mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-24 03:33:20 +01:00
25eaa3c70d
This exposes a method in MachineFrameInfo that calculates MaxCallFrameSize and calls it after instruction selection in the ARM target. This avoids ARMBaseRegisterInfo::canRealignStack()/ARMFrameLowering::hasReservedCallFrame() giving different answers in early/late phases of codegen. The testcase shows a particular nasty example result of that where we would fail to properly align an alloca. Differential Revision: https://reviews.llvm.org/D32622 llvm-svn: 302303
687 lines
28 KiB
C++
687 lines
28 KiB
C++
//===-- CodeGen/MachineFrameInfo.h - Abstract Stack Frame Rep. --*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// The file defines the MachineFrameInfo class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_CODEGEN_MACHINEFRAMEINFO_H
|
|
#define LLVM_CODEGEN_MACHINEFRAMEINFO_H
|
|
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Support/DataTypes.h"
|
|
#include <cassert>
|
|
#include <vector>
|
|
|
|
namespace llvm {
|
|
class raw_ostream;
|
|
class MachineFunction;
|
|
class MachineBasicBlock;
|
|
class BitVector;
|
|
class AllocaInst;
|
|
|
|
/// The CalleeSavedInfo class tracks the information need to locate where a
|
|
/// callee saved register is in the current frame.
|
|
class CalleeSavedInfo {
|
|
unsigned Reg;
|
|
int FrameIdx;
|
|
|
|
public:
|
|
explicit CalleeSavedInfo(unsigned R, int FI = 0)
|
|
: Reg(R), FrameIdx(FI) {}
|
|
|
|
// Accessors.
|
|
unsigned getReg() const { return Reg; }
|
|
int getFrameIdx() const { return FrameIdx; }
|
|
void setFrameIdx(int FI) { FrameIdx = FI; }
|
|
};
|
|
|
|
/// The MachineFrameInfo class represents an abstract stack frame until
|
|
/// prolog/epilog code is inserted. This class is key to allowing stack frame
|
|
/// representation optimizations, such as frame pointer elimination. It also
|
|
/// allows more mundane (but still important) optimizations, such as reordering
|
|
/// of abstract objects on the stack frame.
|
|
///
|
|
/// To support this, the class assigns unique integer identifiers to stack
|
|
/// objects requested clients. These identifiers are negative integers for
|
|
/// fixed stack objects (such as arguments passed on the stack) or nonnegative
|
|
/// for objects that may be reordered. Instructions which refer to stack
|
|
/// objects use a special MO_FrameIndex operand to represent these frame
|
|
/// indexes.
|
|
///
|
|
/// Because this class keeps track of all references to the stack frame, it
|
|
/// knows when a variable sized object is allocated on the stack. This is the
|
|
/// sole condition which prevents frame pointer elimination, which is an
|
|
/// important optimization on register-poor architectures. Because original
|
|
/// variable sized alloca's in the source program are the only source of
|
|
/// variable sized stack objects, it is safe to decide whether there will be
|
|
/// any variable sized objects before all stack objects are known (for
|
|
/// example, register allocator spill code never needs variable sized
|
|
/// objects).
|
|
///
|
|
/// When prolog/epilog code emission is performed, the final stack frame is
|
|
/// built and the machine instructions are modified to refer to the actual
|
|
/// stack offsets of the object, eliminating all MO_FrameIndex operands from
|
|
/// the program.
|
|
///
|
|
/// @brief Abstract Stack Frame Information
|
|
class MachineFrameInfo {
|
|
|
|
// Represent a single object allocated on the stack.
|
|
struct StackObject {
|
|
// The offset of this object from the stack pointer on entry to
|
|
// the function. This field has no meaning for a variable sized element.
|
|
int64_t SPOffset;
|
|
|
|
// The size of this object on the stack. 0 means a variable sized object,
|
|
// ~0ULL means a dead object.
|
|
uint64_t Size;
|
|
|
|
// The required alignment of this stack slot.
|
|
unsigned Alignment;
|
|
|
|
// If true, the value of the stack object is set before
|
|
// entering the function and is not modified inside the function. By
|
|
// default, fixed objects are immutable unless marked otherwise.
|
|
bool isImmutable;
|
|
|
|
// If true the stack object is used as spill slot. It
|
|
// cannot alias any other memory objects.
|
|
bool isSpillSlot;
|
|
|
|
/// If true, this stack slot is used to spill a value (could be deopt
|
|
/// and/or GC related) over a statepoint. We know that the address of the
|
|
/// slot can't alias any LLVM IR value. This is very similar to a Spill
|
|
/// Slot, but is created by statepoint lowering is SelectionDAG, not the
|
|
/// register allocator.
|
|
bool isStatepointSpillSlot;
|
|
|
|
/// If this stack object is originated from an Alloca instruction
|
|
/// this value saves the original IR allocation. Can be NULL.
|
|
const AllocaInst *Alloca;
|
|
|
|
// If true, the object was mapped into the local frame
|
|
// block and doesn't need additional handling for allocation beyond that.
|
|
bool PreAllocated;
|
|
|
|
// If true, an LLVM IR value might point to this object.
|
|
// Normally, spill slots and fixed-offset objects don't alias IR-accessible
|
|
// objects, but there are exceptions (on PowerPC, for example, some byval
|
|
// arguments have ABI-prescribed offsets).
|
|
bool isAliased;
|
|
|
|
/// If true, the object has been zero-extended.
|
|
bool isZExt;
|
|
|
|
/// If true, the object has been zero-extended.
|
|
bool isSExt;
|
|
|
|
StackObject(uint64_t Sz, unsigned Al, int64_t SP, bool IM,
|
|
bool isSS, const AllocaInst *Val, bool A)
|
|
: SPOffset(SP), Size(Sz), Alignment(Al), isImmutable(IM),
|
|
isSpillSlot(isSS), isStatepointSpillSlot(false), Alloca(Val),
|
|
PreAllocated(false), isAliased(A), isZExt(false), isSExt(false) {}
|
|
};
|
|
|
|
/// The alignment of the stack.
|
|
unsigned StackAlignment;
|
|
|
|
/// Can the stack be realigned. This can be false if the target does not
|
|
/// support stack realignment, or if the user asks us not to realign the
|
|
/// stack. In this situation, overaligned allocas are all treated as dynamic
|
|
/// allocations and the target must handle them as part of DYNAMIC_STACKALLOC
|
|
/// lowering. All non-alloca stack objects have their alignment clamped to the
|
|
/// base ABI stack alignment.
|
|
/// FIXME: There is room for improvement in this case, in terms of
|
|
/// grouping overaligned allocas into a "secondary stack frame" and
|
|
/// then only use a single alloca to allocate this frame and only a
|
|
/// single virtual register to access it. Currently, without such an
|
|
/// optimization, each such alloca gets its own dynamic realignment.
|
|
bool StackRealignable;
|
|
|
|
/// Whether the function has the \c alignstack attribute.
|
|
bool ForcedRealign;
|
|
|
|
/// The list of stack objects allocated.
|
|
std::vector<StackObject> Objects;
|
|
|
|
/// This contains the number of fixed objects contained on
|
|
/// the stack. Because fixed objects are stored at a negative index in the
|
|
/// Objects list, this is also the index to the 0th object in the list.
|
|
unsigned NumFixedObjects = 0;
|
|
|
|
/// This boolean keeps track of whether any variable
|
|
/// sized objects have been allocated yet.
|
|
bool HasVarSizedObjects = false;
|
|
|
|
/// This boolean keeps track of whether there is a call
|
|
/// to builtin \@llvm.frameaddress.
|
|
bool FrameAddressTaken = false;
|
|
|
|
/// This boolean keeps track of whether there is a call
|
|
/// to builtin \@llvm.returnaddress.
|
|
bool ReturnAddressTaken = false;
|
|
|
|
/// This boolean keeps track of whether there is a call
|
|
/// to builtin \@llvm.experimental.stackmap.
|
|
bool HasStackMap = false;
|
|
|
|
/// This boolean keeps track of whether there is a call
|
|
/// to builtin \@llvm.experimental.patchpoint.
|
|
bool HasPatchPoint = false;
|
|
|
|
/// The prolog/epilog code inserter calculates the final stack
|
|
/// offsets for all of the fixed size objects, updating the Objects list
|
|
/// above. It then updates StackSize to contain the number of bytes that need
|
|
/// to be allocated on entry to the function.
|
|
uint64_t StackSize = 0;
|
|
|
|
/// The amount that a frame offset needs to be adjusted to
|
|
/// have the actual offset from the stack/frame pointer. The exact usage of
|
|
/// this is target-dependent, but it is typically used to adjust between
|
|
/// SP-relative and FP-relative offsets. E.G., if objects are accessed via
|
|
/// SP then OffsetAdjustment is zero; if FP is used, OffsetAdjustment is set
|
|
/// to the distance between the initial SP and the value in FP. For many
|
|
/// targets, this value is only used when generating debug info (via
|
|
/// TargetRegisterInfo::getFrameIndexReference); when generating code, the
|
|
/// corresponding adjustments are performed directly.
|
|
int OffsetAdjustment = 0;
|
|
|
|
/// The prolog/epilog code inserter may process objects that require greater
|
|
/// alignment than the default alignment the target provides.
|
|
/// To handle this, MaxAlignment is set to the maximum alignment
|
|
/// needed by the objects on the current frame. If this is greater than the
|
|
/// native alignment maintained by the compiler, dynamic alignment code will
|
|
/// be needed.
|
|
///
|
|
unsigned MaxAlignment = 0;
|
|
|
|
/// Set to true if this function adjusts the stack -- e.g.,
|
|
/// when calling another function. This is only valid during and after
|
|
/// prolog/epilog code insertion.
|
|
bool AdjustsStack = false;
|
|
|
|
/// Set to true if this function has any function calls.
|
|
bool HasCalls = false;
|
|
|
|
/// The frame index for the stack protector.
|
|
int StackProtectorIdx = -1;
|
|
|
|
/// The frame index for the function context. Used for SjLj exceptions.
|
|
int FunctionContextIdx = -1;
|
|
|
|
/// This contains the size of the largest call frame if the target uses frame
|
|
/// setup/destroy pseudo instructions (as defined in the TargetFrameInfo
|
|
/// class). This information is important for frame pointer elimination.
|
|
/// It is only valid during and after prolog/epilog code insertion.
|
|
unsigned MaxCallFrameSize = ~0u;
|
|
|
|
/// The prolog/epilog code inserter fills in this vector with each
|
|
/// callee saved register saved in the frame. Beyond its use by the prolog/
|
|
/// epilog code inserter, this data used for debug info and exception
|
|
/// handling.
|
|
std::vector<CalleeSavedInfo> CSInfo;
|
|
|
|
/// Has CSInfo been set yet?
|
|
bool CSIValid = false;
|
|
|
|
/// References to frame indices which are mapped
|
|
/// into the local frame allocation block. <FrameIdx, LocalOffset>
|
|
SmallVector<std::pair<int, int64_t>, 32> LocalFrameObjects;
|
|
|
|
/// Size of the pre-allocated local frame block.
|
|
int64_t LocalFrameSize = 0;
|
|
|
|
/// Required alignment of the local object blob, which is the strictest
|
|
/// alignment of any object in it.
|
|
unsigned LocalFrameMaxAlign = 0;
|
|
|
|
/// Whether the local object blob needs to be allocated together. If not,
|
|
/// PEI should ignore the isPreAllocated flags on the stack objects and
|
|
/// just allocate them normally.
|
|
bool UseLocalStackAllocationBlock = false;
|
|
|
|
/// True if the function dynamically adjusts the stack pointer through some
|
|
/// opaque mechanism like inline assembly or Win32 EH.
|
|
bool HasOpaqueSPAdjustment = false;
|
|
|
|
/// True if the function contains operations which will lower down to
|
|
/// instructions which manipulate the stack pointer.
|
|
bool HasCopyImplyingStackAdjustment = false;
|
|
|
|
/// True if the function contains a call to the llvm.vastart intrinsic.
|
|
bool HasVAStart = false;
|
|
|
|
/// True if this is a varargs function that contains a musttail call.
|
|
bool HasMustTailInVarArgFunc = false;
|
|
|
|
/// True if this function contains a tail call. If so immutable objects like
|
|
/// function arguments are no longer so. A tail call *can* override fixed
|
|
/// stack objects like arguments so we can't treat them as immutable.
|
|
bool HasTailCall = false;
|
|
|
|
/// Not null, if shrink-wrapping found a better place for the prologue.
|
|
MachineBasicBlock *Save = nullptr;
|
|
/// Not null, if shrink-wrapping found a better place for the epilogue.
|
|
MachineBasicBlock *Restore = nullptr;
|
|
|
|
public:
|
|
explicit MachineFrameInfo(unsigned StackAlignment, bool StackRealignable,
|
|
bool ForcedRealign)
|
|
: StackAlignment(StackAlignment), StackRealignable(StackRealignable),
|
|
ForcedRealign(ForcedRealign) {}
|
|
|
|
/// Return true if there are any stack objects in this function.
|
|
bool hasStackObjects() const { return !Objects.empty(); }
|
|
|
|
/// This method may be called any time after instruction
|
|
/// selection is complete to determine if the stack frame for this function
|
|
/// contains any variable sized objects.
|
|
bool hasVarSizedObjects() const { return HasVarSizedObjects; }
|
|
|
|
/// Return the index for the stack protector object.
|
|
int getStackProtectorIndex() const { return StackProtectorIdx; }
|
|
void setStackProtectorIndex(int I) { StackProtectorIdx = I; }
|
|
bool hasStackProtectorIndex() const { return StackProtectorIdx != -1; }
|
|
|
|
/// Return the index for the function context object.
|
|
/// This object is used for SjLj exceptions.
|
|
int getFunctionContextIndex() const { return FunctionContextIdx; }
|
|
void setFunctionContextIndex(int I) { FunctionContextIdx = I; }
|
|
|
|
/// This method may be called any time after instruction
|
|
/// selection is complete to determine if there is a call to
|
|
/// \@llvm.frameaddress in this function.
|
|
bool isFrameAddressTaken() const { return FrameAddressTaken; }
|
|
void setFrameAddressIsTaken(bool T) { FrameAddressTaken = T; }
|
|
|
|
/// This method may be called any time after
|
|
/// instruction selection is complete to determine if there is a call to
|
|
/// \@llvm.returnaddress in this function.
|
|
bool isReturnAddressTaken() const { return ReturnAddressTaken; }
|
|
void setReturnAddressIsTaken(bool s) { ReturnAddressTaken = s; }
|
|
|
|
/// This method may be called any time after instruction
|
|
/// selection is complete to determine if there is a call to builtin
|
|
/// \@llvm.experimental.stackmap.
|
|
bool hasStackMap() const { return HasStackMap; }
|
|
void setHasStackMap(bool s = true) { HasStackMap = s; }
|
|
|
|
/// This method may be called any time after instruction
|
|
/// selection is complete to determine if there is a call to builtin
|
|
/// \@llvm.experimental.patchpoint.
|
|
bool hasPatchPoint() const { return HasPatchPoint; }
|
|
void setHasPatchPoint(bool s = true) { HasPatchPoint = s; }
|
|
|
|
/// Return the minimum frame object index.
|
|
int getObjectIndexBegin() const { return -NumFixedObjects; }
|
|
|
|
/// Return one past the maximum frame object index.
|
|
int getObjectIndexEnd() const { return (int)Objects.size()-NumFixedObjects; }
|
|
|
|
/// Return the number of fixed objects.
|
|
unsigned getNumFixedObjects() const { return NumFixedObjects; }
|
|
|
|
/// Return the number of objects.
|
|
unsigned getNumObjects() const { return Objects.size(); }
|
|
|
|
/// Map a frame index into the local object block
|
|
void mapLocalFrameObject(int ObjectIndex, int64_t Offset) {
|
|
LocalFrameObjects.push_back(std::pair<int, int64_t>(ObjectIndex, Offset));
|
|
Objects[ObjectIndex + NumFixedObjects].PreAllocated = true;
|
|
}
|
|
|
|
/// Get the local offset mapping for a for an object.
|
|
std::pair<int, int64_t> getLocalFrameObjectMap(int i) const {
|
|
assert (i >= 0 && (unsigned)i < LocalFrameObjects.size() &&
|
|
"Invalid local object reference!");
|
|
return LocalFrameObjects[i];
|
|
}
|
|
|
|
/// Return the number of objects allocated into the local object block.
|
|
int64_t getLocalFrameObjectCount() const { return LocalFrameObjects.size(); }
|
|
|
|
/// Set the size of the local object blob.
|
|
void setLocalFrameSize(int64_t sz) { LocalFrameSize = sz; }
|
|
|
|
/// Get the size of the local object blob.
|
|
int64_t getLocalFrameSize() const { return LocalFrameSize; }
|
|
|
|
/// Required alignment of the local object blob,
|
|
/// which is the strictest alignment of any object in it.
|
|
void setLocalFrameMaxAlign(unsigned Align) { LocalFrameMaxAlign = Align; }
|
|
|
|
/// Return the required alignment of the local object blob.
|
|
unsigned getLocalFrameMaxAlign() const { return LocalFrameMaxAlign; }
|
|
|
|
/// Get whether the local allocation blob should be allocated together or
|
|
/// let PEI allocate the locals in it directly.
|
|
bool getUseLocalStackAllocationBlock() const {
|
|
return UseLocalStackAllocationBlock;
|
|
}
|
|
|
|
/// setUseLocalStackAllocationBlock - Set whether the local allocation blob
|
|
/// should be allocated together or let PEI allocate the locals in it
|
|
/// directly.
|
|
void setUseLocalStackAllocationBlock(bool v) {
|
|
UseLocalStackAllocationBlock = v;
|
|
}
|
|
|
|
/// Return true if the object was pre-allocated into the local block.
|
|
bool isObjectPreAllocated(int ObjectIdx) const {
|
|
assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
|
|
"Invalid Object Idx!");
|
|
return Objects[ObjectIdx+NumFixedObjects].PreAllocated;
|
|
}
|
|
|
|
/// Return the size of the specified object.
|
|
int64_t getObjectSize(int ObjectIdx) const {
|
|
assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
|
|
"Invalid Object Idx!");
|
|
return Objects[ObjectIdx+NumFixedObjects].Size;
|
|
}
|
|
|
|
/// Change the size of the specified stack object.
|
|
void setObjectSize(int ObjectIdx, int64_t Size) {
|
|
assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
|
|
"Invalid Object Idx!");
|
|
Objects[ObjectIdx+NumFixedObjects].Size = Size;
|
|
}
|
|
|
|
/// Return the alignment of the specified stack object.
|
|
unsigned getObjectAlignment(int ObjectIdx) const {
|
|
assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
|
|
"Invalid Object Idx!");
|
|
return Objects[ObjectIdx+NumFixedObjects].Alignment;
|
|
}
|
|
|
|
/// setObjectAlignment - Change the alignment of the specified stack object.
|
|
void setObjectAlignment(int ObjectIdx, unsigned Align) {
|
|
assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
|
|
"Invalid Object Idx!");
|
|
Objects[ObjectIdx+NumFixedObjects].Alignment = Align;
|
|
ensureMaxAlignment(Align);
|
|
}
|
|
|
|
/// Return the underlying Alloca of the specified
|
|
/// stack object if it exists. Returns 0 if none exists.
|
|
const AllocaInst* getObjectAllocation(int ObjectIdx) const {
|
|
assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
|
|
"Invalid Object Idx!");
|
|
return Objects[ObjectIdx+NumFixedObjects].Alloca;
|
|
}
|
|
|
|
/// Return the assigned stack offset of the specified object
|
|
/// from the incoming stack pointer.
|
|
int64_t getObjectOffset(int ObjectIdx) const {
|
|
assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
|
|
"Invalid Object Idx!");
|
|
assert(!isDeadObjectIndex(ObjectIdx) &&
|
|
"Getting frame offset for a dead object?");
|
|
return Objects[ObjectIdx+NumFixedObjects].SPOffset;
|
|
}
|
|
|
|
bool isObjectZExt(int ObjectIdx) const {
|
|
assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
|
|
"Invalid Object Idx!");
|
|
return Objects[ObjectIdx+NumFixedObjects].isZExt;
|
|
}
|
|
|
|
void setObjectZExt(int ObjectIdx, bool IsZExt) {
|
|
assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
|
|
"Invalid Object Idx!");
|
|
Objects[ObjectIdx+NumFixedObjects].isZExt = IsZExt;
|
|
}
|
|
|
|
bool isObjectSExt(int ObjectIdx) const {
|
|
assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
|
|
"Invalid Object Idx!");
|
|
return Objects[ObjectIdx+NumFixedObjects].isSExt;
|
|
}
|
|
|
|
void setObjectSExt(int ObjectIdx, bool IsSExt) {
|
|
assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
|
|
"Invalid Object Idx!");
|
|
Objects[ObjectIdx+NumFixedObjects].isSExt = IsSExt;
|
|
}
|
|
|
|
/// Set the stack frame offset of the specified object. The
|
|
/// offset is relative to the stack pointer on entry to the function.
|
|
void setObjectOffset(int ObjectIdx, int64_t SPOffset) {
|
|
assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
|
|
"Invalid Object Idx!");
|
|
assert(!isDeadObjectIndex(ObjectIdx) &&
|
|
"Setting frame offset for a dead object?");
|
|
Objects[ObjectIdx+NumFixedObjects].SPOffset = SPOffset;
|
|
}
|
|
|
|
/// Return the number of bytes that must be allocated to hold
|
|
/// all of the fixed size frame objects. This is only valid after
|
|
/// Prolog/Epilog code insertion has finalized the stack frame layout.
|
|
uint64_t getStackSize() const { return StackSize; }
|
|
|
|
/// Set the size of the stack.
|
|
void setStackSize(uint64_t Size) { StackSize = Size; }
|
|
|
|
/// Estimate and return the size of the stack frame.
|
|
unsigned estimateStackSize(const MachineFunction &MF) const;
|
|
|
|
/// Return the correction for frame offsets.
|
|
int getOffsetAdjustment() const { return OffsetAdjustment; }
|
|
|
|
/// Set the correction for frame offsets.
|
|
void setOffsetAdjustment(int Adj) { OffsetAdjustment = Adj; }
|
|
|
|
/// Return the alignment in bytes that this function must be aligned to,
|
|
/// which is greater than the default stack alignment provided by the target.
|
|
unsigned getMaxAlignment() const { return MaxAlignment; }
|
|
|
|
/// Make sure the function is at least Align bytes aligned.
|
|
void ensureMaxAlignment(unsigned Align);
|
|
|
|
/// Return true if this function adjusts the stack -- e.g.,
|
|
/// when calling another function. This is only valid during and after
|
|
/// prolog/epilog code insertion.
|
|
bool adjustsStack() const { return AdjustsStack; }
|
|
void setAdjustsStack(bool V) { AdjustsStack = V; }
|
|
|
|
/// Return true if the current function has any function calls.
|
|
bool hasCalls() const { return HasCalls; }
|
|
void setHasCalls(bool V) { HasCalls = V; }
|
|
|
|
/// Returns true if the function contains opaque dynamic stack adjustments.
|
|
bool hasOpaqueSPAdjustment() const { return HasOpaqueSPAdjustment; }
|
|
void setHasOpaqueSPAdjustment(bool B) { HasOpaqueSPAdjustment = B; }
|
|
|
|
/// Returns true if the function contains operations which will lower down to
|
|
/// instructions which manipulate the stack pointer.
|
|
bool hasCopyImplyingStackAdjustment() const {
|
|
return HasCopyImplyingStackAdjustment;
|
|
}
|
|
void setHasCopyImplyingStackAdjustment(bool B) {
|
|
HasCopyImplyingStackAdjustment = B;
|
|
}
|
|
|
|
/// Returns true if the function calls the llvm.va_start intrinsic.
|
|
bool hasVAStart() const { return HasVAStart; }
|
|
void setHasVAStart(bool B) { HasVAStart = B; }
|
|
|
|
/// Returns true if the function is variadic and contains a musttail call.
|
|
bool hasMustTailInVarArgFunc() const { return HasMustTailInVarArgFunc; }
|
|
void setHasMustTailInVarArgFunc(bool B) { HasMustTailInVarArgFunc = B; }
|
|
|
|
/// Returns true if the function contains a tail call.
|
|
bool hasTailCall() const { return HasTailCall; }
|
|
void setHasTailCall() { HasTailCall = true; }
|
|
|
|
/// Computes the maximum size of a callframe and the AdjustsStack property.
|
|
/// This only works for targets defining
|
|
/// TargetInstrInfo::getCallFrameSetupOpcode(), getCallFrameDestroyOpcode(),
|
|
/// and getFrameSize().
|
|
/// This is usually computed by the prologue epilogue inserter but some
|
|
/// targets may call this to compute it earlier.
|
|
void computeMaxCallFrameSize(const MachineFunction &MF);
|
|
|
|
/// Return the maximum size of a call frame that must be
|
|
/// allocated for an outgoing function call. This is only available if
|
|
/// CallFrameSetup/Destroy pseudo instructions are used by the target, and
|
|
/// then only during or after prolog/epilog code insertion.
|
|
///
|
|
unsigned getMaxCallFrameSize() const {
|
|
// TODO: Enable this assert when targets are fixed.
|
|
//assert(isMaxCallFrameSizeComputed() && "MaxCallFrameSize not computed yet");
|
|
if (!isMaxCallFrameSizeComputed())
|
|
return 0;
|
|
return MaxCallFrameSize;
|
|
}
|
|
bool isMaxCallFrameSizeComputed() const {
|
|
return MaxCallFrameSize != ~0u;
|
|
}
|
|
void setMaxCallFrameSize(unsigned S) { MaxCallFrameSize = S; }
|
|
|
|
/// Create a new object at a fixed location on the stack.
|
|
/// All fixed objects should be created before other objects are created for
|
|
/// efficiency. By default, fixed objects are not pointed to by LLVM IR
|
|
/// values. This returns an index with a negative value.
|
|
int CreateFixedObject(uint64_t Size, int64_t SPOffset, bool Immutable,
|
|
bool isAliased = false);
|
|
|
|
/// Create a spill slot at a fixed location on the stack.
|
|
/// Returns an index with a negative value.
|
|
int CreateFixedSpillStackObject(uint64_t Size, int64_t SPOffset,
|
|
bool Immutable = false);
|
|
|
|
/// Returns true if the specified index corresponds to a fixed stack object.
|
|
bool isFixedObjectIndex(int ObjectIdx) const {
|
|
return ObjectIdx < 0 && (ObjectIdx >= -(int)NumFixedObjects);
|
|
}
|
|
|
|
/// Returns true if the specified index corresponds
|
|
/// to an object that might be pointed to by an LLVM IR value.
|
|
bool isAliasedObjectIndex(int ObjectIdx) const {
|
|
assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
|
|
"Invalid Object Idx!");
|
|
return Objects[ObjectIdx+NumFixedObjects].isAliased;
|
|
}
|
|
|
|
/// Returns true if the specified index corresponds to an immutable object.
|
|
bool isImmutableObjectIndex(int ObjectIdx) const {
|
|
// Tail calling functions can clobber their function arguments.
|
|
if (HasTailCall)
|
|
return false;
|
|
assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
|
|
"Invalid Object Idx!");
|
|
return Objects[ObjectIdx+NumFixedObjects].isImmutable;
|
|
}
|
|
|
|
/// Marks the immutability of an object.
|
|
void setIsImmutableObjectIndex(int ObjectIdx, bool Immutable) {
|
|
assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
|
|
"Invalid Object Idx!");
|
|
Objects[ObjectIdx+NumFixedObjects].isImmutable = Immutable;
|
|
}
|
|
|
|
/// Returns true if the specified index corresponds to a spill slot.
|
|
bool isSpillSlotObjectIndex(int ObjectIdx) const {
|
|
assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
|
|
"Invalid Object Idx!");
|
|
return Objects[ObjectIdx+NumFixedObjects].isSpillSlot;
|
|
}
|
|
|
|
bool isStatepointSpillSlotObjectIndex(int ObjectIdx) const {
|
|
assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
|
|
"Invalid Object Idx!");
|
|
return Objects[ObjectIdx+NumFixedObjects].isStatepointSpillSlot;
|
|
}
|
|
|
|
/// Returns true if the specified index corresponds to a dead object.
|
|
bool isDeadObjectIndex(int ObjectIdx) const {
|
|
assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
|
|
"Invalid Object Idx!");
|
|
return Objects[ObjectIdx+NumFixedObjects].Size == ~0ULL;
|
|
}
|
|
|
|
/// Returns true if the specified index corresponds to a variable sized
|
|
/// object.
|
|
bool isVariableSizedObjectIndex(int ObjectIdx) const {
|
|
assert(unsigned(ObjectIdx + NumFixedObjects) < Objects.size() &&
|
|
"Invalid Object Idx!");
|
|
return Objects[ObjectIdx + NumFixedObjects].Size == 0;
|
|
}
|
|
|
|
void markAsStatepointSpillSlotObjectIndex(int ObjectIdx) {
|
|
assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
|
|
"Invalid Object Idx!");
|
|
Objects[ObjectIdx+NumFixedObjects].isStatepointSpillSlot = true;
|
|
assert(isStatepointSpillSlotObjectIndex(ObjectIdx) && "inconsistent");
|
|
}
|
|
|
|
/// Create a new statically sized stack object, returning
|
|
/// a nonnegative identifier to represent it.
|
|
int CreateStackObject(uint64_t Size, unsigned Alignment, bool isSS,
|
|
const AllocaInst *Alloca = nullptr);
|
|
|
|
/// Create a new statically sized stack object that represents a spill slot,
|
|
/// returning a nonnegative identifier to represent it.
|
|
int CreateSpillStackObject(uint64_t Size, unsigned Alignment);
|
|
|
|
/// Remove or mark dead a statically sized stack object.
|
|
void RemoveStackObject(int ObjectIdx) {
|
|
// Mark it dead.
|
|
Objects[ObjectIdx+NumFixedObjects].Size = ~0ULL;
|
|
}
|
|
|
|
/// Notify the MachineFrameInfo object that a variable sized object has been
|
|
/// created. This must be created whenever a variable sized object is
|
|
/// created, whether or not the index returned is actually used.
|
|
int CreateVariableSizedObject(unsigned Alignment, const AllocaInst *Alloca);
|
|
|
|
/// Returns a reference to call saved info vector for the current function.
|
|
const std::vector<CalleeSavedInfo> &getCalleeSavedInfo() const {
|
|
return CSInfo;
|
|
}
|
|
|
|
/// Used by prolog/epilog inserter to set the function's callee saved
|
|
/// information.
|
|
void setCalleeSavedInfo(const std::vector<CalleeSavedInfo> &CSI) {
|
|
CSInfo = CSI;
|
|
}
|
|
|
|
/// Has the callee saved info been calculated yet?
|
|
bool isCalleeSavedInfoValid() const { return CSIValid; }
|
|
|
|
void setCalleeSavedInfoValid(bool v) { CSIValid = v; }
|
|
|
|
MachineBasicBlock *getSavePoint() const { return Save; }
|
|
void setSavePoint(MachineBasicBlock *NewSave) { Save = NewSave; }
|
|
MachineBasicBlock *getRestorePoint() const { return Restore; }
|
|
void setRestorePoint(MachineBasicBlock *NewRestore) { Restore = NewRestore; }
|
|
|
|
/// Return a set of physical registers that are pristine.
|
|
///
|
|
/// Pristine registers hold a value that is useless to the current function,
|
|
/// but that must be preserved - they are callee saved registers that are not
|
|
/// saved.
|
|
///
|
|
/// Before the PrologueEpilogueInserter has placed the CSR spill code, this
|
|
/// method always returns an empty set.
|
|
BitVector getPristineRegs(const MachineFunction &MF) const;
|
|
|
|
/// Used by the MachineFunction printer to print information about
|
|
/// stack objects. Implemented in MachineFunction.cpp.
|
|
void print(const MachineFunction &MF, raw_ostream &OS) const;
|
|
|
|
/// dump - Print the function to stderr.
|
|
void dump(const MachineFunction &MF) const;
|
|
};
|
|
|
|
} // End llvm namespace
|
|
|
|
#endif
|