1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-26 04:32:44 +01:00
llvm-mirror/unittests/IR/VPIntrinsicTest.cpp
Simon Moll 0dc8431dd3 [VP] make getFunctionalOpcode return an Optional
The operation of some VP intrinsics do/will not map to regular
instruction opcodes.  Returning 'None' seems more intuitive here than
'Instruction::Call'.

Reviewed By: frasercrmck

Differential Revision: https://reviews.llvm.org/D102778
2021-05-19 17:08:34 +02:00

226 lines
8.6 KiB
C++

//===- VPIntrinsicTest.cpp - VPIntrinsic unit tests ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/SmallVector.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Support/SourceMgr.h"
#include "gtest/gtest.h"
#include <sstream>
using namespace llvm;
namespace {
class VPIntrinsicTest : public testing::Test {
protected:
LLVMContext Context;
VPIntrinsicTest() : Context() {}
LLVMContext C;
SMDiagnostic Err;
std::unique_ptr<Module> CreateVPDeclarationModule() {
const char *BinaryIntOpcodes[] = {"add", "sub", "mul", "sdiv", "srem",
"udiv", "urem", "and", "xor", "or",
"ashr", "lshr", "shl"};
std::stringstream Str;
for (const char *BinaryIntOpcode : BinaryIntOpcodes)
Str << " declare <8 x i32> @llvm.vp." << BinaryIntOpcode
<< ".v8i32(<8 x i32>, <8 x i32>, <8 x i1>, i32) ";
return parseAssemblyString(Str.str(), Err, C);
}
};
/// Check that the property scopes include/llvm/IR/VPIntrinsics.def are closed.
TEST_F(VPIntrinsicTest, VPIntrinsicsDefScopes) {
Optional<Intrinsic::ID> ScopeVPID;
#define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) \
ASSERT_FALSE(ScopeVPID.hasValue()); \
ScopeVPID = Intrinsic::VPID;
#define END_REGISTER_VP_INTRINSIC(VPID) \
ASSERT_TRUE(ScopeVPID.hasValue()); \
ASSERT_EQ(ScopeVPID.getValue(), Intrinsic::VPID); \
ScopeVPID = None;
Optional<ISD::NodeType> ScopeOPC;
#define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...) \
ASSERT_FALSE(ScopeOPC.hasValue()); \
ScopeOPC = ISD::SDOPC;
#define END_REGISTER_VP_SDNODE(SDOPC) \
ASSERT_TRUE(ScopeOPC.hasValue()); \
ASSERT_EQ(ScopeOPC.getValue(), ISD::SDOPC); \
ScopeOPC = None;
#include "llvm/IR/VPIntrinsics.def"
ASSERT_FALSE(ScopeVPID.hasValue());
ASSERT_FALSE(ScopeOPC.hasValue());
}
/// Check that every VP intrinsic in the test module is recognized as a VP
/// intrinsic.
TEST_F(VPIntrinsicTest, VPModuleComplete) {
std::unique_ptr<Module> M = CreateVPDeclarationModule();
assert(M);
// Check that all @llvm.vp.* functions in the module are recognized vp
// intrinsics.
std::set<Intrinsic::ID> SeenIDs;
for (const auto &VPDecl : *M) {
ASSERT_TRUE(VPDecl.isIntrinsic());
ASSERT_TRUE(VPIntrinsic::IsVPIntrinsic(VPDecl.getIntrinsicID()));
SeenIDs.insert(VPDecl.getIntrinsicID());
}
// Check that every registered VP intrinsic has an instance in the test
// module.
#define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) \
ASSERT_TRUE(SeenIDs.count(Intrinsic::VPID));
#include "llvm/IR/VPIntrinsics.def"
}
/// Check that VPIntrinsic:canIgnoreVectorLengthParam() returns true
/// if the vector length parameter does not mask off any lanes.
TEST_F(VPIntrinsicTest, CanIgnoreVectorLength) {
LLVMContext C;
SMDiagnostic Err;
std::unique_ptr<Module> M =
parseAssemblyString(
"declare <256 x i64> @llvm.vp.mul.v256i64(<256 x i64>, <256 x i64>, <256 x i1>, i32)"
"declare <vscale x 2 x i64> @llvm.vp.mul.nxv2i64(<vscale x 2 x i64>, <vscale x 2 x i64>, <vscale x 2 x i1>, i32)"
"declare <vscale x 1 x i64> @llvm.vp.mul.nxv1i64(<vscale x 1 x i64>, <vscale x 1 x i64>, <vscale x 1 x i1>, i32)"
"declare i32 @llvm.vscale.i32()"
"define void @test_static_vlen( "
" <256 x i64> %i0, <vscale x 2 x i64> %si0x2, <vscale x 1 x i64> %si0x1,"
" <256 x i64> %i1, <vscale x 2 x i64> %si1x2, <vscale x 1 x i64> %si1x1,"
" <256 x i1> %m, <vscale x 2 x i1> %smx2, <vscale x 1 x i1> %smx1, i32 %vl) { "
" %r0 = call <256 x i64> @llvm.vp.mul.v256i64(<256 x i64> %i0, <256 x i64> %i1, <256 x i1> %m, i32 %vl)"
" %r1 = call <256 x i64> @llvm.vp.mul.v256i64(<256 x i64> %i0, <256 x i64> %i1, <256 x i1> %m, i32 256)"
" %r2 = call <256 x i64> @llvm.vp.mul.v256i64(<256 x i64> %i0, <256 x i64> %i1, <256 x i1> %m, i32 0)"
" %r3 = call <256 x i64> @llvm.vp.mul.v256i64(<256 x i64> %i0, <256 x i64> %i1, <256 x i1> %m, i32 7)"
" %r4 = call <256 x i64> @llvm.vp.mul.v256i64(<256 x i64> %i0, <256 x i64> %i1, <256 x i1> %m, i32 123)"
" %vs = call i32 @llvm.vscale.i32()"
" %vs.x2 = mul i32 %vs, 2"
" %r5 = call <vscale x 2 x i64> @llvm.vp.mul.nxv2i64(<vscale x 2 x i64> %si0x2, <vscale x 2 x i64> %si1x2, <vscale x 2 x i1> %smx2, i32 %vs.x2)"
" %r6 = call <vscale x 2 x i64> @llvm.vp.mul.nxv2i64(<vscale x 2 x i64> %si0x2, <vscale x 2 x i64> %si1x2, <vscale x 2 x i1> %smx2, i32 %vs)"
" %r7 = call <vscale x 2 x i64> @llvm.vp.mul.nxv2i64(<vscale x 2 x i64> %si0x2, <vscale x 2 x i64> %si1x2, <vscale x 2 x i1> %smx2, i32 99999)"
" %r8 = call <vscale x 1 x i64> @llvm.vp.mul.nxv1i64(<vscale x 1 x i64> %si0x1, <vscale x 1 x i64> %si1x1, <vscale x 1 x i1> %smx1, i32 %vs)"
" %r9 = call <vscale x 1 x i64> @llvm.vp.mul.nxv1i64(<vscale x 1 x i64> %si0x1, <vscale x 1 x i64> %si1x1, <vscale x 1 x i1> %smx1, i32 1)"
" %r10 = call <vscale x 1 x i64> @llvm.vp.mul.nxv1i64(<vscale x 1 x i64> %si0x1, <vscale x 1 x i64> %si1x1, <vscale x 1 x i1> %smx1, i32 %vs.x2)"
" %vs.wat = add i32 %vs, 2"
" %r11 = call <vscale x 2 x i64> @llvm.vp.mul.nxv2i64(<vscale x 2 x i64> %si0x2, <vscale x 2 x i64> %si1x2, <vscale x 2 x i1> %smx2, i32 %vs.wat)"
" ret void "
"}",
Err, C);
auto *F = M->getFunction("test_static_vlen");
assert(F);
const int NumExpected = 12;
const bool Expected[] = {false, true, false, false, false, true, false, false, true, false, true, false};
int i = 0;
for (auto &I : F->getEntryBlock()) {
VPIntrinsic *VPI = dyn_cast<VPIntrinsic>(&I);
if (!VPI)
continue;
ASSERT_LT(i, NumExpected);
ASSERT_EQ(Expected[i], VPI->canIgnoreVectorLengthParam());
++i;
}
}
/// Check that the argument returned by
/// VPIntrinsic::Get<X>ParamPos(Intrinsic::ID) has the expected type.
TEST_F(VPIntrinsicTest, GetParamPos) {
std::unique_ptr<Module> M = CreateVPDeclarationModule();
assert(M);
for (Function &F : *M) {
ASSERT_TRUE(F.isIntrinsic());
Optional<int> MaskParamPos =
VPIntrinsic::GetMaskParamPos(F.getIntrinsicID());
if (MaskParamPos.hasValue()) {
Type *MaskParamType = F.getArg(MaskParamPos.getValue())->getType();
ASSERT_TRUE(MaskParamType->isVectorTy());
ASSERT_TRUE(cast<VectorType>(MaskParamType)->getElementType()->isIntegerTy(1));
}
Optional<int> VecLenParamPos =
VPIntrinsic::GetVectorLengthParamPos(F.getIntrinsicID());
if (VecLenParamPos.hasValue()) {
Type *VecLenParamType = F.getArg(VecLenParamPos.getValue())->getType();
ASSERT_TRUE(VecLenParamType->isIntegerTy(32));
}
}
}
/// Check that going from Opcode to VP intrinsic and back results in the same
/// Opcode.
TEST_F(VPIntrinsicTest, OpcodeRoundTrip) {
std::vector<unsigned> Opcodes;
Opcodes.reserve(100);
{
#define HANDLE_INST(OCNum, OCName, Class) Opcodes.push_back(OCNum);
#include "llvm/IR/Instruction.def"
}
unsigned FullTripCounts = 0;
for (unsigned OC : Opcodes) {
Intrinsic::ID VPID = VPIntrinsic::GetForOpcode(OC);
// No equivalent VP intrinsic available.
if (VPID == Intrinsic::not_intrinsic)
continue;
Optional<unsigned> RoundTripOC =
VPIntrinsic::GetFunctionalOpcodeForVP(VPID);
// No equivalent Opcode available.
if (!RoundTripOC)
continue;
ASSERT_EQ(*RoundTripOC, OC);
++FullTripCounts;
}
ASSERT_NE(FullTripCounts, 0u);
}
/// Check that going from VP intrinsic to Opcode and back results in the same
/// intrinsic id.
TEST_F(VPIntrinsicTest, IntrinsicIDRoundTrip) {
std::unique_ptr<Module> M = CreateVPDeclarationModule();
assert(M);
unsigned FullTripCounts = 0;
for (const auto &VPDecl : *M) {
auto VPID = VPDecl.getIntrinsicID();
Optional<unsigned> OC = VPIntrinsic::GetFunctionalOpcodeForVP(VPID);
// no equivalent Opcode available
if (!OC)
continue;
Intrinsic::ID RoundTripVPID = VPIntrinsic::GetForOpcode(*OC);
ASSERT_EQ(RoundTripVPID, VPID);
++FullTripCounts;
}
ASSERT_NE(FullTripCounts, 0u);
}
} // end anonymous namespace