mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 12:12:47 +01:00
28ca22b845
The D82085 "allow TRE for non-capturing calls" caused failure during bootstrap. This patch does the same as D82085 plus fixes bootstrap error. The problem with D82085 is that it does not create copies for byval operands, while replacing function call with a branch. Consider following example: ``` int zoo ( S p1 ); int foo ( int count, S p1 ) { if ( count > 10 ) return zoo(p1); // temporarily variable created for passing byvalue parameter // p1 could be used when zoo(p1) is called(after TRE is done). // lifetime.start p1.byvalue.temp return foo(count+1, p1); // lifetime.end p1.byvalue.temp } ``` After recursive call to foo is replaced with a jump into start of the function, its parameters could be passed to zoo function. i.e. temporarily variable created for byvalue parameter "p1" could be passed to zoo. Finally zoo receives broken operand: ``` int foo ( int count, S p1 ) { :tailrecurse p1_tr = phi p1, p1.byvalue.temp if ( count > 10 ) return zoo(p1_tr); // temporarily variable created for passing byvalue parameter // p1 could be used when zoo(p1) is called(after TRE is done). lifetime.start p1.byvalue.temp memcpy (p1.byvalue.temp, p1_tr) count = count + 1 lifetime.end p1.byvalue.temp br tailrecurse } ``` To prevent using p1.byvalue.temp after its scope finished by lifetime.end marker this patch copies value from p1.byvalue.temp into another temporarily variable and then copies this variable into the input parameter for next iteration. This patch passes bootstrap build and bootstrap build with AddressSanitizer. Differential Revision: https://reviews.llvm.org/D85614
945 lines
35 KiB
C++
945 lines
35 KiB
C++
//===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file transforms calls of the current function (self recursion) followed
|
|
// by a return instruction with a branch to the entry of the function, creating
|
|
// a loop. This pass also implements the following extensions to the basic
|
|
// algorithm:
|
|
//
|
|
// 1. Trivial instructions between the call and return do not prevent the
|
|
// transformation from taking place, though currently the analysis cannot
|
|
// support moving any really useful instructions (only dead ones).
|
|
// 2. This pass transforms functions that are prevented from being tail
|
|
// recursive by an associative and commutative expression to use an
|
|
// accumulator variable, thus compiling the typical naive factorial or
|
|
// 'fib' implementation into efficient code.
|
|
// 3. TRE is performed if the function returns void, if the return
|
|
// returns the result returned by the call, or if the function returns a
|
|
// run-time constant on all exits from the function. It is possible, though
|
|
// unlikely, that the return returns something else (like constant 0), and
|
|
// can still be TRE'd. It can be TRE'd if ALL OTHER return instructions in
|
|
// the function return the exact same value.
|
|
// 4. If it can prove that callees do not access their caller stack frame,
|
|
// they are marked as eligible for tail call elimination (by the code
|
|
// generator).
|
|
//
|
|
// There are several improvements that could be made:
|
|
//
|
|
// 1. If the function has any alloca instructions, these instructions will be
|
|
// moved out of the entry block of the function, causing them to be
|
|
// evaluated each time through the tail recursion. Safely keeping allocas
|
|
// in the entry block requires analysis to proves that the tail-called
|
|
// function does not read or write the stack object.
|
|
// 2. Tail recursion is only performed if the call immediately precedes the
|
|
// return instruction. It's possible that there could be a jump between
|
|
// the call and the return.
|
|
// 3. There can be intervening operations between the call and the return that
|
|
// prevent the TRE from occurring. For example, there could be GEP's and
|
|
// stores to memory that will not be read or written by the call. This
|
|
// requires some substantial analysis (such as with DSA) to prove safe to
|
|
// move ahead of the call, but doing so could allow many more TREs to be
|
|
// performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark.
|
|
// 4. The algorithm we use to detect if callees access their caller stack
|
|
// frames is very primitive.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Scalar/TailRecursionElimination.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/CFG.h"
|
|
#include "llvm/Analysis/CaptureTracking.h"
|
|
#include "llvm/Analysis/DomTreeUpdater.h"
|
|
#include "llvm/Analysis/GlobalsModRef.h"
|
|
#include "llvm/Analysis/InlineCost.h"
|
|
#include "llvm/Analysis/InstructionSimplify.h"
|
|
#include "llvm/Analysis/Loads.h"
|
|
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
|
|
#include "llvm/Analysis/PostDominators.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/CFG.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/DiagnosticInfo.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/InstIterator.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/ValueHandle.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "tailcallelim"
|
|
|
|
STATISTIC(NumEliminated, "Number of tail calls removed");
|
|
STATISTIC(NumRetDuped, "Number of return duplicated");
|
|
STATISTIC(NumAccumAdded, "Number of accumulators introduced");
|
|
|
|
/// Scan the specified function for alloca instructions.
|
|
/// If it contains any dynamic allocas, returns false.
|
|
static bool canTRE(Function &F) {
|
|
// TODO: We don't do TRE if dynamic allocas are used.
|
|
// Dynamic allocas allocate stack space which should be
|
|
// deallocated before new iteration started. That is
|
|
// currently not implemented.
|
|
return llvm::all_of(instructions(F), [](Instruction &I) {
|
|
auto *AI = dyn_cast<AllocaInst>(&I);
|
|
return !AI || AI->isStaticAlloca();
|
|
});
|
|
}
|
|
|
|
namespace {
|
|
struct AllocaDerivedValueTracker {
|
|
// Start at a root value and walk its use-def chain to mark calls that use the
|
|
// value or a derived value in AllocaUsers, and places where it may escape in
|
|
// EscapePoints.
|
|
void walk(Value *Root) {
|
|
SmallVector<Use *, 32> Worklist;
|
|
SmallPtrSet<Use *, 32> Visited;
|
|
|
|
auto AddUsesToWorklist = [&](Value *V) {
|
|
for (auto &U : V->uses()) {
|
|
if (!Visited.insert(&U).second)
|
|
continue;
|
|
Worklist.push_back(&U);
|
|
}
|
|
};
|
|
|
|
AddUsesToWorklist(Root);
|
|
|
|
while (!Worklist.empty()) {
|
|
Use *U = Worklist.pop_back_val();
|
|
Instruction *I = cast<Instruction>(U->getUser());
|
|
|
|
switch (I->getOpcode()) {
|
|
case Instruction::Call:
|
|
case Instruction::Invoke: {
|
|
auto &CB = cast<CallBase>(*I);
|
|
// If the alloca-derived argument is passed byval it is not an escape
|
|
// point, or a use of an alloca. Calling with byval copies the contents
|
|
// of the alloca into argument registers or stack slots, which exist
|
|
// beyond the lifetime of the current frame.
|
|
if (CB.isArgOperand(U) && CB.isByValArgument(CB.getArgOperandNo(U)))
|
|
continue;
|
|
bool IsNocapture =
|
|
CB.isDataOperand(U) && CB.doesNotCapture(CB.getDataOperandNo(U));
|
|
callUsesLocalStack(CB, IsNocapture);
|
|
if (IsNocapture) {
|
|
// If the alloca-derived argument is passed in as nocapture, then it
|
|
// can't propagate to the call's return. That would be capturing.
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
case Instruction::Load: {
|
|
// The result of a load is not alloca-derived (unless an alloca has
|
|
// otherwise escaped, but this is a local analysis).
|
|
continue;
|
|
}
|
|
case Instruction::Store: {
|
|
if (U->getOperandNo() == 0)
|
|
EscapePoints.insert(I);
|
|
continue; // Stores have no users to analyze.
|
|
}
|
|
case Instruction::BitCast:
|
|
case Instruction::GetElementPtr:
|
|
case Instruction::PHI:
|
|
case Instruction::Select:
|
|
case Instruction::AddrSpaceCast:
|
|
break;
|
|
default:
|
|
EscapePoints.insert(I);
|
|
break;
|
|
}
|
|
|
|
AddUsesToWorklist(I);
|
|
}
|
|
}
|
|
|
|
void callUsesLocalStack(CallBase &CB, bool IsNocapture) {
|
|
// Add it to the list of alloca users.
|
|
AllocaUsers.insert(&CB);
|
|
|
|
// If it's nocapture then it can't capture this alloca.
|
|
if (IsNocapture)
|
|
return;
|
|
|
|
// If it can write to memory, it can leak the alloca value.
|
|
if (!CB.onlyReadsMemory())
|
|
EscapePoints.insert(&CB);
|
|
}
|
|
|
|
SmallPtrSet<Instruction *, 32> AllocaUsers;
|
|
SmallPtrSet<Instruction *, 32> EscapePoints;
|
|
};
|
|
}
|
|
|
|
static bool markTails(Function &F, OptimizationRemarkEmitter *ORE) {
|
|
if (F.callsFunctionThatReturnsTwice())
|
|
return false;
|
|
|
|
// The local stack holds all alloca instructions and all byval arguments.
|
|
AllocaDerivedValueTracker Tracker;
|
|
for (Argument &Arg : F.args()) {
|
|
if (Arg.hasByValAttr())
|
|
Tracker.walk(&Arg);
|
|
}
|
|
for (auto &BB : F) {
|
|
for (auto &I : BB)
|
|
if (AllocaInst *AI = dyn_cast<AllocaInst>(&I))
|
|
Tracker.walk(AI);
|
|
}
|
|
|
|
bool Modified = false;
|
|
|
|
// Track whether a block is reachable after an alloca has escaped. Blocks that
|
|
// contain the escaping instruction will be marked as being visited without an
|
|
// escaped alloca, since that is how the block began.
|
|
enum VisitType {
|
|
UNVISITED,
|
|
UNESCAPED,
|
|
ESCAPED
|
|
};
|
|
DenseMap<BasicBlock *, VisitType> Visited;
|
|
|
|
// We propagate the fact that an alloca has escaped from block to successor.
|
|
// Visit the blocks that are propagating the escapedness first. To do this, we
|
|
// maintain two worklists.
|
|
SmallVector<BasicBlock *, 32> WorklistUnescaped, WorklistEscaped;
|
|
|
|
// We may enter a block and visit it thinking that no alloca has escaped yet,
|
|
// then see an escape point and go back around a loop edge and come back to
|
|
// the same block twice. Because of this, we defer setting tail on calls when
|
|
// we first encounter them in a block. Every entry in this list does not
|
|
// statically use an alloca via use-def chain analysis, but may find an alloca
|
|
// through other means if the block turns out to be reachable after an escape
|
|
// point.
|
|
SmallVector<CallInst *, 32> DeferredTails;
|
|
|
|
BasicBlock *BB = &F.getEntryBlock();
|
|
VisitType Escaped = UNESCAPED;
|
|
do {
|
|
for (auto &I : *BB) {
|
|
if (Tracker.EscapePoints.count(&I))
|
|
Escaped = ESCAPED;
|
|
|
|
CallInst *CI = dyn_cast<CallInst>(&I);
|
|
// A PseudoProbeInst has the IntrInaccessibleMemOnly tag hence it is
|
|
// considered accessing memory and will be marked as a tail call if we
|
|
// don't bail out here.
|
|
if (!CI || CI->isTailCall() || isa<DbgInfoIntrinsic>(&I) ||
|
|
isa<PseudoProbeInst>(&I))
|
|
continue;
|
|
|
|
// Special-case operand bundle "clang.arc.attachedcall".
|
|
bool IsNoTail =
|
|
CI->isNoTailCall() || CI->hasOperandBundlesOtherThan(
|
|
LLVMContext::OB_clang_arc_attachedcall);
|
|
|
|
if (!IsNoTail && CI->doesNotAccessMemory()) {
|
|
// A call to a readnone function whose arguments are all things computed
|
|
// outside this function can be marked tail. Even if you stored the
|
|
// alloca address into a global, a readnone function can't load the
|
|
// global anyhow.
|
|
//
|
|
// Note that this runs whether we know an alloca has escaped or not. If
|
|
// it has, then we can't trust Tracker.AllocaUsers to be accurate.
|
|
bool SafeToTail = true;
|
|
for (auto &Arg : CI->arg_operands()) {
|
|
if (isa<Constant>(Arg.getUser()))
|
|
continue;
|
|
if (Argument *A = dyn_cast<Argument>(Arg.getUser()))
|
|
if (!A->hasByValAttr())
|
|
continue;
|
|
SafeToTail = false;
|
|
break;
|
|
}
|
|
if (SafeToTail) {
|
|
using namespace ore;
|
|
ORE->emit([&]() {
|
|
return OptimizationRemark(DEBUG_TYPE, "tailcall-readnone", CI)
|
|
<< "marked as tail call candidate (readnone)";
|
|
});
|
|
CI->setTailCall();
|
|
Modified = true;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (!IsNoTail && Escaped == UNESCAPED && !Tracker.AllocaUsers.count(CI))
|
|
DeferredTails.push_back(CI);
|
|
}
|
|
|
|
for (auto *SuccBB : successors(BB)) {
|
|
auto &State = Visited[SuccBB];
|
|
if (State < Escaped) {
|
|
State = Escaped;
|
|
if (State == ESCAPED)
|
|
WorklistEscaped.push_back(SuccBB);
|
|
else
|
|
WorklistUnescaped.push_back(SuccBB);
|
|
}
|
|
}
|
|
|
|
if (!WorklistEscaped.empty()) {
|
|
BB = WorklistEscaped.pop_back_val();
|
|
Escaped = ESCAPED;
|
|
} else {
|
|
BB = nullptr;
|
|
while (!WorklistUnescaped.empty()) {
|
|
auto *NextBB = WorklistUnescaped.pop_back_val();
|
|
if (Visited[NextBB] == UNESCAPED) {
|
|
BB = NextBB;
|
|
Escaped = UNESCAPED;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
} while (BB);
|
|
|
|
for (CallInst *CI : DeferredTails) {
|
|
if (Visited[CI->getParent()] != ESCAPED) {
|
|
// If the escape point was part way through the block, calls after the
|
|
// escape point wouldn't have been put into DeferredTails.
|
|
LLVM_DEBUG(dbgs() << "Marked as tail call candidate: " << *CI << "\n");
|
|
CI->setTailCall();
|
|
Modified = true;
|
|
}
|
|
}
|
|
|
|
return Modified;
|
|
}
|
|
|
|
/// Return true if it is safe to move the specified
|
|
/// instruction from after the call to before the call, assuming that all
|
|
/// instructions between the call and this instruction are movable.
|
|
///
|
|
static bool canMoveAboveCall(Instruction *I, CallInst *CI, AliasAnalysis *AA) {
|
|
if (isa<DbgInfoIntrinsic>(I))
|
|
return true;
|
|
|
|
if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
|
|
if (II->getIntrinsicID() == Intrinsic::lifetime_end &&
|
|
llvm::findAllocaForValue(II->getArgOperand(1)))
|
|
return true;
|
|
|
|
// FIXME: We can move load/store/call/free instructions above the call if the
|
|
// call does not mod/ref the memory location being processed.
|
|
if (I->mayHaveSideEffects()) // This also handles volatile loads.
|
|
return false;
|
|
|
|
if (LoadInst *L = dyn_cast<LoadInst>(I)) {
|
|
// Loads may always be moved above calls without side effects.
|
|
if (CI->mayHaveSideEffects()) {
|
|
// Non-volatile loads may be moved above a call with side effects if it
|
|
// does not write to memory and the load provably won't trap.
|
|
// Writes to memory only matter if they may alias the pointer
|
|
// being loaded from.
|
|
const DataLayout &DL = L->getModule()->getDataLayout();
|
|
if (isModSet(AA->getModRefInfo(CI, MemoryLocation::get(L))) ||
|
|
!isSafeToLoadUnconditionally(L->getPointerOperand(), L->getType(),
|
|
L->getAlign(), DL, L))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Otherwise, if this is a side-effect free instruction, check to make sure
|
|
// that it does not use the return value of the call. If it doesn't use the
|
|
// return value of the call, it must only use things that are defined before
|
|
// the call, or movable instructions between the call and the instruction
|
|
// itself.
|
|
return !is_contained(I->operands(), CI);
|
|
}
|
|
|
|
static bool canTransformAccumulatorRecursion(Instruction *I, CallInst *CI) {
|
|
if (!I->isAssociative() || !I->isCommutative())
|
|
return false;
|
|
|
|
assert(I->getNumOperands() == 2 &&
|
|
"Associative/commutative operations should have 2 args!");
|
|
|
|
// Exactly one operand should be the result of the call instruction.
|
|
if ((I->getOperand(0) == CI && I->getOperand(1) == CI) ||
|
|
(I->getOperand(0) != CI && I->getOperand(1) != CI))
|
|
return false;
|
|
|
|
// The only user of this instruction we allow is a single return instruction.
|
|
if (!I->hasOneUse() || !isa<ReturnInst>(I->user_back()))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static Instruction *firstNonDbg(BasicBlock::iterator I) {
|
|
while (isa<DbgInfoIntrinsic>(I))
|
|
++I;
|
|
return &*I;
|
|
}
|
|
|
|
namespace {
|
|
class TailRecursionEliminator {
|
|
Function &F;
|
|
const TargetTransformInfo *TTI;
|
|
AliasAnalysis *AA;
|
|
OptimizationRemarkEmitter *ORE;
|
|
DomTreeUpdater &DTU;
|
|
|
|
// The below are shared state we want to have available when eliminating any
|
|
// calls in the function. There values should be populated by
|
|
// createTailRecurseLoopHeader the first time we find a call we can eliminate.
|
|
BasicBlock *HeaderBB = nullptr;
|
|
SmallVector<PHINode *, 8> ArgumentPHIs;
|
|
|
|
// PHI node to store our return value.
|
|
PHINode *RetPN = nullptr;
|
|
|
|
// i1 PHI node to track if we have a valid return value stored in RetPN.
|
|
PHINode *RetKnownPN = nullptr;
|
|
|
|
// Vector of select instructions we insereted. These selects use RetKnownPN
|
|
// to either propagate RetPN or select a new return value.
|
|
SmallVector<SelectInst *, 8> RetSelects;
|
|
|
|
// The below are shared state needed when performing accumulator recursion.
|
|
// There values should be populated by insertAccumulator the first time we
|
|
// find an elimination that requires an accumulator.
|
|
|
|
// PHI node to store our current accumulated value.
|
|
PHINode *AccPN = nullptr;
|
|
|
|
// The instruction doing the accumulating.
|
|
Instruction *AccumulatorRecursionInstr = nullptr;
|
|
|
|
TailRecursionEliminator(Function &F, const TargetTransformInfo *TTI,
|
|
AliasAnalysis *AA, OptimizationRemarkEmitter *ORE,
|
|
DomTreeUpdater &DTU)
|
|
: F(F), TTI(TTI), AA(AA), ORE(ORE), DTU(DTU) {}
|
|
|
|
CallInst *findTRECandidate(BasicBlock *BB);
|
|
|
|
void createTailRecurseLoopHeader(CallInst *CI);
|
|
|
|
void insertAccumulator(Instruction *AccRecInstr);
|
|
|
|
bool eliminateCall(CallInst *CI);
|
|
|
|
void cleanupAndFinalize();
|
|
|
|
bool processBlock(BasicBlock &BB);
|
|
|
|
void copyByValueOperandIntoLocalTemp(CallInst *CI, int OpndIdx);
|
|
|
|
void copyLocalTempOfByValueOperandIntoArguments(CallInst *CI, int OpndIdx);
|
|
|
|
public:
|
|
static bool eliminate(Function &F, const TargetTransformInfo *TTI,
|
|
AliasAnalysis *AA, OptimizationRemarkEmitter *ORE,
|
|
DomTreeUpdater &DTU);
|
|
};
|
|
} // namespace
|
|
|
|
CallInst *TailRecursionEliminator::findTRECandidate(BasicBlock *BB) {
|
|
Instruction *TI = BB->getTerminator();
|
|
|
|
if (&BB->front() == TI) // Make sure there is something before the terminator.
|
|
return nullptr;
|
|
|
|
// Scan backwards from the return, checking to see if there is a tail call in
|
|
// this block. If so, set CI to it.
|
|
CallInst *CI = nullptr;
|
|
BasicBlock::iterator BBI(TI);
|
|
while (true) {
|
|
CI = dyn_cast<CallInst>(BBI);
|
|
if (CI && CI->getCalledFunction() == &F)
|
|
break;
|
|
|
|
if (BBI == BB->begin())
|
|
return nullptr; // Didn't find a potential tail call.
|
|
--BBI;
|
|
}
|
|
|
|
assert((!CI->isTailCall() || !CI->isNoTailCall()) &&
|
|
"Incompatible call site attributes(Tail,NoTail)");
|
|
if (!CI->isTailCall())
|
|
return nullptr;
|
|
|
|
// As a special case, detect code like this:
|
|
// double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call
|
|
// and disable this xform in this case, because the code generator will
|
|
// lower the call to fabs into inline code.
|
|
if (BB == &F.getEntryBlock() &&
|
|
firstNonDbg(BB->front().getIterator()) == CI &&
|
|
firstNonDbg(std::next(BB->begin())) == TI && CI->getCalledFunction() &&
|
|
!TTI->isLoweredToCall(CI->getCalledFunction())) {
|
|
// A single-block function with just a call and a return. Check that
|
|
// the arguments match.
|
|
auto I = CI->arg_begin(), E = CI->arg_end();
|
|
Function::arg_iterator FI = F.arg_begin(), FE = F.arg_end();
|
|
for (; I != E && FI != FE; ++I, ++FI)
|
|
if (*I != &*FI) break;
|
|
if (I == E && FI == FE)
|
|
return nullptr;
|
|
}
|
|
|
|
return CI;
|
|
}
|
|
|
|
void TailRecursionEliminator::createTailRecurseLoopHeader(CallInst *CI) {
|
|
HeaderBB = &F.getEntryBlock();
|
|
BasicBlock *NewEntry = BasicBlock::Create(F.getContext(), "", &F, HeaderBB);
|
|
NewEntry->takeName(HeaderBB);
|
|
HeaderBB->setName("tailrecurse");
|
|
BranchInst *BI = BranchInst::Create(HeaderBB, NewEntry);
|
|
BI->setDebugLoc(CI->getDebugLoc());
|
|
|
|
// Move all fixed sized allocas from HeaderBB to NewEntry.
|
|
for (BasicBlock::iterator OEBI = HeaderBB->begin(), E = HeaderBB->end(),
|
|
NEBI = NewEntry->begin();
|
|
OEBI != E;)
|
|
if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++))
|
|
if (isa<ConstantInt>(AI->getArraySize()))
|
|
AI->moveBefore(&*NEBI);
|
|
|
|
// Now that we have created a new block, which jumps to the entry
|
|
// block, insert a PHI node for each argument of the function.
|
|
// For now, we initialize each PHI to only have the real arguments
|
|
// which are passed in.
|
|
Instruction *InsertPos = &HeaderBB->front();
|
|
for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
|
|
PHINode *PN =
|
|
PHINode::Create(I->getType(), 2, I->getName() + ".tr", InsertPos);
|
|
I->replaceAllUsesWith(PN); // Everyone use the PHI node now!
|
|
PN->addIncoming(&*I, NewEntry);
|
|
ArgumentPHIs.push_back(PN);
|
|
}
|
|
|
|
// If the function doen't return void, create the RetPN and RetKnownPN PHI
|
|
// nodes to track our return value. We initialize RetPN with undef and
|
|
// RetKnownPN with false since we can't know our return value at function
|
|
// entry.
|
|
Type *RetType = F.getReturnType();
|
|
if (!RetType->isVoidTy()) {
|
|
Type *BoolType = Type::getInt1Ty(F.getContext());
|
|
RetPN = PHINode::Create(RetType, 2, "ret.tr", InsertPos);
|
|
RetKnownPN = PHINode::Create(BoolType, 2, "ret.known.tr", InsertPos);
|
|
|
|
RetPN->addIncoming(UndefValue::get(RetType), NewEntry);
|
|
RetKnownPN->addIncoming(ConstantInt::getFalse(BoolType), NewEntry);
|
|
}
|
|
|
|
// The entry block was changed from HeaderBB to NewEntry.
|
|
// The forward DominatorTree needs to be recalculated when the EntryBB is
|
|
// changed. In this corner-case we recalculate the entire tree.
|
|
DTU.recalculate(*NewEntry->getParent());
|
|
}
|
|
|
|
void TailRecursionEliminator::insertAccumulator(Instruction *AccRecInstr) {
|
|
assert(!AccPN && "Trying to insert multiple accumulators");
|
|
|
|
AccumulatorRecursionInstr = AccRecInstr;
|
|
|
|
// Start by inserting a new PHI node for the accumulator.
|
|
pred_iterator PB = pred_begin(HeaderBB), PE = pred_end(HeaderBB);
|
|
AccPN = PHINode::Create(F.getReturnType(), std::distance(PB, PE) + 1,
|
|
"accumulator.tr", &HeaderBB->front());
|
|
|
|
// Loop over all of the predecessors of the tail recursion block. For the
|
|
// real entry into the function we seed the PHI with the identity constant for
|
|
// the accumulation operation. For any other existing branches to this block
|
|
// (due to other tail recursions eliminated) the accumulator is not modified.
|
|
// Because we haven't added the branch in the current block to HeaderBB yet,
|
|
// it will not show up as a predecessor.
|
|
for (pred_iterator PI = PB; PI != PE; ++PI) {
|
|
BasicBlock *P = *PI;
|
|
if (P == &F.getEntryBlock()) {
|
|
Constant *Identity = ConstantExpr::getBinOpIdentity(
|
|
AccRecInstr->getOpcode(), AccRecInstr->getType());
|
|
AccPN->addIncoming(Identity, P);
|
|
} else {
|
|
AccPN->addIncoming(AccPN, P);
|
|
}
|
|
}
|
|
|
|
++NumAccumAdded;
|
|
}
|
|
|
|
// Creates a copy of contents of ByValue operand of the specified
|
|
// call instruction into the newly created temporarily variable.
|
|
void TailRecursionEliminator::copyByValueOperandIntoLocalTemp(CallInst *CI,
|
|
int OpndIdx) {
|
|
PointerType *ArgTy = cast<PointerType>(CI->getArgOperand(OpndIdx)->getType());
|
|
Type *AggTy = ArgTy->getElementType();
|
|
const DataLayout &DL = F.getParent()->getDataLayout();
|
|
|
|
// Get alignment of byVal operand.
|
|
Align Alignment(CI->getParamAlign(OpndIdx).valueOrOne());
|
|
|
|
// Create alloca for temporarily byval operands.
|
|
// Put alloca into the entry block.
|
|
Value *NewAlloca = new AllocaInst(
|
|
AggTy, DL.getAllocaAddrSpace(), nullptr, Alignment,
|
|
CI->getArgOperand(OpndIdx)->getName(), &*F.getEntryBlock().begin());
|
|
|
|
IRBuilder<> Builder(CI);
|
|
Value *Size = Builder.getInt64(DL.getTypeAllocSize(AggTy));
|
|
|
|
// Copy data from byvalue operand into the temporarily variable.
|
|
Builder.CreateMemCpy(NewAlloca, /*DstAlign*/ Alignment,
|
|
CI->getArgOperand(OpndIdx),
|
|
/*SrcAlign*/ Alignment, Size);
|
|
CI->setArgOperand(OpndIdx, NewAlloca);
|
|
}
|
|
|
|
// Creates a copy from temporarily variable(keeping value of ByVal argument)
|
|
// into the corresponding function argument location.
|
|
void TailRecursionEliminator::copyLocalTempOfByValueOperandIntoArguments(
|
|
CallInst *CI, int OpndIdx) {
|
|
PointerType *ArgTy = cast<PointerType>(CI->getArgOperand(OpndIdx)->getType());
|
|
Type *AggTy = ArgTy->getElementType();
|
|
const DataLayout &DL = F.getParent()->getDataLayout();
|
|
|
|
// Get alignment of byVal operand.
|
|
Align Alignment(CI->getParamAlign(OpndIdx).valueOrOne());
|
|
|
|
IRBuilder<> Builder(CI);
|
|
Value *Size = Builder.getInt64(DL.getTypeAllocSize(AggTy));
|
|
|
|
// Copy data from the temporarily variable into corresponding
|
|
// function argument location.
|
|
Builder.CreateMemCpy(F.getArg(OpndIdx), /*DstAlign*/ Alignment,
|
|
CI->getArgOperand(OpndIdx),
|
|
/*SrcAlign*/ Alignment, Size);
|
|
}
|
|
|
|
bool TailRecursionEliminator::eliminateCall(CallInst *CI) {
|
|
ReturnInst *Ret = cast<ReturnInst>(CI->getParent()->getTerminator());
|
|
|
|
// Ok, we found a potential tail call. We can currently only transform the
|
|
// tail call if all of the instructions between the call and the return are
|
|
// movable to above the call itself, leaving the call next to the return.
|
|
// Check that this is the case now.
|
|
Instruction *AccRecInstr = nullptr;
|
|
BasicBlock::iterator BBI(CI);
|
|
for (++BBI; &*BBI != Ret; ++BBI) {
|
|
if (canMoveAboveCall(&*BBI, CI, AA))
|
|
continue;
|
|
|
|
// If we can't move the instruction above the call, it might be because it
|
|
// is an associative and commutative operation that could be transformed
|
|
// using accumulator recursion elimination. Check to see if this is the
|
|
// case, and if so, remember which instruction accumulates for later.
|
|
if (AccPN || !canTransformAccumulatorRecursion(&*BBI, CI))
|
|
return false; // We cannot eliminate the tail recursion!
|
|
|
|
// Yes, this is accumulator recursion. Remember which instruction
|
|
// accumulates.
|
|
AccRecInstr = &*BBI;
|
|
}
|
|
|
|
BasicBlock *BB = Ret->getParent();
|
|
|
|
using namespace ore;
|
|
ORE->emit([&]() {
|
|
return OptimizationRemark(DEBUG_TYPE, "tailcall-recursion", CI)
|
|
<< "transforming tail recursion into loop";
|
|
});
|
|
|
|
// OK! We can transform this tail call. If this is the first one found,
|
|
// create the new entry block, allowing us to branch back to the old entry.
|
|
if (!HeaderBB)
|
|
createTailRecurseLoopHeader(CI);
|
|
|
|
// Copy values of ByVal operands into local temporarily variables.
|
|
for (unsigned I = 0, E = CI->getNumArgOperands(); I != E; ++I) {
|
|
if (CI->isByValArgument(I))
|
|
copyByValueOperandIntoLocalTemp(CI, I);
|
|
}
|
|
|
|
// Ok, now that we know we have a pseudo-entry block WITH all of the
|
|
// required PHI nodes, add entries into the PHI node for the actual
|
|
// parameters passed into the tail-recursive call.
|
|
for (unsigned I = 0, E = CI->getNumArgOperands(); I != E; ++I) {
|
|
if (CI->isByValArgument(I)) {
|
|
copyLocalTempOfByValueOperandIntoArguments(CI, I);
|
|
ArgumentPHIs[I]->addIncoming(F.getArg(I), BB);
|
|
} else
|
|
ArgumentPHIs[I]->addIncoming(CI->getArgOperand(I), BB);
|
|
}
|
|
|
|
if (AccRecInstr) {
|
|
insertAccumulator(AccRecInstr);
|
|
|
|
// Rewrite the accumulator recursion instruction so that it does not use
|
|
// the result of the call anymore, instead, use the PHI node we just
|
|
// inserted.
|
|
AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN);
|
|
}
|
|
|
|
// Update our return value tracking
|
|
if (RetPN) {
|
|
if (Ret->getReturnValue() == CI || AccRecInstr) {
|
|
// Defer selecting a return value
|
|
RetPN->addIncoming(RetPN, BB);
|
|
RetKnownPN->addIncoming(RetKnownPN, BB);
|
|
} else {
|
|
// We found a return value we want to use, insert a select instruction to
|
|
// select it if we don't already know what our return value will be and
|
|
// store the result in our return value PHI node.
|
|
SelectInst *SI = SelectInst::Create(
|
|
RetKnownPN, RetPN, Ret->getReturnValue(), "current.ret.tr", Ret);
|
|
RetSelects.push_back(SI);
|
|
|
|
RetPN->addIncoming(SI, BB);
|
|
RetKnownPN->addIncoming(ConstantInt::getTrue(RetKnownPN->getType()), BB);
|
|
}
|
|
|
|
if (AccPN)
|
|
AccPN->addIncoming(AccRecInstr ? AccRecInstr : AccPN, BB);
|
|
}
|
|
|
|
// Now that all of the PHI nodes are in place, remove the call and
|
|
// ret instructions, replacing them with an unconditional branch.
|
|
BranchInst *NewBI = BranchInst::Create(HeaderBB, Ret);
|
|
NewBI->setDebugLoc(CI->getDebugLoc());
|
|
|
|
BB->getInstList().erase(Ret); // Remove return.
|
|
BB->getInstList().erase(CI); // Remove call.
|
|
DTU.applyUpdates({{DominatorTree::Insert, BB, HeaderBB}});
|
|
++NumEliminated;
|
|
return true;
|
|
}
|
|
|
|
void TailRecursionEliminator::cleanupAndFinalize() {
|
|
// If we eliminated any tail recursions, it's possible that we inserted some
|
|
// silly PHI nodes which just merge an initial value (the incoming operand)
|
|
// with themselves. Check to see if we did and clean up our mess if so. This
|
|
// occurs when a function passes an argument straight through to its tail
|
|
// call.
|
|
for (PHINode *PN : ArgumentPHIs) {
|
|
// If the PHI Node is a dynamic constant, replace it with the value it is.
|
|
if (Value *PNV = SimplifyInstruction(PN, F.getParent()->getDataLayout())) {
|
|
PN->replaceAllUsesWith(PNV);
|
|
PN->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
if (RetPN) {
|
|
if (RetSelects.empty()) {
|
|
// If we didn't insert any select instructions, then we know we didn't
|
|
// store a return value and we can remove the PHI nodes we inserted.
|
|
RetPN->dropAllReferences();
|
|
RetPN->eraseFromParent();
|
|
|
|
RetKnownPN->dropAllReferences();
|
|
RetKnownPN->eraseFromParent();
|
|
|
|
if (AccPN) {
|
|
// We need to insert a copy of our accumulator instruction before any
|
|
// return in the function, and return its result instead.
|
|
Instruction *AccRecInstr = AccumulatorRecursionInstr;
|
|
for (BasicBlock &BB : F) {
|
|
ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator());
|
|
if (!RI)
|
|
continue;
|
|
|
|
Instruction *AccRecInstrNew = AccRecInstr->clone();
|
|
AccRecInstrNew->setName("accumulator.ret.tr");
|
|
AccRecInstrNew->setOperand(AccRecInstr->getOperand(0) == AccPN,
|
|
RI->getOperand(0));
|
|
AccRecInstrNew->insertBefore(RI);
|
|
RI->setOperand(0, AccRecInstrNew);
|
|
}
|
|
}
|
|
} else {
|
|
// We need to insert a select instruction before any return left in the
|
|
// function to select our stored return value if we have one.
|
|
for (BasicBlock &BB : F) {
|
|
ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator());
|
|
if (!RI)
|
|
continue;
|
|
|
|
SelectInst *SI = SelectInst::Create(
|
|
RetKnownPN, RetPN, RI->getOperand(0), "current.ret.tr", RI);
|
|
RetSelects.push_back(SI);
|
|
RI->setOperand(0, SI);
|
|
}
|
|
|
|
if (AccPN) {
|
|
// We need to insert a copy of our accumulator instruction before any
|
|
// of the selects we inserted, and select its result instead.
|
|
Instruction *AccRecInstr = AccumulatorRecursionInstr;
|
|
for (SelectInst *SI : RetSelects) {
|
|
Instruction *AccRecInstrNew = AccRecInstr->clone();
|
|
AccRecInstrNew->setName("accumulator.ret.tr");
|
|
AccRecInstrNew->setOperand(AccRecInstr->getOperand(0) == AccPN,
|
|
SI->getFalseValue());
|
|
AccRecInstrNew->insertBefore(SI);
|
|
SI->setFalseValue(AccRecInstrNew);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool TailRecursionEliminator::processBlock(BasicBlock &BB) {
|
|
Instruction *TI = BB.getTerminator();
|
|
|
|
if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
|
|
if (BI->isConditional())
|
|
return false;
|
|
|
|
BasicBlock *Succ = BI->getSuccessor(0);
|
|
ReturnInst *Ret = dyn_cast<ReturnInst>(Succ->getFirstNonPHIOrDbg(true));
|
|
|
|
if (!Ret)
|
|
return false;
|
|
|
|
CallInst *CI = findTRECandidate(&BB);
|
|
|
|
if (!CI)
|
|
return false;
|
|
|
|
LLVM_DEBUG(dbgs() << "FOLDING: " << *Succ
|
|
<< "INTO UNCOND BRANCH PRED: " << BB);
|
|
FoldReturnIntoUncondBranch(Ret, Succ, &BB, &DTU);
|
|
++NumRetDuped;
|
|
|
|
// If all predecessors of Succ have been eliminated by
|
|
// FoldReturnIntoUncondBranch, delete it. It is important to empty it,
|
|
// because the ret instruction in there is still using a value which
|
|
// eliminateCall will attempt to remove. This block can only contain
|
|
// instructions that can't have uses, therefore it is safe to remove.
|
|
if (pred_empty(Succ))
|
|
DTU.deleteBB(Succ);
|
|
|
|
eliminateCall(CI);
|
|
return true;
|
|
} else if (isa<ReturnInst>(TI)) {
|
|
CallInst *CI = findTRECandidate(&BB);
|
|
|
|
if (CI)
|
|
return eliminateCall(CI);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool TailRecursionEliminator::eliminate(Function &F,
|
|
const TargetTransformInfo *TTI,
|
|
AliasAnalysis *AA,
|
|
OptimizationRemarkEmitter *ORE,
|
|
DomTreeUpdater &DTU) {
|
|
if (F.getFnAttribute("disable-tail-calls").getValueAsBool())
|
|
return false;
|
|
|
|
bool MadeChange = false;
|
|
MadeChange |= markTails(F, ORE);
|
|
|
|
// If this function is a varargs function, we won't be able to PHI the args
|
|
// right, so don't even try to convert it...
|
|
if (F.getFunctionType()->isVarArg())
|
|
return MadeChange;
|
|
|
|
if (!canTRE(F))
|
|
return MadeChange;
|
|
|
|
// Change any tail recursive calls to loops.
|
|
TailRecursionEliminator TRE(F, TTI, AA, ORE, DTU);
|
|
|
|
for (BasicBlock &BB : F)
|
|
MadeChange |= TRE.processBlock(BB);
|
|
|
|
TRE.cleanupAndFinalize();
|
|
|
|
return MadeChange;
|
|
}
|
|
|
|
namespace {
|
|
struct TailCallElim : public FunctionPass {
|
|
static char ID; // Pass identification, replacement for typeid
|
|
TailCallElim() : FunctionPass(ID) {
|
|
initializeTailCallElimPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<TargetTransformInfoWrapperPass>();
|
|
AU.addRequired<AAResultsWrapperPass>();
|
|
AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
|
|
AU.addPreserved<GlobalsAAWrapperPass>();
|
|
AU.addPreserved<DominatorTreeWrapperPass>();
|
|
AU.addPreserved<PostDominatorTreeWrapperPass>();
|
|
}
|
|
|
|
bool runOnFunction(Function &F) override {
|
|
if (skipFunction(F))
|
|
return false;
|
|
|
|
auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
|
|
auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
|
|
auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>();
|
|
auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr;
|
|
// There is no noticable performance difference here between Lazy and Eager
|
|
// UpdateStrategy based on some test results. It is feasible to switch the
|
|
// UpdateStrategy to Lazy if we find it profitable later.
|
|
DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager);
|
|
|
|
return TailRecursionEliminator::eliminate(
|
|
F, &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F),
|
|
&getAnalysis<AAResultsWrapperPass>().getAAResults(),
|
|
&getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(), DTU);
|
|
}
|
|
};
|
|
}
|
|
|
|
char TailCallElim::ID = 0;
|
|
INITIALIZE_PASS_BEGIN(TailCallElim, "tailcallelim", "Tail Call Elimination",
|
|
false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
|
|
INITIALIZE_PASS_END(TailCallElim, "tailcallelim", "Tail Call Elimination",
|
|
false, false)
|
|
|
|
// Public interface to the TailCallElimination pass
|
|
FunctionPass *llvm::createTailCallEliminationPass() {
|
|
return new TailCallElim();
|
|
}
|
|
|
|
PreservedAnalyses TailCallElimPass::run(Function &F,
|
|
FunctionAnalysisManager &AM) {
|
|
|
|
TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F);
|
|
AliasAnalysis &AA = AM.getResult<AAManager>(F);
|
|
auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
|
|
auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F);
|
|
auto *PDT = AM.getCachedResult<PostDominatorTreeAnalysis>(F);
|
|
// There is no noticable performance difference here between Lazy and Eager
|
|
// UpdateStrategy based on some test results. It is feasible to switch the
|
|
// UpdateStrategy to Lazy if we find it profitable later.
|
|
DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager);
|
|
bool Changed = TailRecursionEliminator::eliminate(F, &TTI, &AA, &ORE, DTU);
|
|
|
|
if (!Changed)
|
|
return PreservedAnalyses::all();
|
|
PreservedAnalyses PA;
|
|
PA.preserve<DominatorTreeAnalysis>();
|
|
PA.preserve<PostDominatorTreeAnalysis>();
|
|
return PA;
|
|
}
|