1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 04:02:41 +01:00
llvm-mirror/lib/Target/X86/X86InstrFormats.td
2018-04-22 01:24:58 +00:00

977 lines
40 KiB
TableGen

//===-- X86InstrFormats.td - X86 Instruction Formats -------*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// X86 Instruction Format Definitions.
//
// Format specifies the encoding used by the instruction. This is part of the
// ad-hoc solution used to emit machine instruction encodings by our machine
// code emitter.
class Format<bits<7> val> {
bits<7> Value = val;
}
def Pseudo : Format<0>;
def RawFrm : Format<1>;
def AddRegFrm : Format<2>;
def RawFrmMemOffs : Format<3>;
def RawFrmSrc : Format<4>;
def RawFrmDst : Format<5>;
def RawFrmDstSrc : Format<6>;
def RawFrmImm8 : Format<7>;
def RawFrmImm16 : Format<8>;
def MRMDestMem : Format<32>;
def MRMSrcMem : Format<33>;
def MRMSrcMem4VOp3 : Format<34>;
def MRMSrcMemOp4 : Format<35>;
def MRMXm : Format<39>;
def MRM0m : Format<40>; def MRM1m : Format<41>; def MRM2m : Format<42>;
def MRM3m : Format<43>; def MRM4m : Format<44>; def MRM5m : Format<45>;
def MRM6m : Format<46>; def MRM7m : Format<47>;
def MRMDestReg : Format<48>;
def MRMSrcReg : Format<49>;
def MRMSrcReg4VOp3 : Format<50>;
def MRMSrcRegOp4 : Format<51>;
def MRMXr : Format<55>;
def MRM0r : Format<56>; def MRM1r : Format<57>; def MRM2r : Format<58>;
def MRM3r : Format<59>; def MRM4r : Format<60>; def MRM5r : Format<61>;
def MRM6r : Format<62>; def MRM7r : Format<63>;
def MRM_C0 : Format<64>; def MRM_C1 : Format<65>; def MRM_C2 : Format<66>;
def MRM_C3 : Format<67>; def MRM_C4 : Format<68>; def MRM_C5 : Format<69>;
def MRM_C6 : Format<70>; def MRM_C7 : Format<71>; def MRM_C8 : Format<72>;
def MRM_C9 : Format<73>; def MRM_CA : Format<74>; def MRM_CB : Format<75>;
def MRM_CC : Format<76>; def MRM_CD : Format<77>; def MRM_CE : Format<78>;
def MRM_CF : Format<79>; def MRM_D0 : Format<80>; def MRM_D1 : Format<81>;
def MRM_D2 : Format<82>; def MRM_D3 : Format<83>; def MRM_D4 : Format<84>;
def MRM_D5 : Format<85>; def MRM_D6 : Format<86>; def MRM_D7 : Format<87>;
def MRM_D8 : Format<88>; def MRM_D9 : Format<89>; def MRM_DA : Format<90>;
def MRM_DB : Format<91>; def MRM_DC : Format<92>; def MRM_DD : Format<93>;
def MRM_DE : Format<94>; def MRM_DF : Format<95>; def MRM_E0 : Format<96>;
def MRM_E1 : Format<97>; def MRM_E2 : Format<98>; def MRM_E3 : Format<99>;
def MRM_E4 : Format<100>; def MRM_E5 : Format<101>; def MRM_E6 : Format<102>;
def MRM_E7 : Format<103>; def MRM_E8 : Format<104>; def MRM_E9 : Format<105>;
def MRM_EA : Format<106>; def MRM_EB : Format<107>; def MRM_EC : Format<108>;
def MRM_ED : Format<109>; def MRM_EE : Format<110>; def MRM_EF : Format<111>;
def MRM_F0 : Format<112>; def MRM_F1 : Format<113>; def MRM_F2 : Format<114>;
def MRM_F3 : Format<115>; def MRM_F4 : Format<116>; def MRM_F5 : Format<117>;
def MRM_F6 : Format<118>; def MRM_F7 : Format<119>; def MRM_F8 : Format<120>;
def MRM_F9 : Format<121>; def MRM_FA : Format<122>; def MRM_FB : Format<123>;
def MRM_FC : Format<124>; def MRM_FD : Format<125>; def MRM_FE : Format<126>;
def MRM_FF : Format<127>;
// ImmType - This specifies the immediate type used by an instruction. This is
// part of the ad-hoc solution used to emit machine instruction encodings by our
// machine code emitter.
class ImmType<bits<4> val> {
bits<4> Value = val;
}
def NoImm : ImmType<0>;
def Imm8 : ImmType<1>;
def Imm8PCRel : ImmType<2>;
def Imm8Reg : ImmType<3>; // Register encoded in [7:4].
def Imm16 : ImmType<4>;
def Imm16PCRel : ImmType<5>;
def Imm32 : ImmType<6>;
def Imm32PCRel : ImmType<7>;
def Imm32S : ImmType<8>;
def Imm64 : ImmType<9>;
// FPFormat - This specifies what form this FP instruction has. This is used by
// the Floating-Point stackifier pass.
class FPFormat<bits<3> val> {
bits<3> Value = val;
}
def NotFP : FPFormat<0>;
def ZeroArgFP : FPFormat<1>;
def OneArgFP : FPFormat<2>;
def OneArgFPRW : FPFormat<3>;
def TwoArgFP : FPFormat<4>;
def CompareFP : FPFormat<5>;
def CondMovFP : FPFormat<6>;
def SpecialFP : FPFormat<7>;
// Class specifying the SSE execution domain, used by the SSEDomainFix pass.
// Keep in sync with tables in X86InstrInfo.cpp.
class Domain<bits<2> val> {
bits<2> Value = val;
}
def GenericDomain : Domain<0>;
def SSEPackedSingle : Domain<1>;
def SSEPackedDouble : Domain<2>;
def SSEPackedInt : Domain<3>;
// Class specifying the vector form of the decompressed
// displacement of 8-bit.
class CD8VForm<bits<3> val> {
bits<3> Value = val;
}
def CD8VF : CD8VForm<0>; // v := VL
def CD8VH : CD8VForm<1>; // v := VL/2
def CD8VQ : CD8VForm<2>; // v := VL/4
def CD8VO : CD8VForm<3>; // v := VL/8
// The tuple (subvector) forms.
def CD8VT1 : CD8VForm<4>; // v := 1
def CD8VT2 : CD8VForm<5>; // v := 2
def CD8VT4 : CD8VForm<6>; // v := 4
def CD8VT8 : CD8VForm<7>; // v := 8
// Class specifying the prefix used an opcode extension.
class Prefix<bits<3> val> {
bits<3> Value = val;
}
def NoPrfx : Prefix<0>;
def PD : Prefix<1>;
def XS : Prefix<2>;
def XD : Prefix<3>;
def PS : Prefix<4>; // Similar to NoPrfx, but disassembler uses this to know
// that other instructions with this opcode use PD/XS/XD
// and if any of those is not supported they shouldn't
// decode to this instruction. e.g. ANDSS/ANDSD don't
// exist, but the 0xf2/0xf3 encoding shouldn't
// disable to ANDPS.
// Class specifying the opcode map.
class Map<bits<3> val> {
bits<3> Value = val;
}
def OB : Map<0>;
def TB : Map<1>;
def T8 : Map<2>;
def TA : Map<3>;
def XOP8 : Map<4>;
def XOP9 : Map<5>;
def XOPA : Map<6>;
def ThreeDNow : Map<7>;
// Class specifying the encoding
class Encoding<bits<2> val> {
bits<2> Value = val;
}
def EncNormal : Encoding<0>;
def EncVEX : Encoding<1>;
def EncXOP : Encoding<2>;
def EncEVEX : Encoding<3>;
// Operand size for encodings that change based on mode.
class OperandSize<bits<2> val> {
bits<2> Value = val;
}
def OpSizeFixed : OperandSize<0>; // Never needs a 0x66 prefix.
def OpSize16 : OperandSize<1>; // Needs 0x66 prefix in 32-bit mode.
def OpSize32 : OperandSize<2>; // Needs 0x66 prefix in 16-bit mode.
// Address size for encodings that change based on mode.
class AddressSize<bits<2> val> {
bits<2> Value = val;
}
def AdSizeX : AddressSize<0>; // Address size determined using addr operand.
def AdSize16 : AddressSize<1>; // Encodes a 16-bit address.
def AdSize32 : AddressSize<2>; // Encodes a 32-bit address.
def AdSize64 : AddressSize<3>; // Encodes a 64-bit address.
// Prefix byte classes which are used to indicate to the ad-hoc machine code
// emitter that various prefix bytes are required.
class OpSize16 { OperandSize OpSize = OpSize16; }
class OpSize32 { OperandSize OpSize = OpSize32; }
class AdSize16 { AddressSize AdSize = AdSize16; }
class AdSize32 { AddressSize AdSize = AdSize32; }
class AdSize64 { AddressSize AdSize = AdSize64; }
class REX_W { bit hasREX_WPrefix = 1; }
class LOCK { bit hasLockPrefix = 1; }
class REP { bit hasREPPrefix = 1; }
class TB { Map OpMap = TB; }
class T8 { Map OpMap = T8; }
class TA { Map OpMap = TA; }
class XOP8 { Map OpMap = XOP8; Prefix OpPrefix = PS; }
class XOP9 { Map OpMap = XOP9; Prefix OpPrefix = PS; }
class XOPA { Map OpMap = XOPA; Prefix OpPrefix = PS; }
class ThreeDNow { Map OpMap = ThreeDNow; }
class OBXS { Prefix OpPrefix = XS; }
class PS : TB { Prefix OpPrefix = PS; }
class PD : TB { Prefix OpPrefix = PD; }
class XD : TB { Prefix OpPrefix = XD; }
class XS : TB { Prefix OpPrefix = XS; }
class T8PS : T8 { Prefix OpPrefix = PS; }
class T8PD : T8 { Prefix OpPrefix = PD; }
class T8XD : T8 { Prefix OpPrefix = XD; }
class T8XS : T8 { Prefix OpPrefix = XS; }
class TAPS : TA { Prefix OpPrefix = PS; }
class TAPD : TA { Prefix OpPrefix = PD; }
class TAXD : TA { Prefix OpPrefix = XD; }
class VEX { Encoding OpEnc = EncVEX; }
class VEX_W { bits<2> VEX_WPrefix = 1; }
class VEX_WIG { bits<2> VEX_WPrefix = 2; }
class VEX_4V : VEX { bit hasVEX_4V = 1; }
class VEX_L { bit hasVEX_L = 1; }
class VEX_LIG { bit ignoresVEX_L = 1; }
class EVEX { Encoding OpEnc = EncEVEX; }
class EVEX_4V : EVEX { bit hasVEX_4V = 1; }
class EVEX_K { bit hasEVEX_K = 1; }
class EVEX_KZ : EVEX_K { bit hasEVEX_Z = 1; }
class EVEX_B { bit hasEVEX_B = 1; }
class EVEX_RC { bit hasEVEX_RC = 1; }
class EVEX_V512 { bit hasEVEX_L2 = 1; bit hasVEX_L = 0; }
class EVEX_V256 { bit hasEVEX_L2 = 0; bit hasVEX_L = 1; }
class EVEX_V128 { bit hasEVEX_L2 = 0; bit hasVEX_L = 0; }
class NOTRACK { bit hasNoTrackPrefix = 1; }
// Specify AVX512 8-bit compressed displacement encoding based on the vector
// element size in bits (8, 16, 32, 64) and the CDisp8 form.
class EVEX_CD8<int esize, CD8VForm form> {
int CD8_EltSize = !srl(esize, 3);
bits<3> CD8_Form = form.Value;
}
class XOP { Encoding OpEnc = EncXOP; }
class XOP_4V : XOP { bit hasVEX_4V = 1; }
// Specify the alternative register form instruction to replace the current
// instruction in case it was picked during generation of memory folding tables
class FoldGenData<string _RegisterForm> {
string FoldGenRegForm = _RegisterForm;
}
// Mark the instruction as "illegal to memory fold/unfold"
class NotMemoryFoldable { bit isMemoryFoldable = 0; }
class X86Inst<bits<8> opcod, Format f, ImmType i, dag outs, dag ins,
string AsmStr, Domain d = GenericDomain>
: Instruction {
let Namespace = "X86";
bits<8> Opcode = opcod;
Format Form = f;
bits<7> FormBits = Form.Value;
ImmType ImmT = i;
dag OutOperandList = outs;
dag InOperandList = ins;
string AsmString = AsmStr;
// If this is a pseudo instruction, mark it isCodeGenOnly.
let isCodeGenOnly = !eq(!cast<string>(f), "Pseudo");
//
// Attributes specific to X86 instructions...
//
bit ForceDisassemble = 0; // Force instruction to disassemble even though it's
// isCodeGenonly. Needed to hide an ambiguous
// AsmString from the parser, but still disassemble.
OperandSize OpSize = OpSizeFixed; // Does this instruction's encoding change
// based on operand size of the mode?
bits<2> OpSizeBits = OpSize.Value;
AddressSize AdSize = AdSizeX; // Does this instruction's encoding change
// based on address size of the mode?
bits<2> AdSizeBits = AdSize.Value;
Prefix OpPrefix = NoPrfx; // Which prefix byte does this inst have?
bits<3> OpPrefixBits = OpPrefix.Value;
Map OpMap = OB; // Which opcode map does this inst have?
bits<3> OpMapBits = OpMap.Value;
bit hasREX_WPrefix = 0; // Does this inst require the REX.W prefix?
FPFormat FPForm = NotFP; // What flavor of FP instruction is this?
bit hasLockPrefix = 0; // Does this inst have a 0xF0 prefix?
Domain ExeDomain = d;
bit hasREPPrefix = 0; // Does this inst have a REP prefix?
Encoding OpEnc = EncNormal; // Encoding used by this instruction
bits<2> OpEncBits = OpEnc.Value;
bits<2> VEX_WPrefix = 0; // Does this inst set the VEX_W field?
bit hasVEX_4V = 0; // Does this inst require the VEX.VVVV field?
bit hasVEX_L = 0; // Does this inst use large (256-bit) registers?
bit ignoresVEX_L = 0; // Does this instruction ignore the L-bit
bit hasEVEX_K = 0; // Does this inst require masking?
bit hasEVEX_Z = 0; // Does this inst set the EVEX_Z field?
bit hasEVEX_L2 = 0; // Does this inst set the EVEX_L2 field?
bit hasEVEX_B = 0; // Does this inst set the EVEX_B field?
bits<3> CD8_Form = 0; // Compressed disp8 form - vector-width.
// Declare it int rather than bits<4> so that all bits are defined when
// assigning to bits<7>.
int CD8_EltSize = 0; // Compressed disp8 form - element-size in bytes.
bit hasEVEX_RC = 0; // Explicitly specified rounding control in FP instruction.
bit hasNoTrackPrefix = 0; // Does this inst has 0x3E (NoTrack) prefix?
bits<2> EVEX_LL;
let EVEX_LL{0} = hasVEX_L;
let EVEX_LL{1} = hasEVEX_L2;
// Vector size in bytes.
bits<7> VectSize = !shl(16, EVEX_LL);
// The scaling factor for AVX512's compressed displacement is either
// - the size of a power-of-two number of elements or
// - the size of a single element for broadcasts or
// - the total vector size divided by a power-of-two number.
// Possible values are: 0 (non-AVX512 inst), 1, 2, 4, 8, 16, 32 and 64.
bits<7> CD8_Scale = !if (!eq (OpEnc.Value, EncEVEX.Value),
!if (CD8_Form{2},
!shl(CD8_EltSize, CD8_Form{1-0}),
!if (hasEVEX_B,
CD8_EltSize,
!srl(VectSize, CD8_Form{1-0}))), 0);
// Used in the memory folding generation (TableGen backend) to point to an alternative
// instruction to replace the current one in case it got picked during generation.
string FoldGenRegForm = ?;
bit isMemoryFoldable = 1; // Is it allowed to memory fold/unfold this instruction?
// TSFlags layout should be kept in sync with X86BaseInfo.h.
let TSFlags{6-0} = FormBits;
let TSFlags{8-7} = OpSizeBits;
let TSFlags{10-9} = AdSizeBits;
// No need for 3rd bit, we don't need to distinguish NoPrfx from PS.
let TSFlags{12-11} = OpPrefixBits{1-0};
let TSFlags{15-13} = OpMapBits;
let TSFlags{16} = hasREX_WPrefix;
let TSFlags{20-17} = ImmT.Value;
let TSFlags{23-21} = FPForm.Value;
let TSFlags{24} = hasLockPrefix;
let TSFlags{25} = hasREPPrefix;
let TSFlags{27-26} = ExeDomain.Value;
let TSFlags{29-28} = OpEncBits;
let TSFlags{37-30} = Opcode;
// Currently no need for second bit in TSFlags - W Ignore is equivalent to 0.
let TSFlags{38} = VEX_WPrefix{0};
let TSFlags{39} = hasVEX_4V;
let TSFlags{40} = hasVEX_L;
let TSFlags{41} = hasEVEX_K;
let TSFlags{42} = hasEVEX_Z;
let TSFlags{43} = hasEVEX_L2;
let TSFlags{44} = hasEVEX_B;
// If we run out of TSFlags bits, it's possible to encode this in 3 bits.
let TSFlags{51-45} = CD8_Scale;
let TSFlags{52} = hasEVEX_RC;
let TSFlags{53} = hasNoTrackPrefix;
}
class PseudoI<dag oops, dag iops, list<dag> pattern>
: X86Inst<0, Pseudo, NoImm, oops, iops, ""> {
let Pattern = pattern;
}
class I<bits<8> o, Format f, dag outs, dag ins, string asm,
list<dag> pattern, Domain d = GenericDomain>
: X86Inst<o, f, NoImm, outs, ins, asm, d> {
let Pattern = pattern;
let CodeSize = 3;
}
class Ii8<bits<8> o, Format f, dag outs, dag ins, string asm,
list<dag> pattern, Domain d = GenericDomain>
: X86Inst<o, f, Imm8, outs, ins, asm, d> {
let Pattern = pattern;
let CodeSize = 3;
}
class Ii8Reg<bits<8> o, Format f, dag outs, dag ins, string asm,
list<dag> pattern, Domain d = GenericDomain>
: X86Inst<o, f, Imm8Reg, outs, ins, asm, d> {
let Pattern = pattern;
let CodeSize = 3;
}
class Ii8PCRel<bits<8> o, Format f, dag outs, dag ins, string asm,
list<dag> pattern>
: X86Inst<o, f, Imm8PCRel, outs, ins, asm> {
let Pattern = pattern;
let CodeSize = 3;
}
class Ii16<bits<8> o, Format f, dag outs, dag ins, string asm,
list<dag> pattern>
: X86Inst<o, f, Imm16, outs, ins, asm> {
let Pattern = pattern;
let CodeSize = 3;
}
class Ii32<bits<8> o, Format f, dag outs, dag ins, string asm,
list<dag> pattern>
: X86Inst<o, f, Imm32, outs, ins, asm> {
let Pattern = pattern;
let CodeSize = 3;
}
class Ii32S<bits<8> o, Format f, dag outs, dag ins, string asm,
list<dag> pattern>
: X86Inst<o, f, Imm32S, outs, ins, asm> {
let Pattern = pattern;
let CodeSize = 3;
}
class Ii64<bits<8> o, Format f, dag outs, dag ins, string asm,
list<dag> pattern>
: X86Inst<o, f, Imm64, outs, ins, asm> {
let Pattern = pattern;
let CodeSize = 3;
}
class Ii16PCRel<bits<8> o, Format f, dag outs, dag ins, string asm,
list<dag> pattern>
: X86Inst<o, f, Imm16PCRel, outs, ins, asm> {
let Pattern = pattern;
let CodeSize = 3;
}
class Ii32PCRel<bits<8> o, Format f, dag outs, dag ins, string asm,
list<dag> pattern>
: X86Inst<o, f, Imm32PCRel, outs, ins, asm> {
let Pattern = pattern;
let CodeSize = 3;
}
// FPStack Instruction Templates:
// FPI - Floating Point Instruction template.
class FPI<bits<8> o, Format F, dag outs, dag ins, string asm>
: I<o, F, outs, ins, asm, []> {}
// FpI_ - Floating Point Pseudo Instruction template. Not Predicated.
class FpI_<dag outs, dag ins, FPFormat fp, list<dag> pattern>
: PseudoI<outs, ins, pattern> {
let FPForm = fp;
}
// Templates for instructions that use a 16- or 32-bit segmented address as
// their only operand: lcall (FAR CALL) and ljmp (FAR JMP)
//
// Iseg16 - 16-bit segment selector, 16-bit offset
// Iseg32 - 16-bit segment selector, 32-bit offset
class Iseg16 <bits<8> o, Format f, dag outs, dag ins, string asm,
list<dag> pattern>
: X86Inst<o, f, Imm16, outs, ins, asm> {
let Pattern = pattern;
let CodeSize = 3;
}
class Iseg32 <bits<8> o, Format f, dag outs, dag ins, string asm,
list<dag> pattern>
: X86Inst<o, f, Imm32, outs, ins, asm> {
let Pattern = pattern;
let CodeSize = 3;
}
// SI - SSE 1 & 2 scalar instructions
class SI<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern, Domain d = GenericDomain>
: I<o, F, outs, ins, asm, pattern, d> {
let Predicates = !if(!eq(OpEnc.Value, EncEVEX.Value), [HasAVX512],
!if(!eq(OpEnc.Value, EncVEX.Value), [UseAVX],
!if(!eq(OpPrefix.Value, XS.Value), [UseSSE1],
!if(!eq(OpPrefix.Value, XD.Value), [UseSSE2],
!if(!eq(OpPrefix.Value, PD.Value), [UseSSE2],
[UseSSE1])))));
// AVX instructions have a 'v' prefix in the mnemonic
let AsmString = !if(!eq(OpEnc.Value, EncEVEX.Value), !strconcat("v", asm),
!if(!eq(OpEnc.Value, EncVEX.Value), !strconcat("v", asm),
asm));
}
// SI - SSE 1 & 2 scalar intrinsics - vex form available on AVX512
class SI_Int<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern, Domain d = GenericDomain>
: I<o, F, outs, ins, asm, pattern, d> {
let Predicates = !if(!eq(OpEnc.Value, EncEVEX.Value), [HasAVX512],
!if(!eq(OpEnc.Value, EncVEX.Value), [UseAVX],
!if(!eq(OpPrefix.Value, XS.Value), [UseSSE1],
!if(!eq(OpPrefix.Value, XD.Value), [UseSSE2],
!if(!eq(OpPrefix.Value, PD.Value), [UseSSE2],
[UseSSE1])))));
// AVX instructions have a 'v' prefix in the mnemonic
let AsmString = !if(!eq(OpEnc.Value, EncEVEX.Value), !strconcat("v", asm),
!if(!eq(OpEnc.Value, EncVEX.Value), !strconcat("v", asm),
asm));
}
// SIi8 - SSE 1 & 2 scalar instructions - vex form available on AVX512
class SIi8<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: Ii8<o, F, outs, ins, asm, pattern> {
let Predicates = !if(!eq(OpEnc.Value, EncEVEX.Value), [HasAVX512],
!if(!eq(OpEnc.Value, EncVEX.Value), [HasAVX],
!if(!eq(OpPrefix.Value, XS.Value), [UseSSE1],
[UseSSE2])));
// AVX instructions have a 'v' prefix in the mnemonic
let AsmString = !if(!eq(OpEnc.Value, EncEVEX.Value), !strconcat("v", asm),
!if(!eq(OpEnc.Value, EncVEX.Value), !strconcat("v", asm),
asm));
}
// PI - SSE 1 & 2 packed instructions
class PI<bits<8> o, Format F, dag outs, dag ins, string asm, list<dag> pattern,
Domain d>
: I<o, F, outs, ins, asm, pattern, d> {
let Predicates = !if(!eq(OpEnc.Value, EncEVEX.Value), [HasAVX512],
!if(!eq(OpEnc.Value, EncVEX.Value), [HasAVX],
!if(!eq(OpPrefix.Value, PD.Value), [UseSSE2],
[UseSSE1])));
// AVX instructions have a 'v' prefix in the mnemonic
let AsmString = !if(!eq(OpEnc.Value, EncEVEX.Value), !strconcat("v", asm),
!if(!eq(OpEnc.Value, EncVEX.Value), !strconcat("v", asm),
asm));
}
// MMXPI - SSE 1 & 2 packed instructions with MMX operands
class MMXPI<bits<8> o, Format F, dag outs, dag ins, string asm, list<dag> pattern,
Domain d>
: I<o, F, outs, ins, asm, pattern, d> {
let Predicates = !if(!eq(OpPrefix.Value, PD.Value), [HasSSE2],
[HasSSE1]);
}
// PIi8 - SSE 1 & 2 packed instructions with immediate
class PIi8<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern, Domain d>
: Ii8<o, F, outs, ins, asm, pattern, d> {
let Predicates = !if(!eq(OpEnc.Value, EncEVEX.Value), [HasAVX512],
!if(!eq(OpEnc.Value, EncVEX.Value), [HasAVX],
!if(!eq(OpPrefix.Value, PD.Value), [UseSSE2],
[UseSSE1])));
// AVX instructions have a 'v' prefix in the mnemonic
let AsmString = !if(!eq(OpEnc.Value, EncEVEX.Value), !strconcat("v", asm),
!if(!eq(OpEnc.Value, EncVEX.Value), !strconcat("v", asm),
asm));
}
// SSE1 Instruction Templates:
//
// SSI - SSE1 instructions with XS prefix.
// PSI - SSE1 instructions with PS prefix.
// PSIi8 - SSE1 instructions with ImmT == Imm8 and PS prefix.
// VSSI - SSE1 instructions with XS prefix in AVX form.
// VPSI - SSE1 instructions with PS prefix in AVX form, packed single.
class SSI<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, asm, pattern>, XS, Requires<[UseSSE1]>;
class SSIi8<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: Ii8<o, F, outs, ins, asm, pattern>, XS, Requires<[UseSSE1]>;
class PSI<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, asm, pattern, SSEPackedSingle>, PS,
Requires<[UseSSE1]>;
class PSIi8<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: Ii8<o, F, outs, ins, asm, pattern, SSEPackedSingle>, PS,
Requires<[UseSSE1]>;
class VSSI<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, !strconcat("v", asm), pattern>, XS,
Requires<[HasAVX]>;
class VPSI<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, !strconcat("v", asm), pattern, SSEPackedSingle>, PS,
Requires<[HasAVX]>;
// SSE2 Instruction Templates:
//
// SDI - SSE2 instructions with XD prefix.
// SDIi8 - SSE2 instructions with ImmT == Imm8 and XD prefix.
// S2SI - SSE2 instructions with XS prefix.
// SSDIi8 - SSE2 instructions with ImmT == Imm8 and XS prefix.
// PDI - SSE2 instructions with PD prefix, packed double domain.
// PDIi8 - SSE2 instructions with ImmT == Imm8 and PD prefix.
// VSDI - SSE2 scalar instructions with XD prefix in AVX form.
// VPDI - SSE2 vector instructions with PD prefix in AVX form,
// packed double domain.
// VS2I - SSE2 scalar instructions with PD prefix in AVX form.
// S2I - SSE2 scalar instructions with PD prefix.
// MMXSDIi8 - SSE2 instructions with ImmT == Imm8 and XD prefix as well as
// MMX operands.
// MMXSSDIi8 - SSE2 instructions with ImmT == Imm8 and XS prefix as well as
// MMX operands.
class SDI<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, asm, pattern>, XD, Requires<[UseSSE2]>;
class SDIi8<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: Ii8<o, F, outs, ins, asm, pattern>, XD, Requires<[UseSSE2]>;
class S2SI<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, asm, pattern>, XS, Requires<[UseSSE2]>;
class S2SIi8<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: Ii8<o, F, outs, ins, asm, pattern>, XS, Requires<[UseSSE2]>;
class PDI<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, asm, pattern, SSEPackedDouble>, PD,
Requires<[UseSSE2]>;
class PDIi8<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: Ii8<o, F, outs, ins, asm, pattern, SSEPackedDouble>, PD,
Requires<[UseSSE2]>;
class VSDI<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, !strconcat("v", asm), pattern>, XD,
Requires<[UseAVX]>;
class VS2SI<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, !strconcat("v", asm), pattern>, XS,
Requires<[HasAVX]>;
class VPDI<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, !strconcat("v", asm), pattern, SSEPackedDouble>,
PD, Requires<[HasAVX]>;
class VS2I<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, !strconcat("v", asm), pattern>, PD,
Requires<[UseAVX]>;
class S2I<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, asm, pattern>, PD, Requires<[UseSSE2]>;
class MMXSDIi8<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: Ii8<o, F, outs, ins, asm, pattern>, XD, Requires<[HasSSE2]>;
class MMXS2SIi8<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: Ii8<o, F, outs, ins, asm, pattern>, XS, Requires<[HasSSE2]>;
// SSE3 Instruction Templates:
//
// S3I - SSE3 instructions with PD prefixes.
// S3SI - SSE3 instructions with XS prefix.
// S3DI - SSE3 instructions with XD prefix.
class S3SI<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, asm, pattern, SSEPackedSingle>, XS,
Requires<[UseSSE3]>;
class S3DI<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, asm, pattern, SSEPackedDouble>, XD,
Requires<[UseSSE3]>;
class S3I<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, asm, pattern, SSEPackedDouble>, PD,
Requires<[UseSSE3]>;
// SSSE3 Instruction Templates:
//
// SS38I - SSSE3 instructions with T8 prefix.
// SS3AI - SSSE3 instructions with TA prefix.
// MMXSS38I - SSSE3 instructions with T8 prefix and MMX operands.
// MMXSS3AI - SSSE3 instructions with TA prefix and MMX operands.
//
// Note: SSSE3 instructions have 64-bit and 128-bit versions. The 64-bit version
// uses the MMX registers. The 64-bit versions are grouped with the MMX
// classes. They need to be enabled even if AVX is enabled.
class SS38I<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, asm, pattern, SSEPackedInt>, T8PD,
Requires<[UseSSSE3]>;
class SS3AI<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: Ii8<o, F, outs, ins, asm, pattern, SSEPackedInt>, TAPD,
Requires<[UseSSSE3]>;
class MMXSS38I<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, asm, pattern, SSEPackedInt>, T8PS,
Requires<[HasSSSE3]>;
class MMXSS3AI<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: Ii8<o, F, outs, ins, asm, pattern, SSEPackedInt>, TAPS,
Requires<[HasSSSE3]>;
// SSE4.1 Instruction Templates:
//
// SS48I - SSE 4.1 instructions with T8 prefix.
// SS41AIi8 - SSE 4.1 instructions with TA prefix and ImmT == Imm8.
//
class SS48I<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, asm, pattern, SSEPackedInt>, T8PD,
Requires<[UseSSE41]>;
class SS4AIi8<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: Ii8<o, F, outs, ins, asm, pattern, SSEPackedInt>, TAPD,
Requires<[UseSSE41]>;
// SSE4.2 Instruction Templates:
//
// SS428I - SSE 4.2 instructions with T8 prefix.
class SS428I<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, asm, pattern, SSEPackedInt>, T8PD,
Requires<[UseSSE42]>;
// SS42FI - SSE 4.2 instructions with T8XD prefix.
// NOTE: 'HasSSE42' is used as SS42FI is only used for CRC32 insns.
class SS42FI<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, asm, pattern>, T8XD, Requires<[HasSSE42]>;
// SS42AI = SSE 4.2 instructions with TA prefix
class SS42AI<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: Ii8<o, F, outs, ins, asm, pattern, SSEPackedInt>, TAPD,
Requires<[UseSSE42]>;
// AVX Instruction Templates:
// Instructions introduced in AVX (no SSE equivalent forms)
//
// AVX8I - AVX instructions with T8PD prefix.
// AVXAIi8 - AVX instructions with TAPD prefix and ImmT = Imm8.
class AVX8I<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, asm, pattern, SSEPackedInt>, T8PD,
Requires<[HasAVX]>;
class AVXAIi8<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: Ii8<o, F, outs, ins, asm, pattern, SSEPackedInt>, TAPD,
Requires<[HasAVX]>;
// AVX2 Instruction Templates:
// Instructions introduced in AVX2 (no SSE equivalent forms)
//
// AVX28I - AVX2 instructions with T8PD prefix.
// AVX2AIi8 - AVX2 instructions with TAPD prefix and ImmT = Imm8.
class AVX28I<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, asm, pattern, SSEPackedInt>, T8PD,
Requires<[HasAVX2]>;
class AVX2AIi8<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: Ii8<o, F, outs, ins, asm, pattern, SSEPackedInt>, TAPD,
Requires<[HasAVX2]>;
// AVX-512 Instruction Templates:
// Instructions introduced in AVX-512 (no SSE equivalent forms)
//
// AVX5128I - AVX-512 instructions with T8PD prefix.
// AVX512AIi8 - AVX-512 instructions with TAPD prefix and ImmT = Imm8.
// AVX512PDI - AVX-512 instructions with PD, double packed.
// AVX512PSI - AVX-512 instructions with PS, single packed.
// AVX512XS8I - AVX-512 instructions with T8 and XS prefixes.
// AVX512XSI - AVX-512 instructions with XS prefix, generic domain.
// AVX512BI - AVX-512 instructions with PD, int packed domain.
// AVX512SI - AVX-512 scalar instructions with PD prefix.
class AVX5128I<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, asm, pattern, SSEPackedInt>, T8PD,
Requires<[HasAVX512]>;
class AVX5128IBase : T8PD {
Domain ExeDomain = SSEPackedInt;
}
class AVX512XS8I<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, asm, pattern, SSEPackedInt>, T8XS,
Requires<[HasAVX512]>;
class AVX512XSI<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, asm, pattern>, XS,
Requires<[HasAVX512]>;
class AVX512XDI<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, asm, pattern, SSEPackedInt>, XD,
Requires<[HasAVX512]>;
class AVX512BI<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, asm, pattern, SSEPackedInt>, PD,
Requires<[HasAVX512]>;
class AVX512BIBase : PD {
Domain ExeDomain = SSEPackedInt;
}
class AVX512BIi8<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: Ii8<o, F, outs, ins, asm, pattern, SSEPackedInt>, PD,
Requires<[HasAVX512]>;
class AVX512BIi8Base : PD {
Domain ExeDomain = SSEPackedInt;
ImmType ImmT = Imm8;
}
class AVX512XSIi8Base : XS {
Domain ExeDomain = SSEPackedInt;
ImmType ImmT = Imm8;
}
class AVX512XDIi8Base : XD {
Domain ExeDomain = SSEPackedInt;
ImmType ImmT = Imm8;
}
class AVX512PSIi8Base : PS {
Domain ExeDomain = SSEPackedSingle;
ImmType ImmT = Imm8;
}
class AVX512PDIi8Base : PD {
Domain ExeDomain = SSEPackedDouble;
ImmType ImmT = Imm8;
}
class AVX512AIi8<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: Ii8<o, F, outs, ins, asm, pattern, SSEPackedInt>, TAPD,
Requires<[HasAVX512]>;
class AVX512AIi8Base : TAPD {
ImmType ImmT = Imm8;
}
class AVX512Ii8<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: Ii8<o, F, outs, ins, asm, pattern, SSEPackedInt>,
Requires<[HasAVX512]>;
class AVX512PDI<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, asm, pattern, SSEPackedDouble>, PD,
Requires<[HasAVX512]>;
class AVX512PSI<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, asm, pattern, SSEPackedSingle>, PS,
Requires<[HasAVX512]>;
class AVX512PIi8<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern, Domain d>
: Ii8<o, F, outs, ins, asm, pattern, d>, Requires<[HasAVX512]>;
class AVX512PI<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern, Domain d>
: I<o, F, outs, ins, asm, pattern, d>, Requires<[HasAVX512]>;
class AVX512FMA3S<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag>pattern>
: I<o, F, outs, ins, asm, pattern>, T8PD,
EVEX_4V, Requires<[HasAVX512]>;
class AVX512FMA3Base : T8PD, EVEX_4V;
class AVX512<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag>pattern>
: I<o, F, outs, ins, asm, pattern>, Requires<[HasAVX512]>;
// AES Instruction Templates:
//
// AES8I
// These use the same encoding as the SSE4.2 T8 and TA encodings.
class AES8I<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag>pattern>
: I<o, F, outs, ins, asm, pattern, SSEPackedInt>, T8PD,
Requires<[NoAVX, HasAES]>;
class AESAI<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: Ii8<o, F, outs, ins, asm, pattern, SSEPackedInt>, TAPD,
Requires<[NoAVX, HasAES]>;
// PCLMUL Instruction Templates
class PCLMULIi8<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag>pattern>
: Ii8<o, F, outs, ins, asm, pattern, SSEPackedInt>, TAPD;
// FMA3 Instruction Templates
class FMA3<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag>pattern>
: I<o, F, outs, ins, asm, pattern>, T8PD,
VEX_4V, FMASC, Requires<[HasFMA, NoFMA4, NoVLX]>;
class FMA3S<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag>pattern>
: I<o, F, outs, ins, asm, pattern>, T8PD,
VEX_4V, FMASC, Requires<[HasFMA, NoFMA4, NoAVX512]>;
class FMA3S_Int<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag>pattern>
: I<o, F, outs, ins, asm, pattern>, T8PD,
VEX_4V, FMASC, Requires<[HasFMA, NoAVX512]>;
// FMA4 Instruction Templates
class FMA4<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag>pattern>
: Ii8Reg<o, F, outs, ins, asm, pattern>, TAPD,
VEX_4V, FMASC, Requires<[HasFMA4, NoVLX]>;
class FMA4S<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag>pattern>
: Ii8Reg<o, F, outs, ins, asm, pattern>, TAPD,
VEX_4V, FMASC, Requires<[HasFMA4, NoAVX512]>;
class FMA4S_Int<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag>pattern>
: Ii8Reg<o, F, outs, ins, asm, pattern>, TAPD,
VEX_4V, FMASC, Requires<[HasFMA4]>;
// XOP 2, 3 and 4 Operand Instruction Template
class IXOP<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, asm, pattern, SSEPackedDouble>,
XOP9, Requires<[HasXOP]>;
// XOP 2 and 3 Operand Instruction Templates with imm byte
class IXOPi8<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: Ii8<o, F, outs, ins, asm, pattern, SSEPackedDouble>,
XOP8, Requires<[HasXOP]>;
// XOP 4 Operand Instruction Templates with imm byte
class IXOPi8Reg<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: Ii8Reg<o, F, outs, ins, asm, pattern, SSEPackedDouble>,
XOP8, Requires<[HasXOP]>;
// XOP 5 operand instruction (VEX encoding!)
class IXOP5<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag>pattern>
: Ii8Reg<o, F, outs, ins, asm, pattern, SSEPackedInt>, TAPD,
VEX_4V, Requires<[HasXOP]>;
// X86-64 Instruction templates...
//
class RI<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, asm, pattern>, REX_W;
class RIi8 <bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: Ii8<o, F, outs, ins, asm, pattern>, REX_W;
class RIi16 <bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: Ii16<o, F, outs, ins, asm, pattern>, REX_W;
class RIi32 <bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: Ii32<o, F, outs, ins, asm, pattern>, REX_W;
class RIi32S <bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: Ii32S<o, F, outs, ins, asm, pattern>, REX_W;
class RIi64<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: Ii64<o, F, outs, ins, asm, pattern>, REX_W;
class RS2I<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: S2I<o, F, outs, ins, asm, pattern>, REX_W;
class VRS2I<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: VS2I<o, F, outs, ins, asm, pattern>, VEX_W;
// MMX Instruction templates
//
// MMXI - MMX instructions with TB prefix.
// MMXI32 - MMX instructions with TB prefix valid only in 32 bit mode.
// MMXI64 - MMX instructions with TB prefix valid only in 64 bit mode.
// MMX2I - MMX / SSE2 instructions with PD prefix.
// MMXIi8 - MMX instructions with ImmT == Imm8 and PS prefix.
// MMXIi8 - MMX instructions with ImmT == Imm8 and PS prefix.
// MMXID - MMX instructions with XD prefix.
// MMXIS - MMX instructions with XS prefix.
class MMXI<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, asm, pattern>, PS, Requires<[HasMMX]>;
class MMXI32<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, asm, pattern>, PS, Requires<[HasMMX,Not64BitMode]>;
class MMXI64<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, asm, pattern>, PS, Requires<[HasMMX,In64BitMode]>;
class MMXRI<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, asm, pattern>, PS, REX_W, Requires<[HasMMX]>;
class MMX2I<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, asm, pattern>, PD, Requires<[HasMMX]>;
class MMXIi8<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: Ii8<o, F, outs, ins, asm, pattern>, PS, Requires<[HasMMX]>;
class MMXID<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: Ii8<o, F, outs, ins, asm, pattern>, XD, Requires<[HasMMX]>;
class MMXIS<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: Ii8<o, F, outs, ins, asm, pattern>, XS, Requires<[HasMMX]>;