1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 12:12:47 +01:00
llvm-mirror/lib/CodeGen/ReachingDefAnalysis.cpp
David Green cedff971cb [RDA] Fix printing of regs / reg units. NFC
It was printing RegUnits as Regs, leading to much confusion in the debug
logs.
2021-05-18 08:07:30 +01:00

709 lines
23 KiB
C++

//===---- ReachingDefAnalysis.cpp - Reaching Def Analysis ---*- C++ -*-----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/CodeGen/LivePhysRegs.h"
#include "llvm/CodeGen/ReachingDefAnalysis.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/Support/Debug.h"
using namespace llvm;
#define DEBUG_TYPE "reaching-deps-analysis"
char ReachingDefAnalysis::ID = 0;
INITIALIZE_PASS(ReachingDefAnalysis, DEBUG_TYPE, "ReachingDefAnalysis", false,
true)
static bool isValidReg(const MachineOperand &MO) {
return MO.isReg() && MO.getReg();
}
static bool isValidRegUse(const MachineOperand &MO) {
return isValidReg(MO) && MO.isUse();
}
static bool isValidRegUseOf(const MachineOperand &MO, MCRegister PhysReg) {
return isValidRegUse(MO) && MO.getReg() == PhysReg;
}
static bool isValidRegDef(const MachineOperand &MO) {
return isValidReg(MO) && MO.isDef();
}
static bool isValidRegDefOf(const MachineOperand &MO, MCRegister PhysReg) {
return isValidRegDef(MO) && MO.getReg() == PhysReg;
}
void ReachingDefAnalysis::enterBasicBlock(MachineBasicBlock *MBB) {
unsigned MBBNumber = MBB->getNumber();
assert(MBBNumber < MBBReachingDefs.size() &&
"Unexpected basic block number.");
MBBReachingDefs[MBBNumber].resize(NumRegUnits);
// Reset instruction counter in each basic block.
CurInstr = 0;
// Set up LiveRegs to represent registers entering MBB.
// Default values are 'nothing happened a long time ago'.
if (LiveRegs.empty())
LiveRegs.assign(NumRegUnits, ReachingDefDefaultVal);
// This is the entry block.
if (MBB->pred_empty()) {
for (const auto &LI : MBB->liveins()) {
for (MCRegUnitIterator Unit(LI.PhysReg, TRI); Unit.isValid(); ++Unit) {
// Treat function live-ins as if they were defined just before the first
// instruction. Usually, function arguments are set up immediately
// before the call.
if (LiveRegs[*Unit] != -1) {
LiveRegs[*Unit] = -1;
MBBReachingDefs[MBBNumber][*Unit].push_back(-1);
}
}
}
LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << ": entry\n");
return;
}
// Try to coalesce live-out registers from predecessors.
for (MachineBasicBlock *pred : MBB->predecessors()) {
assert(unsigned(pred->getNumber()) < MBBOutRegsInfos.size() &&
"Should have pre-allocated MBBInfos for all MBBs");
const LiveRegsDefInfo &Incoming = MBBOutRegsInfos[pred->getNumber()];
// Incoming is null if this is a backedge from a BB
// we haven't processed yet
if (Incoming.empty())
continue;
// Find the most recent reaching definition from a predecessor.
for (unsigned Unit = 0; Unit != NumRegUnits; ++Unit)
LiveRegs[Unit] = std::max(LiveRegs[Unit], Incoming[Unit]);
}
// Insert the most recent reaching definition we found.
for (unsigned Unit = 0; Unit != NumRegUnits; ++Unit)
if (LiveRegs[Unit] != ReachingDefDefaultVal)
MBBReachingDefs[MBBNumber][Unit].push_back(LiveRegs[Unit]);
}
void ReachingDefAnalysis::leaveBasicBlock(MachineBasicBlock *MBB) {
assert(!LiveRegs.empty() && "Must enter basic block first.");
unsigned MBBNumber = MBB->getNumber();
assert(MBBNumber < MBBOutRegsInfos.size() &&
"Unexpected basic block number.");
// Save register clearances at end of MBB - used by enterBasicBlock().
MBBOutRegsInfos[MBBNumber] = LiveRegs;
// While processing the basic block, we kept `Def` relative to the start
// of the basic block for convenience. However, future use of this information
// only cares about the clearance from the end of the block, so adjust
// everything to be relative to the end of the basic block.
for (int &OutLiveReg : MBBOutRegsInfos[MBBNumber])
if (OutLiveReg != ReachingDefDefaultVal)
OutLiveReg -= CurInstr;
LiveRegs.clear();
}
void ReachingDefAnalysis::processDefs(MachineInstr *MI) {
assert(!MI->isDebugInstr() && "Won't process debug instructions");
unsigned MBBNumber = MI->getParent()->getNumber();
assert(MBBNumber < MBBReachingDefs.size() &&
"Unexpected basic block number.");
for (auto &MO : MI->operands()) {
if (!isValidRegDef(MO))
continue;
for (MCRegUnitIterator Unit(MO.getReg().asMCReg(), TRI); Unit.isValid();
++Unit) {
// This instruction explicitly defines the current reg unit.
LLVM_DEBUG(dbgs() << printRegUnit(*Unit, TRI) << ":\t" << CurInstr
<< '\t' << *MI);
// How many instructions since this reg unit was last written?
if (LiveRegs[*Unit] != CurInstr) {
LiveRegs[*Unit] = CurInstr;
MBBReachingDefs[MBBNumber][*Unit].push_back(CurInstr);
}
}
}
InstIds[MI] = CurInstr;
++CurInstr;
}
void ReachingDefAnalysis::reprocessBasicBlock(MachineBasicBlock *MBB) {
unsigned MBBNumber = MBB->getNumber();
assert(MBBNumber < MBBReachingDefs.size() &&
"Unexpected basic block number.");
// Count number of non-debug instructions for end of block adjustment.
auto NonDbgInsts =
instructionsWithoutDebug(MBB->instr_begin(), MBB->instr_end());
int NumInsts = std::distance(NonDbgInsts.begin(), NonDbgInsts.end());
// When reprocessing a block, the only thing we need to do is check whether
// there is now a more recent incoming reaching definition from a predecessor.
for (MachineBasicBlock *pred : MBB->predecessors()) {
assert(unsigned(pred->getNumber()) < MBBOutRegsInfos.size() &&
"Should have pre-allocated MBBInfos for all MBBs");
const LiveRegsDefInfo &Incoming = MBBOutRegsInfos[pred->getNumber()];
// Incoming may be empty for dead predecessors.
if (Incoming.empty())
continue;
for (unsigned Unit = 0; Unit != NumRegUnits; ++Unit) {
int Def = Incoming[Unit];
if (Def == ReachingDefDefaultVal)
continue;
auto Start = MBBReachingDefs[MBBNumber][Unit].begin();
if (Start != MBBReachingDefs[MBBNumber][Unit].end() && *Start < 0) {
if (*Start >= Def)
continue;
// Update existing reaching def from predecessor to a more recent one.
*Start = Def;
} else {
// Insert new reaching def from predecessor.
MBBReachingDefs[MBBNumber][Unit].insert(Start, Def);
}
// Update reaching def at end of of BB. Keep in mind that these are
// adjusted relative to the end of the basic block.
if (MBBOutRegsInfos[MBBNumber][Unit] < Def - NumInsts)
MBBOutRegsInfos[MBBNumber][Unit] = Def - NumInsts;
}
}
}
void ReachingDefAnalysis::processBasicBlock(
const LoopTraversal::TraversedMBBInfo &TraversedMBB) {
MachineBasicBlock *MBB = TraversedMBB.MBB;
LLVM_DEBUG(dbgs() << printMBBReference(*MBB)
<< (!TraversedMBB.IsDone ? ": incomplete\n"
: ": all preds known\n"));
if (!TraversedMBB.PrimaryPass) {
// Reprocess MBB that is part of a loop.
reprocessBasicBlock(MBB);
return;
}
enterBasicBlock(MBB);
for (MachineInstr &MI :
instructionsWithoutDebug(MBB->instr_begin(), MBB->instr_end()))
processDefs(&MI);
leaveBasicBlock(MBB);
}
bool ReachingDefAnalysis::runOnMachineFunction(MachineFunction &mf) {
MF = &mf;
TRI = MF->getSubtarget().getRegisterInfo();
LLVM_DEBUG(dbgs() << "********** REACHING DEFINITION ANALYSIS **********\n");
init();
traverse();
return false;
}
void ReachingDefAnalysis::releaseMemory() {
// Clear the internal vectors.
MBBOutRegsInfos.clear();
MBBReachingDefs.clear();
InstIds.clear();
LiveRegs.clear();
}
void ReachingDefAnalysis::reset() {
releaseMemory();
init();
traverse();
}
void ReachingDefAnalysis::init() {
NumRegUnits = TRI->getNumRegUnits();
MBBReachingDefs.resize(MF->getNumBlockIDs());
// Initialize the MBBOutRegsInfos
MBBOutRegsInfos.resize(MF->getNumBlockIDs());
LoopTraversal Traversal;
TraversedMBBOrder = Traversal.traverse(*MF);
}
void ReachingDefAnalysis::traverse() {
// Traverse the basic blocks.
for (LoopTraversal::TraversedMBBInfo TraversedMBB : TraversedMBBOrder)
processBasicBlock(TraversedMBB);
#ifndef NDEBUG
// Make sure reaching defs are sorted and unique.
for (MBBDefsInfo &MBBDefs : MBBReachingDefs) {
for (MBBRegUnitDefs &RegUnitDefs : MBBDefs) {
int LastDef = ReachingDefDefaultVal;
for (int Def : RegUnitDefs) {
assert(Def > LastDef && "Defs must be sorted and unique");
LastDef = Def;
}
}
}
#endif
}
int ReachingDefAnalysis::getReachingDef(MachineInstr *MI,
MCRegister PhysReg) const {
assert(InstIds.count(MI) && "Unexpected machine instuction.");
int InstId = InstIds.lookup(MI);
int DefRes = ReachingDefDefaultVal;
unsigned MBBNumber = MI->getParent()->getNumber();
assert(MBBNumber < MBBReachingDefs.size() &&
"Unexpected basic block number.");
int LatestDef = ReachingDefDefaultVal;
for (MCRegUnitIterator Unit(PhysReg, TRI); Unit.isValid(); ++Unit) {
for (int Def : MBBReachingDefs[MBBNumber][*Unit]) {
if (Def >= InstId)
break;
DefRes = Def;
}
LatestDef = std::max(LatestDef, DefRes);
}
return LatestDef;
}
MachineInstr *
ReachingDefAnalysis::getReachingLocalMIDef(MachineInstr *MI,
MCRegister PhysReg) const {
return hasLocalDefBefore(MI, PhysReg)
? getInstFromId(MI->getParent(), getReachingDef(MI, PhysReg))
: nullptr;
}
bool ReachingDefAnalysis::hasSameReachingDef(MachineInstr *A, MachineInstr *B,
MCRegister PhysReg) const {
MachineBasicBlock *ParentA = A->getParent();
MachineBasicBlock *ParentB = B->getParent();
if (ParentA != ParentB)
return false;
return getReachingDef(A, PhysReg) == getReachingDef(B, PhysReg);
}
MachineInstr *ReachingDefAnalysis::getInstFromId(MachineBasicBlock *MBB,
int InstId) const {
assert(static_cast<size_t>(MBB->getNumber()) < MBBReachingDefs.size() &&
"Unexpected basic block number.");
assert(InstId < static_cast<int>(MBB->size()) &&
"Unexpected instruction id.");
if (InstId < 0)
return nullptr;
for (auto &MI : *MBB) {
auto F = InstIds.find(&MI);
if (F != InstIds.end() && F->second == InstId)
return &MI;
}
return nullptr;
}
int ReachingDefAnalysis::getClearance(MachineInstr *MI,
MCRegister PhysReg) const {
assert(InstIds.count(MI) && "Unexpected machine instuction.");
return InstIds.lookup(MI) - getReachingDef(MI, PhysReg);
}
bool ReachingDefAnalysis::hasLocalDefBefore(MachineInstr *MI,
MCRegister PhysReg) const {
return getReachingDef(MI, PhysReg) >= 0;
}
void ReachingDefAnalysis::getReachingLocalUses(MachineInstr *Def,
MCRegister PhysReg,
InstSet &Uses) const {
MachineBasicBlock *MBB = Def->getParent();
MachineBasicBlock::iterator MI = MachineBasicBlock::iterator(Def);
while (++MI != MBB->end()) {
if (MI->isDebugInstr())
continue;
// If/when we find a new reaching def, we know that there's no more uses
// of 'Def'.
if (getReachingLocalMIDef(&*MI, PhysReg) != Def)
return;
for (auto &MO : MI->operands()) {
if (!isValidRegUseOf(MO, PhysReg))
continue;
Uses.insert(&*MI);
if (MO.isKill())
return;
}
}
}
bool ReachingDefAnalysis::getLiveInUses(MachineBasicBlock *MBB,
MCRegister PhysReg,
InstSet &Uses) const {
for (MachineInstr &MI :
instructionsWithoutDebug(MBB->instr_begin(), MBB->instr_end())) {
for (auto &MO : MI.operands()) {
if (!isValidRegUseOf(MO, PhysReg))
continue;
if (getReachingDef(&MI, PhysReg) >= 0)
return false;
Uses.insert(&MI);
}
}
auto Last = MBB->getLastNonDebugInstr();
if (Last == MBB->end())
return true;
return isReachingDefLiveOut(&*Last, PhysReg);
}
void ReachingDefAnalysis::getGlobalUses(MachineInstr *MI, MCRegister PhysReg,
InstSet &Uses) const {
MachineBasicBlock *MBB = MI->getParent();
// Collect the uses that each def touches within the block.
getReachingLocalUses(MI, PhysReg, Uses);
// Handle live-out values.
if (auto *LiveOut = getLocalLiveOutMIDef(MI->getParent(), PhysReg)) {
if (LiveOut != MI)
return;
SmallVector<MachineBasicBlock *, 4> ToVisit(MBB->successors());
SmallPtrSet<MachineBasicBlock*, 4>Visited;
while (!ToVisit.empty()) {
MachineBasicBlock *MBB = ToVisit.back();
ToVisit.pop_back();
if (Visited.count(MBB) || !MBB->isLiveIn(PhysReg))
continue;
if (getLiveInUses(MBB, PhysReg, Uses))
llvm::append_range(ToVisit, MBB->successors());
Visited.insert(MBB);
}
}
}
void ReachingDefAnalysis::getGlobalReachingDefs(MachineInstr *MI,
MCRegister PhysReg,
InstSet &Defs) const {
if (auto *Def = getUniqueReachingMIDef(MI, PhysReg)) {
Defs.insert(Def);
return;
}
for (auto *MBB : MI->getParent()->predecessors())
getLiveOuts(MBB, PhysReg, Defs);
}
void ReachingDefAnalysis::getLiveOuts(MachineBasicBlock *MBB,
MCRegister PhysReg, InstSet &Defs) const {
SmallPtrSet<MachineBasicBlock*, 2> VisitedBBs;
getLiveOuts(MBB, PhysReg, Defs, VisitedBBs);
}
void ReachingDefAnalysis::getLiveOuts(MachineBasicBlock *MBB,
MCRegister PhysReg, InstSet &Defs,
BlockSet &VisitedBBs) const {
if (VisitedBBs.count(MBB))
return;
VisitedBBs.insert(MBB);
LivePhysRegs LiveRegs(*TRI);
LiveRegs.addLiveOuts(*MBB);
if (!LiveRegs.contains(PhysReg))
return;
if (auto *Def = getLocalLiveOutMIDef(MBB, PhysReg))
Defs.insert(Def);
else
for (auto *Pred : MBB->predecessors())
getLiveOuts(Pred, PhysReg, Defs, VisitedBBs);
}
MachineInstr *
ReachingDefAnalysis::getUniqueReachingMIDef(MachineInstr *MI,
MCRegister PhysReg) const {
// If there's a local def before MI, return it.
MachineInstr *LocalDef = getReachingLocalMIDef(MI, PhysReg);
if (LocalDef && InstIds.lookup(LocalDef) < InstIds.lookup(MI))
return LocalDef;
SmallPtrSet<MachineInstr*, 2> Incoming;
MachineBasicBlock *Parent = MI->getParent();
for (auto *Pred : Parent->predecessors())
getLiveOuts(Pred, PhysReg, Incoming);
// Check that we have a single incoming value and that it does not
// come from the same block as MI - since it would mean that the def
// is executed after MI.
if (Incoming.size() == 1 && (*Incoming.begin())->getParent() != Parent)
return *Incoming.begin();
return nullptr;
}
MachineInstr *ReachingDefAnalysis::getMIOperand(MachineInstr *MI,
unsigned Idx) const {
assert(MI->getOperand(Idx).isReg() && "Expected register operand");
return getUniqueReachingMIDef(MI, MI->getOperand(Idx).getReg());
}
MachineInstr *ReachingDefAnalysis::getMIOperand(MachineInstr *MI,
MachineOperand &MO) const {
assert(MO.isReg() && "Expected register operand");
return getUniqueReachingMIDef(MI, MO.getReg());
}
bool ReachingDefAnalysis::isRegUsedAfter(MachineInstr *MI,
MCRegister PhysReg) const {
MachineBasicBlock *MBB = MI->getParent();
LivePhysRegs LiveRegs(*TRI);
LiveRegs.addLiveOuts(*MBB);
// Yes if the register is live out of the basic block.
if (LiveRegs.contains(PhysReg))
return true;
// Walk backwards through the block to see if the register is live at some
// point.
for (MachineInstr &Last :
instructionsWithoutDebug(MBB->instr_rbegin(), MBB->instr_rend())) {
LiveRegs.stepBackward(Last);
if (LiveRegs.contains(PhysReg))
return InstIds.lookup(&Last) > InstIds.lookup(MI);
}
return false;
}
bool ReachingDefAnalysis::isRegDefinedAfter(MachineInstr *MI,
MCRegister PhysReg) const {
MachineBasicBlock *MBB = MI->getParent();
auto Last = MBB->getLastNonDebugInstr();
if (Last != MBB->end() &&
getReachingDef(MI, PhysReg) != getReachingDef(&*Last, PhysReg))
return true;
if (auto *Def = getLocalLiveOutMIDef(MBB, PhysReg))
return Def == getReachingLocalMIDef(MI, PhysReg);
return false;
}
bool ReachingDefAnalysis::isReachingDefLiveOut(MachineInstr *MI,
MCRegister PhysReg) const {
MachineBasicBlock *MBB = MI->getParent();
LivePhysRegs LiveRegs(*TRI);
LiveRegs.addLiveOuts(*MBB);
if (!LiveRegs.contains(PhysReg))
return false;
auto Last = MBB->getLastNonDebugInstr();
int Def = getReachingDef(MI, PhysReg);
if (Last != MBB->end() && getReachingDef(&*Last, PhysReg) != Def)
return false;
// Finally check that the last instruction doesn't redefine the register.
for (auto &MO : Last->operands())
if (isValidRegDefOf(MO, PhysReg))
return false;
return true;
}
MachineInstr *
ReachingDefAnalysis::getLocalLiveOutMIDef(MachineBasicBlock *MBB,
MCRegister PhysReg) const {
LivePhysRegs LiveRegs(*TRI);
LiveRegs.addLiveOuts(*MBB);
if (!LiveRegs.contains(PhysReg))
return nullptr;
auto Last = MBB->getLastNonDebugInstr();
if (Last == MBB->end())
return nullptr;
int Def = getReachingDef(&*Last, PhysReg);
for (auto &MO : Last->operands())
if (isValidRegDefOf(MO, PhysReg))
return &*Last;
return Def < 0 ? nullptr : getInstFromId(MBB, Def);
}
static bool mayHaveSideEffects(MachineInstr &MI) {
return MI.mayLoadOrStore() || MI.mayRaiseFPException() ||
MI.hasUnmodeledSideEffects() || MI.isTerminator() ||
MI.isCall() || MI.isBarrier() || MI.isBranch() || MI.isReturn();
}
// Can we safely move 'From' to just before 'To'? To satisfy this, 'From' must
// not define a register that is used by any instructions, after and including,
// 'To'. These instructions also must not redefine any of Froms operands.
template<typename Iterator>
bool ReachingDefAnalysis::isSafeToMove(MachineInstr *From,
MachineInstr *To) const {
if (From->getParent() != To->getParent() || From == To)
return false;
SmallSet<int, 2> Defs;
// First check that From would compute the same value if moved.
for (auto &MO : From->operands()) {
if (!isValidReg(MO))
continue;
if (MO.isDef())
Defs.insert(MO.getReg());
else if (!hasSameReachingDef(From, To, MO.getReg()))
return false;
}
// Now walk checking that the rest of the instructions will compute the same
// value and that we're not overwriting anything. Don't move the instruction
// past any memory, control-flow or other ambiguous instructions.
for (auto I = ++Iterator(From), E = Iterator(To); I != E; ++I) {
if (mayHaveSideEffects(*I))
return false;
for (auto &MO : I->operands())
if (MO.isReg() && MO.getReg() && Defs.count(MO.getReg()))
return false;
}
return true;
}
bool ReachingDefAnalysis::isSafeToMoveForwards(MachineInstr *From,
MachineInstr *To) const {
using Iterator = MachineBasicBlock::iterator;
// Walk forwards until we find the instruction.
for (auto I = Iterator(From), E = From->getParent()->end(); I != E; ++I)
if (&*I == To)
return isSafeToMove<Iterator>(From, To);
return false;
}
bool ReachingDefAnalysis::isSafeToMoveBackwards(MachineInstr *From,
MachineInstr *To) const {
using Iterator = MachineBasicBlock::reverse_iterator;
// Walk backwards until we find the instruction.
for (auto I = Iterator(From), E = From->getParent()->rend(); I != E; ++I)
if (&*I == To)
return isSafeToMove<Iterator>(From, To);
return false;
}
bool ReachingDefAnalysis::isSafeToRemove(MachineInstr *MI,
InstSet &ToRemove) const {
SmallPtrSet<MachineInstr*, 1> Ignore;
SmallPtrSet<MachineInstr*, 2> Visited;
return isSafeToRemove(MI, Visited, ToRemove, Ignore);
}
bool
ReachingDefAnalysis::isSafeToRemove(MachineInstr *MI, InstSet &ToRemove,
InstSet &Ignore) const {
SmallPtrSet<MachineInstr*, 2> Visited;
return isSafeToRemove(MI, Visited, ToRemove, Ignore);
}
bool
ReachingDefAnalysis::isSafeToRemove(MachineInstr *MI, InstSet &Visited,
InstSet &ToRemove, InstSet &Ignore) const {
if (Visited.count(MI) || Ignore.count(MI))
return true;
else if (mayHaveSideEffects(*MI)) {
// Unless told to ignore the instruction, don't remove anything which has
// side effects.
return false;
}
Visited.insert(MI);
for (auto &MO : MI->operands()) {
if (!isValidRegDef(MO))
continue;
SmallPtrSet<MachineInstr*, 4> Uses;
getGlobalUses(MI, MO.getReg(), Uses);
for (auto I : Uses) {
if (Ignore.count(I) || ToRemove.count(I))
continue;
if (!isSafeToRemove(I, Visited, ToRemove, Ignore))
return false;
}
}
ToRemove.insert(MI);
return true;
}
void ReachingDefAnalysis::collectKilledOperands(MachineInstr *MI,
InstSet &Dead) const {
Dead.insert(MI);
auto IsDead = [this, &Dead](MachineInstr *Def, MCRegister PhysReg) {
if (mayHaveSideEffects(*Def))
return false;
unsigned LiveDefs = 0;
for (auto &MO : Def->operands()) {
if (!isValidRegDef(MO))
continue;
if (!MO.isDead())
++LiveDefs;
}
if (LiveDefs > 1)
return false;
SmallPtrSet<MachineInstr*, 4> Uses;
getGlobalUses(Def, PhysReg, Uses);
return llvm::set_is_subset(Uses, Dead);
};
for (auto &MO : MI->operands()) {
if (!isValidRegUse(MO))
continue;
if (MachineInstr *Def = getMIOperand(MI, MO))
if (IsDead(Def, MO.getReg()))
collectKilledOperands(Def, Dead);
}
}
bool ReachingDefAnalysis::isSafeToDefRegAt(MachineInstr *MI,
MCRegister PhysReg) const {
SmallPtrSet<MachineInstr*, 1> Ignore;
return isSafeToDefRegAt(MI, PhysReg, Ignore);
}
bool ReachingDefAnalysis::isSafeToDefRegAt(MachineInstr *MI, MCRegister PhysReg,
InstSet &Ignore) const {
// Check for any uses of the register after MI.
if (isRegUsedAfter(MI, PhysReg)) {
if (auto *Def = getReachingLocalMIDef(MI, PhysReg)) {
SmallPtrSet<MachineInstr*, 2> Uses;
getGlobalUses(Def, PhysReg, Uses);
if (!llvm::set_is_subset(Uses, Ignore))
return false;
} else
return false;
}
MachineBasicBlock *MBB = MI->getParent();
// Check for any defs after MI.
if (isRegDefinedAfter(MI, PhysReg)) {
auto I = MachineBasicBlock::iterator(MI);
for (auto E = MBB->end(); I != E; ++I) {
if (Ignore.count(&*I))
continue;
for (auto &MO : I->operands())
if (isValidRegDefOf(MO, PhysReg))
return false;
}
}
return true;
}