args
|
|
// are passed rN = hi, rN+1 = lo, opposite of LLVM.
|
|
if (GPR_remaining > 1) {
|
|
BuildMI(BB, PPC::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
|
|
.addReg(ArgReg);
|
|
BuildMI(BB, PPC::OR, 2, GPR[GPR_idx+1]).addReg(ArgReg+1)
|
|
.addReg(ArgReg+1);
|
|
CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
|
|
CallMI->addRegOperand(GPR[GPR_idx+1], MachineOperand::Use);
|
|
}
|
|
if (GPR_remaining <= 1 || isVarArg) {
|
|
BuildMI(BB, PPC::STW, 3).addReg(ArgReg).addSImm(ArgOffset)
|
|
.addReg(PPC::R1);
|
|
BuildMI(BB, PPC::STW, 3).addReg(ArgReg+1).addSImm(ArgOffset+4)
|
|
.addReg(PPC::R1);
|
|
}
|
|
|
|
ArgOffset += 4; // 8 byte entry, not 4.
|
|
GPR_remaining -= 1; // uses up 2 GPRs
|
|
GPR_idx += 1;
|
|
break;
|
|
case cFP32:
|
|
ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
|
|
// Reg or stack?
|
|
if (FPR_remaining > 0) {
|
|
BuildMI(BB, PPC::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
|
|
CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use);
|
|
FPR_remaining--;
|
|
FPR_idx++;
|
|
|
|
// If this is a vararg function, and there are GPRs left, also
|
|
// pass the float in an int. Otherwise, put it on the stack.
|
|
if (isVarArg) {
|
|
BuildMI(BB, PPC::STFS, 3).addReg(ArgReg).addSImm(ArgOffset)
|
|
.addReg(PPC::R1);
|
|
if (GPR_remaining > 0) {
|
|
BuildMI(BB, PPC::LWZ, 2, GPR[GPR_idx])
|
|
.addSImm(ArgOffset).addReg(PPC::R1);
|
|
CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
|
|
}
|
|
}
|
|
} else {
|
|
BuildMI(BB, PPC::STFS, 3).addReg(ArgReg).addSImm(ArgOffset)
|
|
.addReg(PPC::R1);
|
|
}
|
|
break;
|
|
case cFP64:
|
|
ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
|
|
// Reg or stack?
|
|
if (FPR_remaining > 0) {
|
|
BuildMI(BB, PPC::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
|
|
CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use);
|
|
FPR_remaining--;
|
|
FPR_idx++;
|
|
// For vararg functions, must pass doubles via int regs as well
|
|
if (isVarArg) {
|
|
BuildMI(BB, PPC::STFD, 3).addReg(ArgReg).addSImm(ArgOffset)
|
|
.addReg(PPC::R1);
|
|
|
|
// Doubles can be split across reg + stack for varargs
|
|
if (GPR_remaining > 0) {
|
|
BuildMI(BB, PPC::LWZ, 2, GPR[GPR_idx]).addSImm(ArgOffset)
|
|
.addReg(PPC::R1);
|
|
CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
|
|
}
|
|
if (GPR_remaining > 1) {
|
|
BuildMI(BB, PPC::LWZ, 2, GPR[GPR_idx+1])
|
|
.addSImm(ArgOffset+4).addReg(PPC::R1);
|
|
CallMI->addRegOperand(GPR[GPR_idx+1], MachineOperand::Use);
|
|
}
|
|
}
|
|
} else {
|
|
BuildMI(BB, PPC::STFD, 3).addReg(ArgReg).addSImm(ArgOffset)
|
|
.addReg(PPC::R1);
|
|
}
|
|
// Doubles use 8 bytes, and 2 GPRs worth of param space
|
|
ArgOffset += 4;
|
|
GPR_remaining--;
|
|
GPR_idx++;
|
|
break;
|
|
|
|
default: assert(0 && "Unknown class!");
|
|
}
|
|
ArgOffset += 4;
|
|
GPR_remaining--;
|
|
GPR_idx++;
|
|
}
|
|
} else {
|
|
BuildMI(BB, PPC::ADJCALLSTACKDOWN, 1).addImm(NumBytes);
|
|
}
|
|
|
|
BuildMI(BB, PPC::IMPLICIT_DEF, 0, PPC::LR);
|
|
BB->push_back(CallMI);
|
|
|
|
// These functions are automatically eliminated by the prolog/epilog pass
|
|
BuildMI(BB, PPC::ADJCALLSTACKUP, 1).addImm(NumBytes);
|
|
|
|
// If there is a return value, scavenge the result from the location the call
|
|
// leaves it in...
|
|
//
|
|
if (Ret.Ty != Type::VoidTy) {
|
|
unsigned DestClass = getClassB(Ret.Ty);
|
|
switch (DestClass) {
|
|
case cByte:
|
|
case cShort:
|
|
case cInt:
|
|
// Integral results are in r3
|
|
BuildMI(BB, PPC::OR, 2, Ret.Reg).addReg(PPC::R3).addReg(PPC::R3);
|
|
break;
|
|
case cFP32: // Floating-point return values live in f1
|
|
case cFP64:
|
|
BuildMI(BB, PPC::FMR, 1, Ret.Reg).addReg(PPC::F1);
|
|
break;
|
|
case cLong: // Long values are in r3:r4
|
|
BuildMI(BB, PPC::OR, 2, Ret.Reg).addReg(PPC::R3).addReg(PPC::R3);
|
|
BuildMI(BB, PPC::OR, 2, Ret.Reg+1).addReg(PPC::R4).addReg(PPC::R4);
|
|
break;
|
|
default: assert(0 && "Unknown class!");
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/// visitCallInst - Push args on stack and do a procedure call instruction.
|
|
void PPC32ISel::visitCallInst(CallInst &CI) {
|
|
MachineInstr *TheCall;
|
|
Function *F = CI.getCalledFunction();
|
|
if (F) {
|
|
// Is it an intrinsic function call?
|
|
if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
|
|
visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
|
|
return;
|
|
}
|
|
// Emit a CALL instruction with PC-relative displacement.
|
|
TheCall = BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(F, true);
|
|
} else { // Emit an indirect call through the CTR
|
|
unsigned Reg = getReg(CI.getCalledValue());
|
|
BuildMI(BB, PPC::OR, 2, PPC::R12).addReg(Reg).addReg(Reg);
|
|
BuildMI(BB, PPC::MTCTR, 1).addReg(PPC::R12);
|
|
TheCall = BuildMI(PPC::CALLindirect, 3).addZImm(20).addZImm(0)
|
|
.addReg(PPC::R12);
|
|
}
|
|
|
|
std::vector<ValueRecord> Args;
|
|
for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
|
|
Args.push_back(ValueRecord(CI.getOperand(i)));
|
|
|
|
unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
|
|
bool isVarArg = F ? F->getFunctionType()->isVarArg() : true;
|
|
doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args, isVarArg);
|
|
}
|
|
|
|
|
|
/// dyncastIsNan - Return the operand of an isnan operation if this is an isnan.
|
|
///
|
|
static Value *dyncastIsNan(Value *V) {
|
|
if (CallInst *CI = dyn_cast<CallInst>(V))
|
|
if (Function *F = CI->getCalledFunction())
|
|
if (F->getIntrinsicID() == Intrinsic::isunordered)
|
|
return CI->getOperand(1);
|
|
return 0;
|
|
}
|
|
|
|
/// isOnlyUsedByUnorderedComparisons - Return true if this value is only used by
|
|
/// or's whos operands are all calls to the isnan predicate.
|
|
static bool isOnlyUsedByUnorderedComparisons(Value *V) {
|
|
assert(dyncastIsNan(V) && "The value isn't an isnan call!");
|
|
|
|
// Check all uses, which will be or's of isnans if this predicate is true.
|
|
for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
|
|
Instruction *I = cast<Instruction>(*UI);
|
|
if (I->getOpcode() != Instruction::Or) return false;
|
|
if (I->getOperand(0) != V && !dyncastIsNan(I->getOperand(0))) return false;
|
|
if (I->getOperand(1) != V && !dyncastIsNan(I->getOperand(1))) return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
|
|
/// function, lowering any calls to unknown intrinsic functions into the
|
|
/// equivalent LLVM code.
|
|
///
|
|
void PPC32ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
|
|
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
|
|
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
|
|
if (CallInst *CI = dyn_cast<CallInst>(I++))
|
|
if (Function *F = CI->getCalledFunction())
|
|
switch (F->getIntrinsicID()) {
|
|
case Intrinsic::not_intrinsic:
|
|
case Intrinsic::vastart:
|
|
case Intrinsic::vacopy:
|
|
case Intrinsic::vaend:
|
|
case Intrinsic::returnaddress:
|
|
case Intrinsic::frameaddress:
|
|
// FIXME: should lower these ourselves
|
|
// case Intrinsic::isunordered:
|
|
// case Intrinsic::memcpy: -> doCall(). system memcpy almost
|
|
// guaranteed to be faster than anything we generate ourselves
|
|
// We directly implement these intrinsics
|
|
break;
|
|
case Intrinsic::readio: {
|
|
// On PPC, memory operations are in-order. Lower this intrinsic
|
|
// into a volatile load.
|
|
LoadInst * LI = new LoadInst(CI->getOperand(1), "", true, CI);
|
|
CI->replaceAllUsesWith(LI);
|
|
BB->getInstList().erase(CI);
|
|
break;
|
|
}
|
|
case Intrinsic::writeio: {
|
|
// On PPC, memory operations are in-order. Lower this intrinsic
|
|
// into a volatile store.
|
|
StoreInst *SI = new StoreInst(CI->getOperand(1),
|
|
CI->getOperand(2), true, CI);
|
|
CI->replaceAllUsesWith(SI);
|
|
BB->getInstList().erase(CI);
|
|
break;
|
|
}
|
|
default: {
|
|
// All other intrinsic calls we must lower.
|
|
BasicBlock::iterator me(CI);
|
|
bool atBegin(BB->begin() == me);
|
|
if (!atBegin)
|
|
--me;
|
|
TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
|
|
// Move iterator to instruction after call
|
|
I = atBegin ? BB->begin() : ++me;
|
|
}
|
|
}
|
|
}
|
|
|
|
void PPC32ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
|
|
unsigned TmpReg1, TmpReg2, TmpReg3;
|
|
switch (ID) {
|
|
case Intrinsic::vastart:
|
|
//FIXME: need to store, not return a value
|
|
// Get the address of the first vararg value...
|
|
TmpReg1 = getReg(CI);
|
|
addFrameReference(BuildMI(BB, PPC::ADDI, 2, TmpReg1), VarArgsFrameIndex,
|
|
0, false);
|
|
return;
|
|
|
|
case Intrinsic::vacopy:
|
|
//FIXME: need to store into first arg the value of the second
|
|
TmpReg1 = getReg(CI);
|
|
TmpReg2 = getReg(CI.getOperand(1));
|
|
BuildMI(BB, PPC::OR, 2, TmpReg1).addReg(TmpReg2).addReg(TmpReg2);
|
|
return;
|
|
case Intrinsic::vaend: return;
|
|
|
|
case Intrinsic::returnaddress:
|
|
TmpReg1 = getReg(CI);
|
|
if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
|
|
MachineFrameInfo *MFI = F->getFrameInfo();
|
|
unsigned NumBytes = MFI->getStackSize();
|
|
|
|
BuildMI(BB, PPC::LWZ, 2, TmpReg1).addSImm(NumBytes+8)
|
|
.addReg(PPC::R1);
|
|
} else {
|
|
// Values other than zero are not implemented yet.
|
|
BuildMI(BB, PPC::LI, 1, TmpReg1).addSImm(0);
|
|
}
|
|
return;
|
|
|
|
case Intrinsic::frameaddress:
|
|
TmpReg1 = getReg(CI);
|
|
if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
|
|
BuildMI(BB, PPC::OR, 2, TmpReg1).addReg(PPC::R1).addReg(PPC::R1);
|
|
} else {
|
|
// Values other than zero are not implemented yet.
|
|
BuildMI(BB, PPC::LI, 1, TmpReg1).addSImm(0);
|
|
}
|
|
return;
|
|
|
|
#if 0
|
|
// This may be useful for supporting isunordered
|
|
case Intrinsic::isnan:
|
|
// If this is only used by 'isunordered' style comparisons, don't emit it.
|
|
if (isOnlyUsedByUnorderedComparisons(&CI)) return;
|
|
TmpReg1 = getReg(CI.getOperand(1));
|
|
emitUCOM(BB, BB->end(), TmpReg1, TmpReg1);
|
|
TmpReg2 = makeAnotherReg(Type::IntTy);
|
|
BuildMI(BB, PPC::MFCR, TmpReg2);
|
|
TmpReg3 = getReg(CI);
|
|
BuildMI(BB, PPC::RLWINM, 4, TmpReg3).addReg(TmpReg2).addImm(4).addImm(31).addImm(31);
|
|
return;
|
|
#endif
|
|
|
|
default: assert(0 && "Error: unknown intrinsics should have been lowered!");
|
|
}
|
|
}
|
|
|
|
/// visitSimpleBinary - Implement simple binary operators for integral types...
|
|
/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
|
|
/// Xor.
|
|
///
|
|
void PPC32ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
|
|
if (std::find(SkipList.begin(), SkipList.end(), &B) != SkipList.end())
|
|
return;
|
|
|
|
unsigned DestReg = getReg(B);
|
|
MachineBasicBlock::iterator MI = BB->end();
|
|
RlwimiRec RR = InsertMap[&B];
|
|
if (RR.Target != 0) {
|
|
unsigned TargetReg = getReg(RR.Target, BB, MI);
|
|
unsigned InsertReg = getReg(RR.Insert, BB, MI);
|
|
BuildMI(*BB, MI, PPC::RLWIMI, 5, DestReg).addReg(TargetReg)
|
|
.addReg(InsertReg).addImm(RR.Shift).addImm(RR.MB).addImm(RR.ME);
|
|
return;
|
|
}
|
|
|
|
unsigned Class = getClassB(B.getType());
|
|
Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1);
|
|
emitSimpleBinaryOperation(BB, MI, &B, Op0, Op1, OperatorClass, DestReg);
|
|
}
|
|
|
|
/// emitBinaryFPOperation - This method handles emission of floating point
|
|
/// Add (0), Sub (1), Mul (2), and Div (3) operations.
|
|
void PPC32ISel::emitBinaryFPOperation(MachineBasicBlock *BB,
|
|
MachineBasicBlock::iterator IP,
|
|
Value *Op0, Value *Op1,
|
|
unsigned OperatorClass, unsigned DestReg){
|
|
|
|
static const unsigned OpcodeTab[][4] = {
|
|
{ PPC::FADDS, PPC::FSUBS, PPC::FMULS, PPC::FDIVS }, // Float
|
|
{ PPC::FADD, PPC::FSUB, PPC::FMUL, PPC::FDIV }, // Double
|
|
};
|
|
|
|
// Special case: R1 = op <const fp>, R2
|
|
if (ConstantFP *Op0C = dyn_cast<ConstantFP>(Op0))
|
|
if (Op0C->isExactlyValue(-0.0) && OperatorClass == 1) {
|
|
// -0.0 - X === -X
|
|
unsigned op1Reg = getReg(Op1, BB, IP);
|
|
BuildMI(*BB, IP, PPC::FNEG, 1, DestReg).addReg(op1Reg);
|
|
return;
|
|
}
|
|
|
|
unsigned Opcode = OpcodeTab[Op0->getType() == Type::DoubleTy][OperatorClass];
|
|
unsigned Op0r = getReg(Op0, BB, IP);
|
|
unsigned Op1r = getReg(Op1, BB, IP);
|
|
BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
|
|
}
|
|
|
|
// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
|
|
// returns zero when the input is not exactly a power of two.
|
|
static unsigned ExactLog2(unsigned Val) {
|
|
if (Val == 0 || (Val & (Val-1))) return 0;
|
|
unsigned Count = 0;
|
|
while (Val != 1) {
|
|
Val >>= 1;
|
|
++Count;
|
|
}
|
|
return Count;
|
|
}
|
|
|
|
// isRunOfOnes - returns true if Val consists of one contiguous run of 1's with
|
|
// any number of 0's on either side. the 1's are allowed to wrap from LSB to
|
|
// MSB. so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is
|
|
// not, since all 1's are not contiguous.
|
|
static bool isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) {
|
|
bool isRun = true;
|
|
MB = 0;
|
|
ME = 0;
|
|
|
|
// look for first set bit
|
|
int i = 0;
|
|
for (; i < 32; i++) {
|
|
if ((Val & (1 << (31 - i))) != 0) {
|
|
MB = i;
|
|
ME = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// look for last set bit
|
|
for (; i < 32; i++) {
|
|
if ((Val & (1 << (31 - i))) == 0)
|
|
break;
|
|
ME = i;
|
|
}
|
|
|
|
// look for next set bit
|
|
for (; i < 32; i++) {
|
|
if ((Val & (1 << (31 - i))) != 0)
|
|
break;
|
|
}
|
|
|
|
// if we exhausted all the bits, we found a match at this point for 0*1*0*
|
|
if (i == 32)
|
|
return true;
|
|
|
|
// since we just encountered more 1's, if it doesn't wrap around to the
|
|
// most significant bit of the word, then we did not find a match to 1*0*1* so
|
|
// exit.
|
|
if (MB != 0)
|
|
return false;
|
|
|
|
// look for last set bit
|
|
for (MB = i; i < 32; i++) {
|
|
if ((Val & (1 << (31 - i))) == 0)
|
|
break;
|
|
}
|
|
|
|
// if we exhausted all the bits, then we found a match for 1*0*1*, otherwise,
|
|
// the value is not a run of ones.
|
|
if (i == 32)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// isInsertAndHalf - Helper function for emitBitfieldInsert. Returns true if
|
|
/// OpUser has one use, is used by an or instruction, and is itself an and whose
|
|
/// second operand is a constant int. Optionally, set OrI to the Or instruction
|
|
/// that is the sole user of OpUser, and Op1User to the other operand of the Or
|
|
/// instruction.
|
|
static bool isInsertAndHalf(User *OpUser, Instruction **Op1User,
|
|
Instruction **OrI, unsigned &Mask) {
|
|
// If this instruction doesn't have one use, then return false.
|
|
if (!OpUser->hasOneUse())
|
|
return false;
|
|
|
|
Mask = 0xFFFFFFFF;
|
|
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(OpUser))
|
|
if (BO->getOpcode() == Instruction::And) {
|
|
Value *AndUse = *(OpUser->use_begin());
|
|
if (BinaryOperator *Or = dyn_cast<BinaryOperator>(AndUse)) {
|
|
if (Or->getOpcode() == Instruction::Or) {
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(OpUser->getOperand(1))) {
|
|
if (OrI) *OrI = Or;
|
|
if (Op1User) {
|
|
if (Or->getOperand(0) == OpUser)
|
|
*Op1User = dyn_cast<Instruction>(Or->getOperand(1));
|
|
else
|
|
*Op1User = dyn_cast<Instruction>(Or->getOperand(0));
|
|
}
|
|
Mask &= CI->getRawValue();
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// isInsertShiftHalf - Helper function for emitBitfieldInsert. Returns true if
|
|
/// OpUser has one use, is used by an or instruction, and is itself a shift
|
|
/// instruction that is either used directly by the or instruction, or is used
|
|
/// by an and instruction whose second operand is a constant int, and which is
|
|
/// used by the or instruction.
|
|
static bool isInsertShiftHalf(User *OpUser, Instruction **Op1User,
|
|
Instruction **OrI, Instruction **OptAndI,
|
|
unsigned &Shift, unsigned &Mask) {
|
|
// If this instruction doesn't have one use, then return false.
|
|
if (!OpUser->hasOneUse())
|
|
return false;
|
|
|
|
Mask = 0xFFFFFFFF;
|
|
if (ShiftInst *SI = dyn_cast<ShiftInst>(OpUser)) {
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(SI->getOperand(1))) {
|
|
Shift = CI->getRawValue();
|
|
if (SI->getOpcode() == Instruction::Shl)
|
|
Mask <<= Shift;
|
|
else if (!SI->getOperand(0)->getType()->isSigned()) {
|
|
Mask >>= Shift;
|
|
Shift = 32 - Shift;
|
|
}
|
|
|
|
// Now check to see if the shift instruction is used by an or.
|
|
Value *ShiftUse = *(OpUser->use_begin());
|
|
Value *OptAndICopy = 0;
|
|
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ShiftUse)) {
|
|
if (BO->getOpcode() == Instruction::And && BO->hasOneUse()) {
|
|
if (ConstantInt *ACI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
|
|
if (OptAndI) *OptAndI = BO;
|
|
OptAndICopy = BO;
|
|
Mask &= ACI->getRawValue();
|
|
BO = dyn_cast<BinaryOperator>(*(BO->use_begin()));
|
|
}
|
|
}
|
|
if (BO && BO->getOpcode() == Instruction::Or) {
|
|
if (OrI) *OrI = BO;
|
|
if (Op1User) {
|
|
if (BO->getOperand(0) == OpUser || BO->getOperand(0) == OptAndICopy)
|
|
*Op1User = dyn_cast<Instruction>(BO->getOperand(1));
|
|
else
|
|
*Op1User = dyn_cast<Instruction>(BO->getOperand(0));
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// emitBitfieldInsert - turn a shift used only by an and with immediate into
|
|
/// the rotate left word immediate then mask insert (rlwimi) instruction.
|
|
/// Patterns matched:
|
|
/// 1. or shl, and 5. or (shl-and), and 9. or and, and
|
|
/// 2. or and, shl 6. or and, (shl-and)
|
|
/// 3. or shr, and 7. or (shr-and), and
|
|
/// 4. or and, shr 8. or and, (shr-and)
|
|
bool PPC32ISel::emitBitfieldInsert(User *OpUser, unsigned DestReg) {
|
|
// Instructions to skip if we match any of the patterns
|
|
Instruction *Op0User, *Op1User = 0, *OptAndI = 0, *OrI = 0;
|
|
unsigned TgtMask, InsMask, Amount = 0;
|
|
bool matched = false;
|
|
|
|
// We require OpUser to be an instruction to continue
|
|
Op0User = dyn_cast<Instruction>(OpUser);
|
|
if (0 == Op0User)
|
|
return false;
|
|
|
|
// Look for cases 2, 4, 6, 8, and 9
|
|
if (isInsertAndHalf(Op0User, &Op1User, &OrI, TgtMask))
|
|
if (Op1User)
|
|
if (isInsertAndHalf(Op1User, 0, 0, InsMask))
|
|
matched = true;
|
|
else if (isInsertShiftHalf(Op1User, 0, 0, &OptAndI, Amount, InsMask))
|
|
matched = true;
|
|
|
|
// Look for cases 1, 3, 5, and 7. Force the shift argument to be the one
|
|
// inserted into the target, since rlwimi can only rotate the value inserted,
|
|
// not the value being inserted into.
|
|
if (matched == false)
|
|
if (isInsertShiftHalf(Op0User, &Op1User, &OrI, &OptAndI, Amount, InsMask))
|
|
if (Op1User && isInsertAndHalf(Op1User, 0, 0, TgtMask)) {
|
|
std::swap(Op0User, Op1User);
|
|
matched = true;
|
|
}
|
|
|
|
// We didn't succeed in matching one of the patterns, so return false
|
|
if (matched == false)
|
|
return false;
|
|
|
|
// If the masks xor to -1, and the insert mask is a run of ones, then we have
|
|
// succeeded in matching one of the cases for generating rlwimi. Update the
|
|
// skip lists and users of the Instruction::Or.
|
|
unsigned MB, ME;
|
|
if (((TgtMask ^ InsMask) == 0xFFFFFFFF) && isRunOfOnes(InsMask, MB, ME)) {
|
|
SkipList.push_back(Op0User);
|
|
SkipList.push_back(Op1User);
|
|
SkipList.push_back(OptAndI);
|
|
InsertMap[OrI] = RlwimiRec(Op0User->getOperand(0), Op1User->getOperand(0),
|
|
Amount, MB, ME);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// emitBitfieldExtract - turn a shift used only by an and with immediate into the
|
|
/// rotate left word immediate then and with mask (rlwinm) instruction.
|
|
bool PPC32ISel::emitBitfieldExtract(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IP,
|
|
User *OpUser, unsigned DestReg) {
|
|
return false;
|
|
/*
|
|
// Instructions to skip if we match any of the patterns
|
|
Instruction *Op0User, *Op1User = 0;
|
|
unsigned ShiftMask, AndMask, Amount = 0;
|
|
bool matched = false;
|
|
|
|
// We require OpUser to be an instruction to continue
|
|
Op0User = dyn_cast<Instruction>(OpUser);
|
|
if (0 == Op0User)
|
|
return false;
|
|
|
|
if (isExtractShiftHalf)
|
|
if (isExtractAndHalf)
|
|
matched = true;
|
|
|
|
if (matched == false && isExtractAndHalf)
|
|
if (isExtractShiftHalf)
|
|
matched = true;
|
|
|
|
if (matched == false)
|
|
return false;
|
|
|
|
if (isRunOfOnes(Imm, MB, ME)) {
|
|
unsigned SrcReg = getReg(Op, MBB, IP);
|
|
BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg).addImm(Rotate)
|
|
.addImm(MB).addImm(ME);
|
|
Op1User->replaceAllUsesWith(Op0User);
|
|
SkipList.push_back(BO);
|
|
return true;
|
|
}
|
|
*/
|
|
}
|
|
|
|
/// emitBinaryConstOperation - Implement simple binary operators for integral
|
|
/// types with a constant operand. Opcode is one of: 0 for Add, 1 for Sub,
|
|
/// 2 for And, 3 for Or, 4 for Xor, and 5 for Subtract-From.
|
|
///
|
|
void PPC32ISel::emitBinaryConstOperation(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IP,
|
|
unsigned Op0Reg, ConstantInt *Op1,
|
|
unsigned Opcode, unsigned DestReg) {
|
|
static const unsigned OpTab[] = {
|
|
PPC::ADD, PPC::SUB, PPC::AND, PPC::OR, PPC::XOR, PPC::SUBF
|
|
};
|
|
static const unsigned ImmOpTab[2][6] = {
|
|
{ PPC::ADDI, PPC::ADDI, PPC::ANDIo, PPC::ORI, PPC::XORI, PPC::SUBFIC },
|
|
{ PPC::ADDIS, PPC::ADDIS, PPC::ANDISo, PPC::ORIS, PPC::XORIS, PPC::SUBFIC }
|
|
};
|
|
|
|
// Handle subtract now by inverting the constant value: X-4 == X+(-4)
|
|
if (Opcode == 1) {
|
|
Op1 = cast<ConstantInt>(ConstantExpr::getNeg(Op1));
|
|
Opcode = 0;
|
|
}
|
|
|
|
// xor X, -1 -> not X
|
|
if (Opcode == 4 && Op1->isAllOnesValue()) {
|
|
BuildMI(*MBB, IP, PPC::NOR, 2, DestReg).addReg(Op0Reg).addReg(Op0Reg);
|
|
return;
|
|
}
|
|
|
|
if (Opcode == 2 && !Op1->isNullValue()) {
|
|
unsigned MB, ME, mask = Op1->getRawValue();
|
|
if (isRunOfOnes(mask, MB, ME)) {
|
|
BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(Op0Reg).addImm(0)
|
|
.addImm(MB).addImm(ME);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// PowerPC 16 bit signed immediates are sign extended before use by the
|
|
// instruction. Therefore, we can only split up an add of a reg with a 32 bit
|
|
// immediate into addis and addi if the sign bit of the low 16 bits is cleared
|
|
// so that for register A, const imm X, we don't end up with
|
|
// A + XXXX0000 + FFFFXXXX.
|
|
bool WontSignExtend = (0 == (Op1->getRawValue() & 0x8000));
|
|
|
|
// For Add, Sub, and SubF the instruction takes a signed immediate. For And,
|
|
// Or, and Xor, the instruction takes an unsigned immediate. There is no
|
|
// shifted immediate form of SubF so disallow its opcode for those constants.
|
|
if (canUseAsImmediateForOpcode(Op1, Opcode, false)) {
|
|
if (Opcode < 2 || Opcode == 5)
|
|
BuildMI(*MBB, IP, ImmOpTab[0][Opcode], 2, DestReg).addReg(Op0Reg)
|
|
.addSImm(Op1->getRawValue());
|
|
else
|
|
BuildMI(*MBB, IP, ImmOpTab[0][Opcode], 2, DestReg).addReg(Op0Reg)
|
|
.addZImm(Op1->getRawValue());
|
|
} else if (canUseAsImmediateForOpcode(Op1, Opcode, true) && (Opcode < 5)) {
|
|
if (Opcode < 2)
|
|
BuildMI(*MBB, IP, ImmOpTab[1][Opcode], 2, DestReg).addReg(Op0Reg)
|
|
.addSImm(Op1->getRawValue() >> 16);
|
|
else
|
|
BuildMI(*MBB, IP, ImmOpTab[1][Opcode], 2, DestReg).addReg(Op0Reg)
|
|
.addZImm(Op1->getRawValue() >> 16);
|
|
} else if ((Opcode < 2 && WontSignExtend) || Opcode == 3 || Opcode == 4) {
|
|
unsigned TmpReg = makeAnotherReg(Op1->getType());
|
|
if (Opcode < 2) {
|
|
BuildMI(*MBB, IP, ImmOpTab[1][Opcode], 2, TmpReg).addReg(Op0Reg)
|
|
.addSImm(Op1->getRawValue() >> 16);
|
|
BuildMI(*MBB, IP, ImmOpTab[0][Opcode], 2, DestReg).addReg(TmpReg)
|
|
.addSImm(Op1->getRawValue());
|
|
} else {
|
|
BuildMI(*MBB, IP, ImmOpTab[1][Opcode], 2, TmpReg).addReg(Op0Reg)
|
|
.addZImm(Op1->getRawValue() >> 16);
|
|
BuildMI(*MBB, IP, ImmOpTab[0][Opcode], 2, DestReg).addReg(TmpReg)
|
|
.addZImm(Op1->getRawValue());
|
|
}
|
|
} else {
|
|
unsigned Op1Reg = getReg(Op1, MBB, IP);
|
|
BuildMI(*MBB, IP, OpTab[Opcode], 2, DestReg).addReg(Op0Reg).addReg(Op1Reg);
|
|
}
|
|
}
|
|
|
|
/// emitSimpleBinaryOperation - Implement simple binary operators for integral
|
|
/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
|
|
/// Or, 4 for Xor.
|
|
///
|
|
void PPC32ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IP,
|
|
BinaryOperator *BO,
|
|
Value *Op0, Value *Op1,
|
|
unsigned OperatorClass,
|
|
unsigned DestReg) {
|
|
// Arithmetic and Bitwise operators
|
|
static const unsigned OpcodeTab[] = {
|
|
PPC::ADD, PPC::SUBF, PPC::AND, PPC::OR, PPC::XOR
|
|
};
|
|
static const unsigned LongOpTab[2][5] = {
|
|
{ PPC::ADDC, PPC::SUBFC, PPC::AND, PPC::OR, PPC::XOR },
|
|
{ PPC::ADDE, PPC::SUBFE, PPC::AND, PPC::OR, PPC::XOR }
|
|
};
|
|
|
|
unsigned Class = getClassB(Op0->getType());
|
|
|
|
if (Class == cFP32 || Class == cFP64) {
|
|
assert(OperatorClass < 2 && "No logical ops for FP!");
|
|
emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg);
|
|
return;
|
|
}
|
|
|
|
if (Op0->getType() == Type::BoolTy) {
|
|
if (OperatorClass == 3)
|
|
// If this is an or of two isnan's, emit an FP comparison directly instead
|
|
// of or'ing two isnan's together.
|
|
if (Value *LHS = dyncastIsNan(Op0))
|
|
if (Value *RHS = dyncastIsNan(Op1)) {
|
|
unsigned Op0Reg = getReg(RHS, MBB, IP), Op1Reg = getReg(LHS, MBB, IP);
|
|
unsigned TmpReg = makeAnotherReg(Type::IntTy);
|
|
emitUCOM(MBB, IP, Op0Reg, Op1Reg);
|
|
BuildMI(*MBB, IP, PPC::MFCR, TmpReg);
|
|
BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(TmpReg).addImm(4)
|
|
.addImm(31).addImm(31);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Special case: op <const int>, Reg
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0))
|
|
if (Class != cLong) {
|
|
unsigned Opcode = (OperatorClass == 1) ? 5 : OperatorClass;
|
|
unsigned Op1r = getReg(Op1, MBB, IP);
|
|
emitBinaryConstOperation(MBB, IP, Op1r, CI, Opcode, DestReg);
|
|
return;
|
|
}
|
|
// Special case: op Reg, <const int>
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1))
|
|
if (Class != cLong) {
|
|
if (emitBitfieldInsert(BO, DestReg))
|
|
return;
|
|
|
|
unsigned Op0r = getReg(Op0, MBB, IP);
|
|
emitBinaryConstOperation(MBB, IP, Op0r, CI, OperatorClass, DestReg);
|
|
return;
|
|
}
|
|
|
|
// We couldn't generate an immediate variant of the op, load both halves into
|
|
// registers and emit the appropriate opcode.
|
|
unsigned Op0r = getReg(Op0, MBB, IP);
|
|
unsigned Op1r = getReg(Op1, MBB, IP);
|
|
|
|
// Subtracts have their operands swapped
|
|
if (OperatorClass == 1) {
|
|
if (Class != cLong) {
|
|
BuildMI(*MBB, IP, PPC::SUBF, 2, DestReg).addReg(Op1r).addReg(Op0r);
|
|
} else {
|
|
BuildMI(*MBB, IP, PPC::SUBFC, 2, DestReg+1).addReg(Op1r+1).addReg(Op0r+1);
|
|
BuildMI(*MBB, IP, PPC::SUBFE, 2, DestReg).addReg(Op1r).addReg(Op0r);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (Class != cLong) {
|
|
unsigned Opcode = OpcodeTab[OperatorClass];
|
|
BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
|
|
} else {
|
|
BuildMI(*MBB, IP, LongOpTab[0][OperatorClass], 2, DestReg+1).addReg(Op0r+1)
|
|
.addReg(Op1r+1);
|
|
BuildMI(*MBB, IP, LongOpTab[1][OperatorClass], 2, DestReg).addReg(Op0r)
|
|
.addReg(Op1r);
|
|
}
|
|
return;
|
|
}
|
|
|
|
/// doMultiply - Emit appropriate instructions to multiply together the
|
|
/// Values Op0 and Op1, and put the result in DestReg.
|
|
///
|
|
void PPC32ISel::doMultiply(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IP,
|
|
unsigned DestReg, Value *Op0, Value *Op1) {
|
|
unsigned Class0 = getClass(Op0->getType());
|
|
unsigned Class1 = getClass(Op1->getType());
|
|
|
|
unsigned Op0r = getReg(Op0, MBB, IP);
|
|
unsigned Op1r = getReg(Op1, MBB, IP);
|
|
|
|
// 64 x 64 -> 64
|
|
if (Class0 == cLong && Class1 == cLong) {
|
|
unsigned Tmp1 = makeAnotherReg(Type::IntTy);
|
|
unsigned Tmp2 = makeAnotherReg(Type::IntTy);
|
|
unsigned Tmp3 = makeAnotherReg(Type::IntTy);
|
|
unsigned Tmp4 = makeAnotherReg(Type::IntTy);
|
|
BuildMI(*MBB, IP, PPC::MULHWU, 2, Tmp1).addReg(Op0r+1).addReg(Op1r+1);
|
|
BuildMI(*MBB, IP, PPC::MULLW, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
|
|
BuildMI(*MBB, IP, PPC::MULLW, 2, Tmp2).addReg(Op0r+1).addReg(Op1r);
|
|
BuildMI(*MBB, IP, PPC::ADD, 2, Tmp3).addReg(Tmp1).addReg(Tmp2);
|
|
BuildMI(*MBB, IP, PPC::MULLW, 2, Tmp4).addReg(Op0r).addReg(Op1r+1);
|
|
BuildMI(*MBB, IP, PPC::ADD, 2, DestReg).addReg(Tmp3).addReg(Tmp4);
|
|
return;
|
|
}
|
|
|
|
// 64 x 32 or less, promote 32 to 64 and do a 64 x 64
|
|
if (Class0 == cLong && Class1 <= cInt) {
|
|
unsigned Tmp0 = makeAnotherReg(Type::IntTy);
|
|
unsigned Tmp1 = makeAnotherReg(Type::IntTy);
|
|
unsigned Tmp2 = makeAnotherReg(Type::IntTy);
|
|
unsigned Tmp3 = makeAnotherReg(Type::IntTy);
|
|
unsigned Tmp4 = makeAnotherReg(Type::IntTy);
|
|
if (Op1->getType()->isSigned())
|
|
BuildMI(*MBB, IP, PPC::SRAWI, 2, Tmp0).addReg(Op1r).addImm(31);
|
|
else
|
|
BuildMI(*MBB, IP, PPC::LI, 2, Tmp0).addSImm(0);
|
|
BuildMI(*MBB, IP, PPC::MULHWU, 2, Tmp1).addReg(Op0r+1).addReg(Op1r);
|
|
BuildMI(*MBB, IP, PPC::MULLW, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r);
|
|
BuildMI(*MBB, IP, PPC::MULLW, 2, Tmp2).addReg(Op0r+1).addReg(Tmp0);
|
|
BuildMI(*MBB, IP, PPC::ADD, 2, Tmp3).addReg(Tmp1).addReg(Tmp2);
|
|
BuildMI(*MBB, IP, PPC::MULLW, 2, Tmp4).addReg(Op0r).addReg(Op1r);
|
|
BuildMI(*MBB, IP, PPC::ADD, 2, DestReg).addReg(Tmp3).addReg(Tmp4);
|
|
return;
|
|
}
|
|
|
|
// 32 x 32 -> 32
|
|
if (Class0 <= cInt && Class1 <= cInt) {
|
|
BuildMI(*MBB, IP, PPC::MULLW, 2, DestReg).addReg(Op0r).addReg(Op1r);
|
|
return;
|
|
}
|
|
|
|
assert(0 && "doMultiply cannot operate on unknown type!");
|
|
}
|
|
|
|
/// doMultiplyConst - This method will multiply the value in Op0 by the
|
|
/// value of the ContantInt *CI
|
|
void PPC32ISel::doMultiplyConst(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IP,
|
|
unsigned DestReg, Value *Op0, ConstantInt *CI) {
|
|
unsigned Class = getClass(Op0->getType());
|
|
|
|
// Mul op0, 0 ==> 0
|
|
if (CI->isNullValue()) {
|
|
BuildMI(*MBB, IP, PPC::LI, 1, DestReg).addSImm(0);
|
|
if (Class == cLong)
|
|
BuildMI(*MBB, IP, PPC::LI, 1, DestReg+1).addSImm(0);
|
|
return;
|
|
}
|
|
|
|
// Mul op0, 1 ==> op0
|
|
if (CI->equalsInt(1)) {
|
|
unsigned Op0r = getReg(Op0, MBB, IP);
|
|
BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(Op0r).addReg(Op0r);
|
|
if (Class == cLong)
|
|
BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(Op0r+1).addReg(Op0r+1);
|
|
return;
|
|
}
|
|
|
|
// If the element size is exactly a power of 2, use a shift to get it.
|
|
if (unsigned Shift = ExactLog2(CI->getRawValue())) {
|
|
ConstantUInt *ShiftCI = ConstantUInt::get(Type::UByteTy, Shift);
|
|
emitShiftOperation(MBB, IP, Op0, ShiftCI, true, Op0->getType(), 0, DestReg);
|
|
return;
|
|
}
|
|
|
|
// If 32 bits or less and immediate is in right range, emit mul by immediate
|
|
if (Class == cByte || Class == cShort || Class == cInt) {
|
|
if (canUseAsImmediateForOpcode(CI, 0, false)) {
|
|
unsigned Op0r = getReg(Op0, MBB, IP);
|
|
unsigned imm = CI->getRawValue() & 0xFFFF;
|
|
BuildMI(*MBB, IP, PPC::MULLI, 2, DestReg).addReg(Op0r).addSImm(imm);
|
|
return;
|
|
}
|
|
}
|
|
|
|
doMultiply(MBB, IP, DestReg, Op0, CI);
|
|
}
|
|
|
|
void PPC32ISel::visitMul(BinaryOperator &I) {
|
|
unsigned ResultReg = getReg(I);
|
|
|
|
Value *Op0 = I.getOperand(0);
|
|
Value *Op1 = I.getOperand(1);
|
|
|
|
MachineBasicBlock::iterator IP = BB->end();
|
|
emitMultiply(BB, IP, Op0, Op1, ResultReg);
|
|
}
|
|
|
|
void PPC32ISel::emitMultiply(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IP,
|
|
Value *Op0, Value *Op1, unsigned DestReg) {
|
|
TypeClass Class = getClass(Op0->getType());
|
|
|
|
switch (Class) {
|
|
case cByte:
|
|
case cShort:
|
|
case cInt:
|
|
case cLong:
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
|
|
doMultiplyConst(MBB, IP, DestReg, Op0, CI);
|
|
} else {
|
|
doMultiply(MBB, IP, DestReg, Op0, Op1);
|
|
}
|
|
return;
|
|
case cFP32:
|
|
case cFP64:
|
|
emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg);
|
|
return;
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
/// visitDivRem - Handle division and remainder instructions... these
|
|
/// instruction both require the same instructions to be generated, they just
|
|
/// select the result from a different register. Note that both of these
|
|
/// instructions work differently for signed and unsigned operands.
|
|
///
|
|
void PPC32ISel::visitDivRem(BinaryOperator &I) {
|
|
unsigned ResultReg = getReg(I);
|
|
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
|
|
|
|
MachineBasicBlock::iterator IP = BB->end();
|
|
emitDivRemOperation(BB, IP, Op0, Op1, I.getOpcode() == Instruction::Div,
|
|
ResultReg);
|
|
}
|
|
|
|
void PPC32ISel::emitDivRemOperation(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IP,
|
|
Value *Op0, Value *Op1, bool isDiv,
|
|
unsigned ResultReg) {
|
|
const Type *Ty = Op0->getType();
|
|
unsigned Class = getClass(Ty);
|
|
switch (Class) {
|
|
case cFP32:
|
|
if (isDiv) {
|
|
// Floating point divide...
|
|
emitBinaryFPOperation(MBB, IP, Op0, Op1, 3, ResultReg);
|
|
return;
|
|
} else {
|
|
// Floating point remainder via fmodf(float x, float y);
|
|
unsigned Op0Reg = getReg(Op0, MBB, IP);
|
|
unsigned Op1Reg = getReg(Op1, MBB, IP);
|
|
MachineInstr *TheCall =
|
|
BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(fmodfFn, true);
|
|
std::vector<ValueRecord> Args;
|
|
Args.push_back(ValueRecord(Op0Reg, Type::FloatTy));
|
|
Args.push_back(ValueRecord(Op1Reg, Type::FloatTy));
|
|
doCall(ValueRecord(ResultReg, Type::FloatTy), TheCall, Args, false);
|
|
}
|
|
return;
|
|
case cFP64:
|
|
if (isDiv) {
|
|
// Floating point divide...
|
|
emitBinaryFPOperation(MBB, IP, Op0, Op1, 3, ResultReg);
|
|
return;
|
|
} else {
|
|
// Floating point remainder via fmod(double x, double y);
|
|
unsigned Op0Reg = getReg(Op0, MBB, IP);
|
|
unsigned Op1Reg = getReg(Op1, MBB, IP);
|
|
MachineInstr *TheCall =
|
|
BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(fmodFn, true);
|
|
std::vector<ValueRecord> Args;
|
|
Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
|
|
Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
|
|
doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args, false);
|
|
}
|
|
return;
|
|
case cLong: {
|
|
static Function* const Funcs[] =
|
|
{ __moddi3Fn, __divdi3Fn, __umoddi3Fn, __udivdi3Fn };
|
|
unsigned Op0Reg = getReg(Op0, MBB, IP);
|
|
unsigned Op1Reg = getReg(Op1, MBB, IP);
|
|
unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
|
|
MachineInstr *TheCall =
|
|
BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(Funcs[NameIdx], true);
|
|
|
|
std::vector<ValueRecord> Args;
|
|
Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
|
|
Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
|
|
doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args, false);
|
|
return;
|
|
}
|
|
case cByte: case cShort: case cInt:
|
|
break; // Small integrals, handled below...
|
|
default: assert(0 && "Unknown class!");
|
|
}
|
|
|
|
// Special case signed division by power of 2.
|
|
if (isDiv)
|
|
if (ConstantSInt *CI = dyn_cast<ConstantSInt>(Op1)) {
|
|
assert(Class != cLong && "This doesn't handle 64-bit divides!");
|
|
int V = CI->getValue();
|
|
|
|
if (V == 1) { // X /s 1 => X
|
|
unsigned Op0Reg = getReg(Op0, MBB, IP);
|
|
BuildMI(*MBB, IP, PPC::OR, 2, ResultReg).addReg(Op0Reg).addReg(Op0Reg);
|
|
return;
|
|
}
|
|
|
|
if (V == -1) { // X /s -1 => -X
|
|
unsigned Op0Reg = getReg(Op0, MBB, IP);
|
|
BuildMI(*MBB, IP, PPC::NEG, 1, ResultReg).addReg(Op0Reg);
|
|
return;
|
|
}
|
|
|
|
unsigned log2V = ExactLog2(V);
|
|
if (log2V != 0 && Ty->isSigned()) {
|
|
unsigned Op0Reg = getReg(Op0, MBB, IP);
|
|
unsigned TmpReg = makeAnotherReg(Op0->getType());
|
|
|
|
BuildMI(*MBB, IP, PPC::SRAWI, 2, TmpReg).addReg(Op0Reg).addImm(log2V);
|
|
BuildMI(*MBB, IP, PPC::ADDZE, 1, ResultReg).addReg(TmpReg);
|
|
return;
|
|
}
|
|
}
|
|
|
|
unsigned Op0Reg = getReg(Op0, MBB, IP);
|
|
|
|
if (isDiv) {
|
|
unsigned Op1Reg = getReg(Op1, MBB, IP);
|
|
unsigned Opcode = Ty->isSigned() ? PPC::DIVW : PPC::DIVWU;
|
|
BuildMI(*MBB, IP, Opcode, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
|
|
} else { // Remainder
|
|
// FIXME: don't load the CI part of a CI divide twice
|
|
ConstantInt *CI = dyn_cast<ConstantInt>(Op1);
|
|
unsigned TmpReg1 = makeAnotherReg(Op0->getType());
|
|
unsigned TmpReg2 = makeAnotherReg(Op0->getType());
|
|
emitDivRemOperation(MBB, IP, Op0, Op1, true, TmpReg1);
|
|
if (CI && canUseAsImmediateForOpcode(CI, 0, false)) {
|
|
BuildMI(*MBB, IP, PPC::MULLI, 2, TmpReg2).addReg(TmpReg1)
|
|
.addSImm(CI->getRawValue());
|
|
} else {
|
|
unsigned Op1Reg = getReg(Op1, MBB, IP);
|
|
BuildMI(*MBB, IP, PPC::MULLW, 2, TmpReg2).addReg(TmpReg1).addReg(Op1Reg);
|
|
}
|
|
BuildMI(*MBB, IP, PPC::SUBF, 2, ResultReg).addReg(TmpReg2).addReg(Op0Reg);
|
|
}
|
|
}
|
|
|
|
|
|
/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
|
|
/// for constant immediate shift values, and for constant immediate
|
|
/// shift values equal to 1. Even the general case is sort of special,
|
|
/// because the shift amount has to be in CL, not just any old register.
|
|
///
|
|
void PPC32ISel::visitShiftInst(ShiftInst &I) {
|
|
if (std::find(SkipList.begin(), SkipList.end(), &I) != SkipList.end())
|
|
return;
|
|
|
|
MachineBasicBlock::iterator IP = BB->end();
|
|
emitShiftOperation(BB, IP, I.getOperand(0), I.getOperand(1),
|
|
I.getOpcode() == Instruction::Shl, I.getType(),
|
|
&I, getReg(I));
|
|
}
|
|
|
|
/// emitShiftOperation - Common code shared between visitShiftInst and
|
|
/// constant expression support.
|
|
///
|
|
void PPC32ISel::emitShiftOperation(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IP,
|
|
Value *Op, Value *ShiftAmount,
|
|
bool isLeftShift, const Type *ResultTy,
|
|
ShiftInst *SI, unsigned DestReg) {
|
|
bool isSigned = ResultTy->isSigned ();
|
|
unsigned Class = getClass (ResultTy);
|
|
|
|
// Longs, as usual, are handled specially...
|
|
if (Class == cLong) {
|
|
unsigned SrcReg = getReg (Op, MBB, IP);
|
|
// If we have a constant shift, we can generate much more efficient code
|
|
// than for a variable shift by using the rlwimi instruction.
|
|
if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
|
|
unsigned Amount = CUI->getValue();
|
|
if (Amount == 0) {
|
|
BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
|
|
BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1)
|
|
.addReg(SrcReg+1).addReg(SrcReg+1);
|
|
|
|
} else if (Amount < 32) {
|
|
unsigned TempReg = makeAnotherReg(ResultTy);
|
|
if (isLeftShift) {
|
|
BuildMI(*MBB, IP, PPC::RLWINM, 4, TempReg).addReg(SrcReg)
|
|
.addImm(Amount).addImm(0).addImm(31-Amount);
|
|
BuildMI(*MBB, IP, PPC::RLWIMI, 5, DestReg).addReg(TempReg)
|
|
.addReg(SrcReg+1).addImm(Amount).addImm(32-Amount).addImm(31);
|
|
BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
|
|
.addImm(Amount).addImm(0).addImm(31-Amount);
|
|
} else {
|
|
BuildMI(*MBB, IP, PPC::RLWINM, 4, TempReg).addReg(SrcReg+1)
|
|
.addImm(32-Amount).addImm(Amount).addImm(31);
|
|
BuildMI(*MBB, IP, PPC::RLWIMI, 5, DestReg+1).addReg(TempReg)
|
|
.addReg(SrcReg).addImm(32-Amount).addImm(0).addImm(Amount-1);
|
|
if (isSigned) {
|
|
BuildMI(*MBB, IP, PPC::SRAWI, 2, DestReg).addReg(SrcReg)
|
|
.addImm(Amount);
|
|
} else {
|
|
BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
|
|
.addImm(32-Amount).addImm(Amount).addImm(31);
|
|
}
|
|
}
|
|
} else { // Shifting more than 32 bits
|
|
Amount -= 32;
|
|
if (isLeftShift) {
|
|
if (Amount != 0) {
|
|
BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg+1)
|
|
.addImm(Amount).addImm(0).addImm(31-Amount);
|
|
} else {
|
|
BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg+1)
|
|
.addReg(SrcReg+1);
|
|
}
|
|
BuildMI(*MBB, IP, PPC::LI, 1, DestReg+1).addSImm(0);
|
|
} else {
|
|
if (Amount != 0) {
|
|
if (isSigned)
|
|
BuildMI(*MBB, IP, PPC::SRAWI, 2, DestReg+1).addReg(SrcReg)
|
|
.addImm(Amount);
|
|
else
|
|
BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg+1).addReg(SrcReg)
|
|
.addImm(32-Amount).addImm(Amount).addImm(31);
|
|
} else {
|
|
BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg)
|
|
.addReg(SrcReg);
|
|
}
|
|
if (isSigned)
|
|
BuildMI(*MBB, IP, PPC::SRAWI, 2, DestReg).addReg(SrcReg)
|
|
.addImm(31);
|
|
else
|
|
BuildMI(*MBB, IP,PPC::LI, 1, DestReg).addSImm(0);
|
|
}
|
|
}
|
|
} else {
|
|
unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
|
|
unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
|
|
unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
|
|
unsigned TmpReg4 = makeAnotherReg(Type::IntTy);
|
|
unsigned TmpReg5 = makeAnotherReg(Type::IntTy);
|
|
unsigned TmpReg6 = makeAnotherReg(Type::IntTy);
|
|
unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
|
|
|
|
if (isLeftShift) {
|
|
BuildMI(*MBB, IP, PPC::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
|
|
.addSImm(32);
|
|
BuildMI(*MBB, IP, PPC::SLW, 2, TmpReg2).addReg(SrcReg)
|
|
.addReg(ShiftAmountReg);
|
|
BuildMI(*MBB, IP, PPC::SRW, 2, TmpReg3).addReg(SrcReg+1)
|
|
.addReg(TmpReg1);
|
|
BuildMI(*MBB, IP, PPC::OR, 2,TmpReg4).addReg(TmpReg2).addReg(TmpReg3);
|
|
BuildMI(*MBB, IP, PPC::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
|
|
.addSImm(-32);
|
|
BuildMI(*MBB, IP, PPC::SLW, 2, TmpReg6).addReg(SrcReg+1)
|
|
.addReg(TmpReg5);
|
|
BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(TmpReg4)
|
|
.addReg(TmpReg6);
|
|
BuildMI(*MBB, IP, PPC::SLW, 2, DestReg+1).addReg(SrcReg+1)
|
|
.addReg(ShiftAmountReg);
|
|
} else {
|
|
if (isSigned) { // shift right algebraic
|
|
MachineBasicBlock *TmpMBB =new MachineBasicBlock(BB->getBasicBlock());
|
|
MachineBasicBlock *PhiMBB =new MachineBasicBlock(BB->getBasicBlock());
|
|
MachineBasicBlock *OldMBB = BB;
|
|
ilist<MachineBasicBlock>::iterator It = BB; ++It;
|
|
F->getBasicBlockList().insert(It, TmpMBB);
|
|
F->getBasicBlockList().insert(It, PhiMBB);
|
|
BB->addSuccessor(TmpMBB);
|
|
BB->addSuccessor(PhiMBB);
|
|
|
|
BuildMI(*MBB, IP, PPC::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
|
|
.addSImm(32);
|
|
BuildMI(*MBB, IP, PPC::SRW, 2, TmpReg2).addReg(SrcReg+1)
|
|
.addReg(ShiftAmountReg);
|
|
BuildMI(*MBB, IP, PPC::SLW, 2, TmpReg3).addReg(SrcReg)
|
|
.addReg(TmpReg1);
|
|
BuildMI(*MBB, IP, PPC::OR, 2, TmpReg4).addReg(TmpReg2)
|
|
.addReg(TmpReg3);
|
|
BuildMI(*MBB, IP, PPC::ADDICo, 2, TmpReg5).addReg(ShiftAmountReg)
|
|
.addSImm(-32);
|
|
BuildMI(*MBB, IP, PPC::SRAW, 2, TmpReg6).addReg(SrcReg)
|
|
.addReg(TmpReg5);
|
|
BuildMI(*MBB, IP, PPC::SRAW, 2, DestReg).addReg(SrcReg)
|
|
.addReg(ShiftAmountReg);
|
|
BuildMI(*MBB, IP, PPC::BLE, 2).addReg(PPC::CR0).addMBB(PhiMBB);
|
|
|
|
// OrMBB:
|
|
// Select correct least significant half if the shift amount > 32
|
|
BB = TmpMBB;
|
|
unsigned OrReg = makeAnotherReg(Type::IntTy);
|
|
BuildMI(BB, PPC::OR, 2, OrReg).addReg(TmpReg6).addReg(TmpReg6);
|
|
TmpMBB->addSuccessor(PhiMBB);
|
|
|
|
BB = PhiMBB;
|
|
BuildMI(BB, PPC::PHI, 4, DestReg+1).addReg(TmpReg4).addMBB(OldMBB)
|
|
.addReg(OrReg).addMBB(TmpMBB);
|
|
} else { // shift right logical
|
|
BuildMI(*MBB, IP, PPC::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
|
|
.addSImm(32);
|
|
BuildMI(*MBB, IP, PPC::SRW, 2, TmpReg2).addReg(SrcReg+1)
|
|
.addReg(ShiftAmountReg);
|
|
BuildMI(*MBB, IP, PPC::SLW, 2, TmpReg3).addReg(SrcReg)
|
|
.addReg(TmpReg1);
|
|
BuildMI(*MBB, IP, PPC::OR, 2, TmpReg4).addReg(TmpReg2)
|
|
.addReg(TmpReg3);
|
|
BuildMI(*MBB, IP, PPC::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
|
|
.addSImm(-32);
|
|
BuildMI(*MBB, IP, PPC::SRW, 2, TmpReg6).addReg(SrcReg)
|
|
.addReg(TmpReg5);
|
|
BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(TmpReg4)
|
|
.addReg(TmpReg6);
|
|
BuildMI(*MBB, IP, PPC::SRW, 2, DestReg).addReg(SrcReg)
|
|
.addReg(ShiftAmountReg);
|
|
}
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
|
|
// The shift amount is constant, guaranteed to be a ubyte. Get its value.
|
|
assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
|
|
unsigned Amount = CUI->getValue();
|
|
|
|
// If this is a shift with one use, and that use is an And instruction,
|
|
// then attempt to emit a bitfield operation.
|
|
if (SI && emitBitfieldInsert(SI, DestReg))
|
|
return;
|
|
|
|
unsigned SrcReg = getReg (Op, MBB, IP);
|
|
if (Amount == 0) {
|
|
BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
|
|
} else if (isLeftShift) {
|
|
BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
|
|
.addImm(Amount).addImm(0).addImm(31-Amount);
|
|
} else {
|
|
if (isSigned) {
|
|
BuildMI(*MBB, IP, PPC::SRAWI,2,DestReg).addReg(SrcReg).addImm(Amount);
|
|
} else {
|
|
BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
|
|
.addImm(32-Amount).addImm(Amount).addImm(31);
|
|
}
|
|
}
|
|
} else { // The shift amount is non-constant.
|
|
unsigned SrcReg = getReg (Op, MBB, IP);
|
|
unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
|
|
|
|
if (isLeftShift) {
|
|
BuildMI(*MBB, IP, PPC::SLW, 2, DestReg).addReg(SrcReg)
|
|
.addReg(ShiftAmountReg);
|
|
} else {
|
|
BuildMI(*MBB, IP, isSigned ? PPC::SRAW : PPC::SRW, 2, DestReg)
|
|
.addReg(SrcReg).addReg(ShiftAmountReg);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// LoadNeedsSignExtend - On PowerPC, there is no load byte with sign extend.
|
|
/// Therefore, if this is a byte load and the destination type is signed, we
|
|
/// would normally need to also emit a sign extend instruction after the load.
|
|
/// However, store instructions don't care whether a signed type was sign
|
|
/// extended across a whole register. Also, a SetCC instruction will emit its
|
|
/// own sign extension to force the value into the appropriate range, so we
|
|
/// need not emit it here. Ideally, this kind of thing wouldn't be necessary
|
|
/// once LLVM's type system is improved.
|
|
static bool LoadNeedsSignExtend(LoadInst &LI) {
|
|
if (cByte == getClassB(LI.getType()) && LI.getType()->isSigned()) {
|
|
bool AllUsesAreStoresOrSetCC = true;
|
|
for (Value::use_iterator I = LI.use_begin(), E = LI.use_end(); I != E; ++I){
|
|
if (isa<SetCondInst>(*I))
|
|
continue;
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(*I))
|
|
if (cByte == getClassB(SI->getOperand(0)->getType()))
|
|
continue;
|
|
AllUsesAreStoresOrSetCC = false;
|
|
break;
|
|
}
|
|
if (!AllUsesAreStoresOrSetCC)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// visitLoadInst - Implement LLVM load instructions. Pretty straightforward
|
|
/// mapping of LLVM classes to PPC load instructions, with the exception of
|
|
/// signed byte loads, which need a sign extension following them.
|
|
///
|
|
void PPC32ISel::visitLoadInst(LoadInst &I) {
|
|
// Immediate opcodes, for reg+imm addressing
|
|
static const unsigned ImmOpcodes[] = {
|
|
PPC::LBZ, PPC::LHZ, PPC::LWZ,
|
|
PPC::LFS, PPC::LFD, PPC::LWZ
|
|
};
|
|
// Indexed opcodes, for reg+reg addressing
|
|
static const unsigned IdxOpcodes[] = {
|
|
PPC::LBZX, PPC::LHZX, PPC::LWZX,
|
|
PPC::LFSX, PPC::LFDX, PPC::LWZX
|
|
};
|
|
|
|
unsigned Class = getClassB(I.getType());
|
|
unsigned ImmOpcode = ImmOpcodes[Class];
|
|
unsigned IdxOpcode = IdxOpcodes[Class];
|
|
unsigned DestReg = getReg(I);
|
|
Value *SourceAddr = I.getOperand(0);
|
|
|
|
if (Class == cShort && I.getType()->isSigned()) ImmOpcode = PPC::LHA;
|
|
if (Class == cShort && I.getType()->isSigned()) IdxOpcode = PPC::LHAX;
|
|
|
|
// If this is a fixed size alloca, emit a load directly from the stack slot
|
|
// corresponding to it.
|
|
if (AllocaInst *AI = dyn_castFixedAlloca(SourceAddr)) {
|
|
unsigned FI = getFixedSizedAllocaFI(AI);
|
|
if (Class == cLong) {
|
|
addFrameReference(BuildMI(BB, ImmOpcode, 2, DestReg), FI);
|
|
addFrameReference(BuildMI(BB, ImmOpcode, 2, DestReg+1), FI, 4);
|
|
} else if (LoadNeedsSignExtend(I)) {
|
|
unsigned TmpReg = makeAnotherReg(I.getType());
|
|
addFrameReference(BuildMI(BB, ImmOpcode, 2, TmpReg), FI);
|
|
BuildMI(BB, PPC::EXTSB, 1, DestReg).addReg(TmpReg);
|
|
} else {
|
|
addFrameReference(BuildMI(BB, ImmOpcode, 2, DestReg), FI);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// If the offset fits in 16 bits, we can emit a reg+imm load, otherwise, we
|
|
// use the index from the FoldedGEP struct and use reg+reg addressing.
|
|
if (GetElementPtrInst *GEPI = canFoldGEPIntoLoadOrStore(SourceAddr)) {
|
|
|
|
// Generate the code for the GEP and get the components of the folded GEP
|
|
emitGEPOperation(BB, BB->end(), GEPI, true);
|
|
unsigned baseReg = GEPMap[GEPI].base;
|
|
unsigned indexReg = GEPMap[GEPI].index;
|
|
ConstantSInt *offset = GEPMap[GEPI].offset;
|
|
|
|
if (Class != cLong) {
|
|
unsigned TmpReg = LoadNeedsSignExtend(I) ? makeAnotherReg(I.getType())
|
|
: DestReg;
|
|
if (indexReg == 0)
|
|
BuildMI(BB, ImmOpcode, 2, TmpReg).addSImm(offset->getValue())
|
|
.addReg(baseReg);
|
|
else
|
|
BuildMI(BB, IdxOpcode, 2, TmpReg).addReg(indexReg).addReg(baseReg);
|
|
if (LoadNeedsSignExtend(I))
|
|
BuildMI(BB, PPC::EXTSB, 1, DestReg).addReg(TmpReg);
|
|
} else {
|
|
indexReg = (indexReg != 0) ? indexReg : getReg(offset);
|
|
unsigned indexPlus4 = makeAnotherReg(Type::IntTy);
|
|
BuildMI(BB, PPC::ADDI, 2, indexPlus4).addReg(indexReg).addSImm(4);
|
|
BuildMI(BB, IdxOpcode, 2, DestReg).addReg(indexReg).addReg(baseReg);
|
|
BuildMI(BB, IdxOpcode, 2, DestReg+1).addReg(indexPlus4).addReg(baseReg);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// The fallback case, where the load was from a source that could not be
|
|
// folded into the load instruction.
|
|
unsigned SrcAddrReg = getReg(SourceAddr);
|
|
|
|
if (Class == cLong) {
|
|
BuildMI(BB, ImmOpcode, 2, DestReg).addSImm(0).addReg(SrcAddrReg);
|
|
BuildMI(BB, ImmOpcode, 2, DestReg+1).addSImm(4).addReg(SrcAddrReg);
|
|
} else if (LoadNeedsSignExtend(I)) {
|
|
unsigned TmpReg = makeAnotherReg(I.getType());
|
|
BuildMI(BB, ImmOpcode, 2, TmpReg).addSImm(0).addReg(SrcAddrReg);
|
|
BuildMI(BB, PPC::EXTSB, 1, DestReg).addReg(TmpReg);
|
|
} else {
|
|
BuildMI(BB, ImmOpcode, 2, DestReg).addSImm(0).addReg(SrcAddrReg);
|
|
}
|
|
}
|
|
|
|
/// visitStoreInst - Implement LLVM store instructions
|
|
///
|
|
void PPC32ISel::visitStoreInst(StoreInst &I) {
|
|
// Immediate opcodes, for reg+imm addressing
|
|
static const unsigned ImmOpcodes[] = {
|
|
PPC::STB, PPC::STH, PPC::STW,
|
|
PPC::STFS, PPC::STFD, PPC::STW
|
|
};
|
|
// Indexed opcodes, for reg+reg addressing
|
|
static const unsigned IdxOpcodes[] = {
|
|
PPC::STBX, PPC::STHX, PPC::STWX,
|
|
PPC::STFSX, PPC::STFDX, PPC::STWX
|
|
};
|
|
|
|
Value *SourceAddr = I.getOperand(1);
|
|
const Type *ValTy = I.getOperand(0)->getType();
|
|
unsigned Class = getClassB(ValTy);
|
|
unsigned ImmOpcode = ImmOpcodes[Class];
|
|
unsigned IdxOpcode = IdxOpcodes[Class];
|
|
unsigned ValReg = getReg(I.getOperand(0));
|
|
|
|
// If this is a fixed size alloca, emit a store directly to the stack slot
|
|
// corresponding to it.
|
|
if (AllocaInst *AI = dyn_castFixedAlloca(SourceAddr)) {
|
|
unsigned FI = getFixedSizedAllocaFI(AI);
|
|
addFrameReference(BuildMI(BB, ImmOpcode, 3).addReg(ValReg), FI);
|
|
if (Class == cLong)
|
|
addFrameReference(BuildMI(BB, ImmOpcode, 3).addReg(ValReg+1), FI, 4);
|
|
return;
|
|
}
|
|
|
|
// If the offset fits in 16 bits, we can emit a reg+imm store, otherwise, we
|
|
// use the index from the FoldedGEP struct and use reg+reg addressing.
|
|
if (GetElementPtrInst *GEPI = canFoldGEPIntoLoadOrStore(SourceAddr)) {
|
|
// Generate the code for the GEP and get the components of the folded GEP
|
|
emitGEPOperation(BB, BB->end(), GEPI, true);
|
|
unsigned baseReg = GEPMap[GEPI].base;
|
|
unsigned indexReg = GEPMap[GEPI].index;
|
|
ConstantSInt *offset = GEPMap[GEPI].offset;
|
|
|
|
if (Class != cLong) {
|
|
if (indexReg == 0)
|
|
BuildMI(BB, ImmOpcode, 3).addReg(ValReg).addSImm(offset->getValue())
|
|
.addReg(baseReg);
|
|
else
|
|
BuildMI(BB, IdxOpcode, 3).addReg(ValReg).addReg(indexReg)
|
|
.addReg(baseReg);
|
|
} else {
|
|
indexReg = (indexReg != 0) ? indexReg : getReg(offset);
|
|
unsigned indexPlus4 = makeAnotherReg(Type::IntTy);
|
|
BuildMI(BB, PPC::ADDI, 2, indexPlus4).addReg(indexReg).addSImm(4);
|
|
BuildMI(BB, IdxOpcode, 3).addReg(ValReg).addReg(indexReg).addReg(baseReg);
|
|
BuildMI(BB, IdxOpcode, 3).addReg(ValReg+1).addReg(indexPlus4)
|
|
.addReg(baseReg);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// If the store address wasn't the only use of a GEP, we fall back to the
|
|
// standard path: store the ValReg at the value in AddressReg.
|
|
unsigned AddressReg = getReg(I.getOperand(1));
|
|
if (Class == cLong) {
|
|
BuildMI(BB, ImmOpcode, 3).addReg(ValReg).addSImm(0).addReg(AddressReg);
|
|
BuildMI(BB, ImmOpcode, 3).addReg(ValReg+1).addSImm(4).addReg(AddressReg);
|
|
return;
|
|
}
|
|
BuildMI(BB, ImmOpcode, 3).addReg(ValReg).addSImm(0).addReg(AddressReg);
|
|
}
|
|
|
|
|
|
/// visitCastInst - Here we have various kinds of copying with or without sign
|
|
/// extension going on.
|
|
///
|
|
void PPC32ISel::visitCastInst(CastInst &CI) {
|
|
Value *Op = CI.getOperand(0);
|
|
|
|
unsigned SrcClass = getClassB(Op->getType());
|
|
unsigned DestClass = getClassB(CI.getType());
|
|
|
|
// Noop casts are not emitted: getReg will return the source operand as the
|
|
// register to use for any uses of the noop cast.
|
|
if (DestClass == SrcClass) return;
|
|
|
|
// If this is a cast from a 32-bit integer to a Long type, and the only uses
|
|
// of the cast are GEP instructions, then the cast does not need to be
|
|
// generated explicitly, it will be folded into the GEP.
|
|
if (DestClass == cLong && SrcClass == cInt) {
|
|
bool AllUsesAreGEPs = true;
|
|
for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
|
|
if (!isa<GetElementPtrInst>(*I)) {
|
|
AllUsesAreGEPs = false;
|
|
break;
|
|
}
|
|
if (AllUsesAreGEPs) return;
|
|
}
|
|
|
|
unsigned DestReg = getReg(CI);
|
|
MachineBasicBlock::iterator MI = BB->end();
|
|
|
|
// If this is a cast from an integer type to a ubyte, with one use where the
|
|
// use is the shift amount argument of a shift instruction, just emit a move
|
|
// instead (since the shift instruction will only look at the low 5 bits
|
|
// regardless of how it is sign extended)
|
|
if (CI.getType() == Type::UByteTy && SrcClass <= cInt && CI.hasOneUse()) {
|
|
ShiftInst *SI = dyn_cast<ShiftInst>(*(CI.use_begin()));
|
|
if (SI && (SI->getOperand(1) == &CI)) {
|
|
unsigned SrcReg = getReg(Op, BB, MI);
|
|
BuildMI(*BB, MI, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If this is a cast from an byte, short, or int to an integer type of equal
|
|
// or lesser width, and all uses of the cast are store instructions then dont
|
|
// emit them, as the store instruction will implicitly not store the zero or
|
|
// sign extended bytes.
|
|
if (SrcClass <= cInt && SrcClass >= DestClass) {
|
|
bool AllUsesAreStores = true;
|
|
for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
|
|
if (!isa<StoreInst>(*I)) {
|
|
AllUsesAreStores = false;
|
|
break;
|
|
}
|
|
// Turn this cast directly into a move instruction, which the register
|
|
// allocator will deal with.
|
|
if (AllUsesAreStores) {
|
|
unsigned SrcReg = getReg(Op, BB, MI);
|
|
BuildMI(*BB, MI, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
|
|
return;
|
|
}
|
|
}
|
|
emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
|
|
}
|
|
|
|
/// emitCastOperation - Common code shared between visitCastInst and constant
|
|
/// expression cast support.
|
|
///
|
|
void PPC32ISel::emitCastOperation(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IP,
|
|
Value *Src, const Type *DestTy,
|
|
unsigned DestReg) {
|
|
const Type *SrcTy = Src->getType();
|
|
unsigned SrcClass = getClassB(SrcTy);
|
|
unsigned DestClass = getClassB(DestTy);
|
|
unsigned SrcReg = getReg(Src, MBB, IP);
|
|
|
|
// Implement casts from bool to integer types as a move operation
|
|
if (SrcTy == Type::BoolTy) {
|
|
switch (DestClass) {
|
|
case cByte:
|
|
case cShort:
|
|
case cInt:
|
|
BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
|
|
return;
|
|
case cLong:
|
|
BuildMI(*MBB, IP, PPC::LI, 1, DestReg).addImm(0);
|
|
BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg).addReg(SrcReg);
|
|
return;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Implement casts to bool by using compare on the operand followed by set if
|
|
// not zero on the result.
|
|
if (DestTy == Type::BoolTy) {
|
|
switch (SrcClass) {
|
|
case cByte:
|
|
case cShort:
|
|
case cInt: {
|
|
unsigned TmpReg = makeAnotherReg(Type::IntTy);
|
|
BuildMI(*MBB, IP, PPC::ADDIC, 2, TmpReg).addReg(SrcReg).addSImm(-1);
|
|
BuildMI(*MBB, IP, PPC::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg);
|
|
break;
|
|
}
|
|
case cLong: {
|
|
unsigned TmpReg = makeAnotherReg(Type::IntTy);
|
|
unsigned SrcReg2 = makeAnotherReg(Type::IntTy);
|
|
BuildMI(*MBB, IP, PPC::OR, 2, SrcReg2).addReg(SrcReg).addReg(SrcReg+1);
|
|
BuildMI(*MBB, IP, PPC::ADDIC, 2, TmpReg).addReg(SrcReg2).addSImm(-1);
|
|
BuildMI(*MBB, IP, PPC::SUBFE, 2, DestReg).addReg(TmpReg)
|
|
.addReg(SrcReg2);
|
|
break;
|
|
}
|
|
case cFP32:
|
|
case cFP64:
|
|
unsigned TmpReg = makeAnotherReg(Type::IntTy);
|
|
unsigned ConstZero = getReg(ConstantFP::get(Type::DoubleTy, 0.0), BB, IP);
|
|
BuildMI(*MBB, IP, PPC::FCMPU, PPC::CR7).addReg(SrcReg).addReg(ConstZero);
|
|
BuildMI(*MBB, IP, PPC::MFCR, TmpReg);
|
|
BuildMI(*MBB, IP, PPC::RLWINM, DestReg).addReg(TmpReg).addImm(31)
|
|
.addImm(31).addImm(31);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Handle cast of Float -> Double
|
|
if (SrcClass == cFP32 && DestClass == cFP64) {
|
|
BuildMI(*MBB, IP, PPC::FMR, 1, DestReg).addReg(SrcReg);
|
|
return;
|
|
}
|
|
|
|
// Handle cast of Double -> Float
|
|
if (SrcClass == cFP64 && DestClass == cFP32) {
|
|
BuildMI(*MBB, IP, PPC::FRSP, 1, DestReg).addReg(SrcReg);
|
|
return;
|
|
}
|
|
|
|
// Handle casts from integer to floating point now...
|
|
if (DestClass == cFP32 || DestClass == cFP64) {
|
|
|
|
// Emit a library call for long to float conversion
|
|
if (SrcClass == cLong) {
|
|
Function *floatFn = (DestClass == cFP32) ? __floatdisfFn : __floatdidfFn;
|
|
if (SrcTy->isSigned()) {
|
|
std::vector<ValueRecord> Args;
|
|
Args.push_back(ValueRecord(SrcReg, SrcTy));
|
|
MachineInstr *TheCall =
|
|
BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(floatFn, true);
|
|
doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false);
|
|
} else {
|
|
std::vector<ValueRecord> CmpArgs, ClrArgs, SetArgs;
|
|
unsigned ZeroLong = getReg(ConstantUInt::get(SrcTy, 0));
|
|
unsigned CondReg = makeAnotherReg(Type::IntTy);
|
|
|
|
// Update machine-CFG edges
|
|
MachineBasicBlock *ClrMBB = new MachineBasicBlock(BB->getBasicBlock());
|
|
MachineBasicBlock *SetMBB = new MachineBasicBlock(BB->getBasicBlock());
|
|
MachineBasicBlock *PhiMBB = new MachineBasicBlock(BB->getBasicBlock());
|
|
MachineBasicBlock *OldMBB = BB;
|
|
ilist<MachineBasicBlock>::iterator It = BB; ++It;
|
|
F->getBasicBlockList().insert(It, ClrMBB);
|
|
F->getBasicBlockList().insert(It, SetMBB);
|
|
F->getBasicBlockList().insert(It, PhiMBB);
|
|
BB->addSuccessor(ClrMBB);
|
|
BB->addSuccessor(SetMBB);
|
|
|
|
CmpArgs.push_back(ValueRecord(SrcReg, SrcTy));
|
|
CmpArgs.push_back(ValueRecord(ZeroLong, SrcTy));
|
|
MachineInstr *TheCall =
|
|
BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(__cmpdi2Fn, true);
|
|
doCall(ValueRecord(CondReg, Type::IntTy), TheCall, CmpArgs, false);
|
|
BuildMI(*MBB, IP, PPC::CMPWI, 2, PPC::CR0).addReg(CondReg).addSImm(0);
|
|
BuildMI(*MBB, IP, PPC::BLE, 2).addReg(PPC::CR0).addMBB(SetMBB);
|
|
|
|
// ClrMBB
|
|
BB = ClrMBB;
|
|
unsigned ClrReg = makeAnotherReg(DestTy);
|
|
ClrArgs.push_back(ValueRecord(SrcReg, SrcTy));
|
|
TheCall = BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(floatFn, true);
|
|
doCall(ValueRecord(ClrReg, DestTy), TheCall, ClrArgs, false);
|
|
BuildMI(BB, PPC::B, 1).addMBB(PhiMBB);
|
|
BB->addSuccessor(PhiMBB);
|
|
|
|
// SetMBB
|
|
BB = SetMBB;
|
|
unsigned SetReg = makeAnotherReg(DestTy);
|
|
unsigned CallReg = makeAnotherReg(DestTy);
|
|
unsigned ShiftedReg = makeAnotherReg(SrcTy);
|
|
ConstantSInt *Const1 = ConstantSInt::get(Type::IntTy, 1);
|
|
emitShiftOperation(BB, BB->end(), Src, Const1, false, SrcTy, 0,
|
|
ShiftedReg);
|
|
SetArgs.push_back(ValueRecord(ShiftedReg, SrcTy));
|
|
TheCall = BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(floatFn, true);
|
|
doCall(ValueRecord(CallReg, DestTy), TheCall, SetArgs, false);
|
|
unsigned SetOpcode = (DestClass == cFP32) ? PPC::FADDS : PPC::FADD;
|
|
BuildMI(BB, SetOpcode, 2, SetReg).addReg(CallReg).addReg(CallReg);
|
|
BB->addSuccessor(PhiMBB);
|
|
|
|
// PhiMBB
|
|
BB = PhiMBB;
|
|
BuildMI(BB, PPC::PHI, 4, DestReg).addReg(ClrReg).addMBB(ClrMBB)
|
|
.addReg(SetReg).addMBB(SetMBB);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Make sure we're dealing with a full 32 bits
|
|
if (SrcClass < cInt) {
|
|
unsigned TmpReg = makeAnotherReg(Type::IntTy);
|
|
promote32(TmpReg, ValueRecord(SrcReg, SrcTy));
|
|
SrcReg = TmpReg;
|
|
}
|
|
|
|
// Spill the integer to memory and reload it from there.
|
|
// Also spill room for a special conversion constant
|
|
int ValueFrameIdx =
|
|
F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
|
|
|
|
unsigned constantHi = makeAnotherReg(Type::IntTy);
|
|
unsigned TempF = makeAnotherReg(Type::DoubleTy);
|
|
|
|
if (!SrcTy->isSigned()) {
|
|
ConstantFP *CFP = ConstantFP::get(Type::DoubleTy, 0x1.000000p52);
|
|
unsigned ConstF = getReg(CFP, BB, IP);
|
|
BuildMI(*MBB, IP, PPC::LIS, 1, constantHi).addSImm(0x4330);
|
|
addFrameReference(BuildMI(*MBB, IP, PPC::STW, 3).addReg(constantHi),
|
|
ValueFrameIdx);
|
|
addFrameReference(BuildMI(*MBB, IP, PPC::STW, 3).addReg(SrcReg),
|
|
ValueFrameIdx, 4);
|
|
addFrameReference(BuildMI(*MBB, IP, PPC::LFD, 2, TempF), ValueFrameIdx);
|
|
BuildMI(*MBB, IP, PPC::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
|
|
} else {
|
|
ConstantFP *CFP = ConstantFP::get(Type::DoubleTy, 0x1.000008p52);
|
|
unsigned ConstF = getReg(CFP, BB, IP);
|
|
unsigned TempLo = makeAnotherReg(Type::IntTy);
|
|
BuildMI(*MBB, IP, PPC::LIS, 1, constantHi).addSImm(0x4330);
|
|
addFrameReference(BuildMI(*MBB, IP, PPC::STW, 3).addReg(constantHi),
|
|
ValueFrameIdx);
|
|
BuildMI(*MBB, IP, PPC::XORIS, 2, TempLo).addReg(SrcReg).addImm(0x8000);
|
|
addFrameReference(BuildMI(*MBB, IP, PPC::STW, 3).addReg(TempLo),
|
|
ValueFrameIdx, 4);
|
|
addFrameReference(BuildMI(*MBB, IP, PPC::LFD, 2, TempF), ValueFrameIdx);
|
|
BuildMI(*MBB, IP, PPC::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Handle casts from floating point to integer now...
|
|
if (SrcClass == cFP32 || SrcClass == cFP64) {
|
|
static Function* const Funcs[] =
|
|
{ __fixsfdiFn, __fixdfdiFn, __fixunssfdiFn, __fixunsdfdiFn };
|
|
// emit library call
|
|
if (DestClass == cLong) {
|
|
bool isDouble = SrcClass == cFP64;
|
|
unsigned nameIndex = 2 * DestTy->isSigned() + isDouble;
|
|
std::vector<ValueRecord> Args;
|
|
Args.push_back(ValueRecord(SrcReg, SrcTy));
|
|
Function *floatFn = Funcs[nameIndex];
|
|
MachineInstr *TheCall =
|
|
BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(floatFn, true);
|
|
doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false);
|
|
return;
|
|
}
|
|
|
|
int ValueFrameIdx =
|
|
F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
|
|
|
|
if (DestTy->isSigned()) {
|
|
unsigned TempReg = makeAnotherReg(Type::DoubleTy);
|
|
|
|
// Convert to integer in the FP reg and store it to a stack slot
|
|
BuildMI(*MBB, IP, PPC::FCTIWZ, 1, TempReg).addReg(SrcReg);
|
|
addFrameReference(BuildMI(*MBB, IP, PPC::STFD, 3)
|
|
.addReg(TempReg), ValueFrameIdx);
|
|
|
|
// There is no load signed byte opcode, so we must emit a sign extend for
|
|
// that particular size. Make sure to source the new integer from the
|
|
// correct offset.
|
|
if (DestClass == cByte) {
|
|
unsigned TempReg2 = makeAnotherReg(DestTy);
|
|
addFrameReference(BuildMI(*MBB, IP, PPC::LBZ, 2, TempReg2),
|
|
ValueFrameIdx, 7);
|
|
BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(TempReg2);
|
|
} else {
|
|
int offset = (DestClass == cShort) ? 6 : 4;
|
|
unsigned LoadOp = (DestClass == cShort) ? PPC::LHA : PPC::LWZ;
|
|
addFrameReference(BuildMI(*MBB, IP, LoadOp, 2, DestReg),
|
|
ValueFrameIdx, offset);
|
|
}
|
|
} else {
|
|
unsigned Zero = getReg(ConstantFP::get(Type::DoubleTy, 0.0f));
|
|
double maxInt = (1LL << 32) - 1;
|
|
unsigned MaxInt = getReg(ConstantFP::get(Type::DoubleTy, maxInt));
|
|
double border = 1LL << 31;
|
|
unsigned Border = getReg(ConstantFP::get(Type::DoubleTy, border));
|
|
unsigned UseZero = makeAnotherReg(Type::DoubleTy);
|
|
unsigned UseMaxInt = makeAnotherReg(Type::DoubleTy);
|
|
unsigned UseChoice = makeAnotherReg(Type::DoubleTy);
|
|
unsigned TmpReg = makeAnotherReg(Type::DoubleTy);
|
|
unsigned TmpReg2 = makeAnotherReg(Type::DoubleTy);
|
|
unsigned ConvReg = makeAnotherReg(Type::DoubleTy);
|
|
unsigned IntTmp = makeAnotherReg(Type::IntTy);
|
|
unsigned XorReg = makeAnotherReg(Type::IntTy);
|
|
int FrameIdx =
|
|
F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
|
|
// Update machine-CFG edges
|
|
MachineBasicBlock *XorMBB = new MachineBasicBlock(BB->getBasicBlock());
|
|
MachineBasicBlock *PhiMBB = new MachineBasicBlock(BB->getBasicBlock());
|
|
MachineBasicBlock *OldMBB = BB;
|
|
ilist<MachineBasicBlock>::iterator It = BB; ++It;
|
|
F->getBasicBlockList().insert(It, XorMBB);
|
|
F->getBasicBlockList().insert(It, PhiMBB);
|
|
BB->addSuccessor(XorMBB);
|
|
BB->addSuccessor(PhiMBB);
|
|
|
|
// Convert from floating point to unsigned 32-bit value
|
|
// Use 0 if incoming value is < 0.0
|
|
BuildMI(*MBB, IP, PPC::FSEL, 3, UseZero).addReg(SrcReg).addReg(SrcReg)
|
|
.addReg(Zero);
|
|
// Use 2**32 - 1 if incoming value is >= 2**32
|
|
BuildMI(*MBB, IP, PPC::FSUB, 2, UseMaxInt).addReg(MaxInt).addReg(SrcReg);
|
|
BuildMI(*MBB, IP, PPC::FSEL, 3, UseChoice).addReg(UseMaxInt)
|
|
.addReg(UseZero).addReg(MaxInt);
|
|
// Subtract 2**31
|
|
BuildMI(*MBB, IP, PPC::FSUB, 2, TmpReg).addReg(UseChoice).addReg(Border);
|
|
// Use difference if >= 2**31
|
|
BuildMI(*MBB, IP, PPC::FCMPU, 2, PPC::CR0).addReg(UseChoice)
|
|
.addReg(Border);
|
|
BuildMI(*MBB, IP, PPC::FSEL, 3, TmpReg2).addReg(TmpReg).addReg(TmpReg)
|
|
.addReg(UseChoice);
|
|
// Convert to integer
|
|
BuildMI(*MBB, IP, PPC::FCTIWZ, 1, ConvReg).addReg(TmpReg2);
|
|
addFrameReference(BuildMI(*MBB, IP, PPC::STFD, 3).addReg(ConvReg),
|
|
FrameIdx);
|
|
if (DestClass == cByte) {
|
|
addFrameReference(BuildMI(*MBB, IP, PPC::LBZ, 2, DestReg),
|
|
FrameIdx, 7);
|
|
} else if (DestClass == cShort) {
|
|
addFrameReference(BuildMI(*MBB, IP, PPC::LHZ, 2, DestReg),
|
|
FrameIdx, 6);
|
|
} if (DestClass == cInt) {
|
|
addFrameReference(BuildMI(*MBB, IP, PPC::LWZ, 2, IntTmp),
|
|
FrameIdx, 4);
|
|
BuildMI(*MBB, IP, PPC::BLT, 2).addReg(PPC::CR0).addMBB(PhiMBB);
|
|
BuildMI(*MBB, IP, PPC::B, 1).addMBB(XorMBB);
|
|
|
|
// XorMBB:
|
|
// add 2**31 if input was >= 2**31
|
|
BB = XorMBB;
|
|
BuildMI(BB, PPC::XORIS, 2, XorReg).addReg(IntTmp).addImm(0x8000);
|
|
XorMBB->addSuccessor(PhiMBB);
|
|
|
|
// PhiMBB:
|
|
// DestReg = phi [ IntTmp, OldMBB ], [ XorReg, XorMBB ]
|
|
BB = PhiMBB;
|
|
BuildMI(BB, PPC::PHI, 4, DestReg).addReg(IntTmp).addMBB(OldMBB)
|
|
.addReg(XorReg).addMBB(XorMBB);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Check our invariants
|
|
assert((SrcClass <= cInt || SrcClass == cLong) &&
|
|
"Unhandled source class for cast operation!");
|
|
assert((DestClass <= cInt || DestClass == cLong) &&
|
|
"Unhandled destination class for cast operation!");
|
|
|
|
bool sourceUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
|
|
bool destUnsigned = DestTy->isUnsigned();
|
|
|
|
// Unsigned -> Unsigned, clear if larger,
|
|
if (sourceUnsigned && destUnsigned) {
|
|
// handle long dest class now to keep switch clean
|
|
if (DestClass == cLong) {
|
|
BuildMI(*MBB, IP, PPC::LI, 1, DestReg).addSImm(0);
|
|
BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg)
|
|
.addReg(SrcReg);
|
|
return;
|
|
}
|
|
|
|
// handle u{ byte, short, int } x u{ byte, short, int }
|
|
unsigned clearBits = (SrcClass == cByte || DestClass == cByte) ? 24 : 16;
|
|
switch (SrcClass) {
|
|
case cByte:
|
|
case cShort:
|
|
BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
|
|
.addImm(0).addImm(clearBits).addImm(31);
|
|
break;
|
|
case cLong:
|
|
++SrcReg;
|
|
// Fall through
|
|
case cInt:
|
|
BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
|
|
.addImm(0).addImm(clearBits).addImm(31);
|
|
break;
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Signed -> Signed
|
|
if (!sourceUnsigned && !destUnsigned) {
|
|
// handle long dest class now to keep switch clean
|
|
if (DestClass == cLong) {
|
|
BuildMI(*MBB, IP, PPC::SRAWI, 2, DestReg).addReg(SrcReg).addImm(31);
|
|
BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg)
|
|
.addReg(SrcReg);
|
|
return;
|
|
}
|
|
|
|
// handle { byte, short, int } x { byte, short, int }
|
|
switch (SrcClass) {
|
|
case cByte:
|
|
BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
|
|
break;
|
|
case cShort:
|
|
if (DestClass == cByte)
|
|
BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
|
|
else
|
|
BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg);
|
|
break;
|
|
case cLong:
|
|
++SrcReg;
|
|
// Fall through
|
|
case cInt:
|
|
if (DestClass == cByte)
|
|
BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
|
|
else if (DestClass == cShort)
|
|
BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg);
|
|
else
|
|
BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
|
|
break;
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Unsigned -> Signed
|
|
if (sourceUnsigned && !destUnsigned) {
|
|
// handle long dest class now to keep switch clean
|
|
if (DestClass == cLong) {
|
|
BuildMI(*MBB, IP, PPC::LI, 1, DestReg).addSImm(0);
|
|
BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg)
|
|
.addReg(SrcReg);
|
|
return;
|
|
}
|
|
|
|
// handle u{ byte, short, int } -> { byte, short, int }
|
|
switch (SrcClass) {
|
|
case cByte:
|
|
// uByte 255 -> signed short/int == 255
|
|
BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg).addImm(0)
|
|
.addImm(24).addImm(31);
|
|
break;
|
|
case cShort:
|
|
if (DestClass == cByte)
|
|
BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
|
|
else
|
|
BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg).addImm(0)
|
|
.addImm(16).addImm(31);
|
|
break;
|
|
case cLong:
|
|
++SrcReg;
|
|
// Fall through
|
|
case cInt:
|
|
if (DestClass == cByte)
|
|
BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
|
|
else if (DestClass == cShort)
|
|
BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg);
|
|
else
|
|
BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
|
|
break;
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Signed -> Unsigned
|
|
if (!sourceUnsigned && destUnsigned) {
|
|
// handle long dest class now to keep switch clean
|
|
if (DestClass == cLong) {
|
|
BuildMI(*MBB, IP, PPC::SRAWI, 2, DestReg).addReg(SrcReg).addImm(31);
|
|
BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg)
|
|
.addReg(SrcReg);
|
|
return;
|
|
}
|
|
|
|
// handle { byte, short, int } -> u{ byte, short, int }
|
|
unsigned clearBits = (DestClass == cByte) ? 24 : 16;
|
|
switch (SrcClass) {
|
|
case cByte:
|
|
BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
|
|
break;
|
|
case cShort:
|
|
if (DestClass == cByte)
|
|
BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
|
|
.addImm(0).addImm(clearBits).addImm(31);
|
|
else
|
|
BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg);
|
|
break;
|
|
case cLong:
|
|
++SrcReg;
|
|
// Fall through
|
|
case cInt:
|
|
if (DestClass == cInt)
|
|
BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
|
|
else
|
|
BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
|
|
.addImm(0).addImm(clearBits).addImm(31);
|
|
break;
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Anything we haven't handled already, we can't (yet) handle at all.
|
|
std::cerr << "Unhandled cast from " << SrcTy->getDescription()
|
|
<< "to " << DestTy->getDescription() << '\n';
|
|
abort();
|
|
}
|
|
|
|
void PPC32ISel::visitVAArgInst(VAArgInst &I) {
|
|
unsigned VAListPtr = getReg(I.getOperand(0));
|
|
unsigned DestReg = getReg(I);
|
|
unsigned VAList = makeAnotherReg(Type::IntTy);
|
|
BuildMI(BB, PPC::LWZ, 2, VAList).addSImm(0).addReg(VAListPtr);
|
|
int Size;
|
|
|
|
switch (I.getType()->getTypeID()) {
|
|
default:
|
|
std::cerr << I;
|
|
assert(0 && "Error: bad type for va_next instruction!");
|
|
return;
|
|
case Type::PointerTyID:
|
|
case Type::UIntTyID:
|
|
case Type::IntTyID:
|
|
Size = 4;
|
|
BuildMI(BB, PPC::LWZ, 2, DestReg).addSImm(0).addReg(VAList);
|
|
break;
|
|
case Type::ULongTyID:
|
|
case Type::LongTyID:
|
|
Size = 8;
|
|
BuildMI(BB, PPC::LWZ, 2, DestReg).addSImm(0).addReg(VAList);
|
|
BuildMI(BB, PPC::LWZ, 2, DestReg+1).addSImm(4).addReg(VAList);
|
|
break;
|
|
case Type::FloatTyID:
|
|
Size = 4; //?? Bad value?
|
|
BuildMI(BB, PPC::LFS, 2, DestReg).addSImm(0).addReg(VAList);
|
|
break;
|
|
case Type::DoubleTyID:
|
|
Size = 8;
|
|
BuildMI(BB, PPC::LFD, 2, DestReg).addSImm(0).addReg(VAList);
|
|
break;
|
|
}
|
|
// Increment the VAList pointer...
|
|
unsigned NP = makeAnotherReg(Type::IntTy);
|
|
BuildMI(BB, PPC::ADDI, 2, NP).addReg(VAList).addSImm(Size);
|
|
BuildMI(BB, PPC::STW, 3).addReg(NP).addSImm(0).addReg(VAListPtr);
|
|
}
|
|
|
|
/// visitGetElementPtrInst - instruction-select GEP instructions
|
|
///
|
|
void PPC32ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
|
|
if (canFoldGEPIntoLoadOrStore(&I))
|
|
return;
|
|
|
|
emitGEPOperation(BB, BB->end(), &I, false);
|
|
}
|
|
|
|
/// emitGEPOperation - Common code shared between visitGetElementPtrInst and
|
|
/// constant expression GEP support.
|
|
///
|
|
void PPC32ISel::emitGEPOperation(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IP,
|
|
GetElementPtrInst *GEPI, bool GEPIsFolded) {
|
|
// If we've already emitted this particular GEP, just return to avoid
|
|
// multiple definitions of the base register.
|
|
if (GEPIsFolded && (GEPMap[GEPI].base != 0))
|
|
return;
|
|
|
|
Value *Src = GEPI->getOperand(0);
|
|
User::op_iterator IdxBegin = GEPI->op_begin()+1;
|
|
User::op_iterator IdxEnd = GEPI->op_end();
|
|
const TargetData &TD = TM.getTargetData();
|
|
const Type *Ty = Src->getType();
|
|
int32_t constValue = 0;
|
|
|
|
// Record the operations to emit the GEP in a vector so that we can emit them
|
|
// after having analyzed the entire instruction.
|
|
std::vector<CollapsedGepOp> ops;
|
|
|
|
// GEPs have zero or more indices; we must perform a struct access
|
|
// or array access for each one.
|
|
for (GetElementPtrInst::op_iterator oi = IdxBegin, oe = IdxEnd; oi != oe;
|
|
++oi) {
|
|
Value *idx = *oi;
|
|
if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
|
|
// It's a struct access. idx is the index into the structure,
|
|
// which names the field. Use the TargetData structure to
|
|
// pick out what the layout of the structure is in memory.
|
|
// Use the (constant) structure index's value to find the
|
|
// right byte offset from the StructLayout class's list of
|
|
// structure member offsets.
|
|
unsigned fieldIndex = cast<ConstantUInt>(idx)->getValue();
|
|
|
|
// StructType member offsets are always constant values. Add it to the
|
|
// running total.
|
|
constValue += TD.getStructLayout(StTy)->MemberOffsets[fieldIndex];
|
|
|
|
// The next type is the member of the structure selected by the index.
|
|
Ty = StTy->getElementType (fieldIndex);
|
|
} else if (const SequentialType *SqTy = dyn_cast<SequentialType>(Ty)) {
|
|
// Many GEP instructions use a [cast (int/uint) to LongTy] as their
|
|
// operand. Handle this case directly now...
|
|
if (CastInst *CI = dyn_cast<CastInst>(idx))
|
|
if (CI->getOperand(0)->getType() == Type::IntTy ||
|
|
CI->getOperand(0)->getType() == Type::UIntTy)
|
|
idx = CI->getOperand(0);
|
|
|
|
// It's an array or pointer access: [ArraySize x ElementType].
|
|
// We want to add basePtrReg to (idxReg * sizeof ElementType). First, we
|
|
// must find the size of the pointed-to type (Not coincidentally, the next
|
|
// type is the type of the elements in the array).
|
|
Ty = SqTy->getElementType();
|
|
unsigned elementSize = TD.getTypeSize(Ty);
|
|
|
|
if (ConstantInt *C = dyn_cast<ConstantInt>(idx)) {
|
|
if (ConstantSInt *CS = dyn_cast<ConstantSInt>(C))
|
|
constValue += CS->getValue() * elementSize;
|
|
else if (ConstantUInt *CU = dyn_cast<ConstantUInt>(C))
|
|
constValue += CU->getValue() * elementSize;
|
|
else
|
|
assert(0 && "Invalid ConstantInt GEP index type!");
|
|
} else {
|
|
// Push current gep state to this point as an add and multiply
|
|
ops.push_back(CollapsedGepOp(
|
|
ConstantSInt::get(Type::IntTy, constValue),
|
|
idx, ConstantUInt::get(Type::UIntTy, elementSize)));
|
|
|
|
constValue = 0;
|
|
}
|
|
}
|
|
}
|
|
// Emit instructions for all the collapsed ops
|
|
unsigned indexReg = 0;
|
|
for(std::vector<CollapsedGepOp>::iterator cgo_i = ops.begin(),
|
|
cgo_e = ops.end(); cgo_i != cgo_e; ++cgo_i) {
|
|
CollapsedGepOp& cgo = *cgo_i;
|
|
|
|
// Avoid emitting known move instructions here for the register allocator
|
|
// to deal with later. val * 1 == val. val + 0 == val.
|
|
unsigned TmpReg1;
|
|
if (cgo.size->getValue() == 1) {
|
|
TmpReg1 = getReg(cgo.index, MBB, IP);
|
|
} else {
|
|
TmpReg1 = makeAnotherReg(Type::IntTy);
|
|
doMultiplyConst(MBB, IP, TmpReg1, cgo.index, cgo.size);
|
|
}
|
|
|
|
unsigned TmpReg2;
|
|
if (cgo.offset->isNullValue()) {
|
|
TmpReg2 = TmpReg1;
|
|
} else {
|
|
TmpReg2 = makeAnotherReg(Type::IntTy);
|
|
emitBinaryConstOperation(MBB, IP, TmpReg1, cgo.offset, 0, TmpReg2);
|
|
}
|
|
|
|
if (indexReg == 0)
|
|
indexReg = TmpReg2;
|
|
else {
|
|
unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
|
|
BuildMI(*MBB, IP, PPC::ADD, 2, TmpReg3).addReg(indexReg).addReg(TmpReg2);
|
|
indexReg = TmpReg3;
|
|
}
|
|
}
|
|
|
|
// We now have a base register, an index register, and possibly a constant
|
|
// remainder. If the GEP is going to be folded, we try to generate the
|
|
// optimal addressing mode.
|
|
ConstantSInt *remainder = ConstantSInt::get(Type::IntTy, constValue);
|
|
|
|
// If we are emitting this during a fold, copy the current base register to
|
|
// the target, and save the current constant offset so the folding load or
|
|
// store can try and use it as an immediate.
|
|
if (GEPIsFolded) {
|
|
if (indexReg == 0) {
|
|
if (!canUseAsImmediateForOpcode(remainder, 0, false)) {
|
|
indexReg = getReg(remainder, MBB, IP);
|
|
remainder = 0;
|
|
}
|
|
} else if (!remainder->isNullValue()) {
|
|
unsigned TmpReg = makeAnotherReg(Type::IntTy);
|
|
emitBinaryConstOperation(MBB, IP, indexReg, remainder, 0, TmpReg);
|
|
indexReg = TmpReg;
|
|
remainder = 0;
|
|
}
|
|
unsigned basePtrReg = getReg(Src, MBB, IP);
|
|
GEPMap[GEPI] = FoldedGEP(basePtrReg, indexReg, remainder);
|
|
return;
|
|
}
|
|
|
|
// We're not folding, so collapse the base, index, and any remainder into the
|
|
// destination register.
|
|
unsigned TargetReg = getReg(GEPI, MBB, IP);
|
|
unsigned basePtrReg = getReg(Src, MBB, IP);
|
|
|
|
if ((indexReg == 0) && remainder->isNullValue()) {
|
|
BuildMI(*MBB, IP, PPC::OR, 2, TargetReg).addReg(basePtrReg)
|
|
.addReg(basePtrReg);
|
|
return;
|
|
}
|
|
if (!remainder->isNullValue()) {
|
|
unsigned TmpReg = (indexReg == 0) ? TargetReg : makeAnotherReg(Type::IntTy);
|
|
emitBinaryConstOperation(MBB, IP, basePtrReg, remainder, 0, TmpReg);
|
|
basePtrReg = TmpReg;
|
|
}
|
|
if (indexReg != 0)
|
|
BuildMI(*MBB, IP, PPC::ADD, 2, TargetReg).addReg(indexReg)
|
|
.addReg(basePtrReg);
|
|
}
|
|
|
|
/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
|
|
/// frame manager, otherwise do it the hard way.
|
|
///
|
|
void PPC32ISel::visitAllocaInst(AllocaInst &I) {
|
|
// If this is a fixed size alloca in the entry block for the function, we
|
|
// statically stack allocate the space, so we don't need to do anything here.
|
|
//
|
|
if (dyn_castFixedAlloca(&I)) return;
|
|
|
|
// Find the data size of the alloca inst's getAllocatedType.
|
|
const Type *Ty = I.getAllocatedType();
|
|
unsigned TySize = TM.getTargetData().getTypeSize(Ty);
|
|
|
|
// Create a register to hold the temporary result of multiplying the type size
|
|
// constant by the variable amount.
|
|
unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
|
|
|
|
// TotalSizeReg = mul <numelements>, <TypeSize>
|
|
MachineBasicBlock::iterator MBBI = BB->end();
|
|
ConstantUInt *CUI = ConstantUInt::get(Type::UIntTy, TySize);
|
|
doMultiplyConst(BB, MBBI, TotalSizeReg, I.getArraySize(), CUI);
|
|
|
|
// AddedSize = add <TotalSizeReg>, 15
|
|
unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
|
|
BuildMI(BB, PPC::ADDI, 2, AddedSizeReg).addReg(TotalSizeReg).addSImm(15);
|
|
|
|
// AlignedSize = and <AddedSize>, ~15
|
|
unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
|
|
BuildMI(BB, PPC::RLWINM, 4, AlignedSize).addReg(AddedSizeReg).addImm(0)
|
|
.addImm(0).addImm(27);
|
|
|
|
// Subtract size from stack pointer, thereby allocating some space.
|
|
BuildMI(BB, PPC::SUBF, 2, PPC::R1).addReg(AlignedSize).addReg(PPC::R1);
|
|
|
|
// Put a pointer to the space into the result register, by copying
|
|
// the stack pointer.
|
|
BuildMI(BB, PPC::OR, 2, getReg(I)).addReg(PPC::R1).addReg(PPC::R1);
|
|
|
|
// Inform the Frame Information that we have just allocated a variable-sized
|
|
// object.
|
|
F->getFrameInfo()->CreateVariableSizedObject();
|
|
}
|
|
|
|
/// visitMallocInst - Malloc instructions are code generated into direct calls
|
|
/// to the library malloc.
|
|
///
|
|
void PPC32ISel::visitMallocInst(MallocInst &I) {
|
|
unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
|
|
unsigned Arg;
|
|
|
|
if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
|
|
Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
|
|
} else {
|
|
Arg = makeAnotherReg(Type::UIntTy);
|
|
MachineBasicBlock::iterator MBBI = BB->end();
|
|
ConstantUInt *CUI = ConstantUInt::get(Type::UIntTy, AllocSize);
|
|
doMultiplyConst(BB, MBBI, Arg, I.getOperand(0), CUI);
|
|
}
|
|
|
|
std::vector<ValueRecord> Args;
|
|
Args.push_back(ValueRecord(Arg, Type::UIntTy));
|
|
MachineInstr *TheCall =
|
|
BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(mallocFn, true);
|
|
doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args, false);
|
|
}
|
|
|
|
/// visitFreeInst - Free instructions are code gen'd to call the free libc
|
|
/// function.
|
|
///
|
|
void PPC32ISel::visitFreeInst(FreeInst &I) {
|
|
std::vector<ValueRecord> Args;
|
|
Args.push_back(ValueRecord(I.getOperand(0)));
|
|
MachineInstr *TheCall =
|
|
BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(freeFn, true);
|
|
doCall(ValueRecord(0, Type::VoidTy), TheCall, Args, false);
|
|
}
|
|
|
|
/// createPPC32ISelSimple - This pass converts an LLVM function into a machine
|
|
/// code representation is a very simple peep-hole fashion.
|
|
///
|
|
FunctionPass *llvm::createPPC32ISelSimple(TargetMachine &TM) {
|
|
return new PPC32ISel(TM);
|
|
}
|