1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-18 18:42:46 +02:00
llvm-mirror/tools/opt/opt.cpp
Chuanqi Xu ca13ea7edf [Coroutines] Run coroutine passes by default
This patch make coroutine passes run by default in LLVM pipeline. Now
the clang and opt could handle IR inputs containing coroutine intrinsics
without special options.
It should be fine. On the one hand, the coroutine passes seems to be stable
since there are already many projects using coroutine feature.
On the other hand, the coroutine passes should do nothing for IR who doesn't
contain coroutine intrinsic.

Test Plan: check-llvm

Reviewed by: lxfind, aeubanks

Differential Revision: https://reviews.llvm.org/D105877
2021-07-15 14:33:40 +08:00

1118 lines
39 KiB
C++

//===- opt.cpp - The LLVM Modular Optimizer -------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Optimizations may be specified an arbitrary number of times on the command
// line, They are run in the order specified.
//
//===----------------------------------------------------------------------===//
#include "BreakpointPrinter.h"
#include "NewPMDriver.h"
#include "PassPrinters.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/CallGraphSCCPass.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/RegionPass.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/CodeGen/CommandFlags.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/LLVMRemarkStreamer.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/LegacyPassNameParser.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Verifier.h"
#include "llvm/IRReader/IRReader.h"
#include "llvm/InitializePasses.h"
#include "llvm/LinkAllIR.h"
#include "llvm/LinkAllPasses.h"
#include "llvm/MC/SubtargetFeature.h"
#include "llvm/Remarks/HotnessThresholdParser.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/InitLLVM.h"
#include "llvm/Support/PluginLoader.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/SystemUtils.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Support/ToolOutputFile.h"
#include "llvm/Support/YAMLTraits.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/Coroutines.h"
#include "llvm/Transforms/IPO/AlwaysInliner.h"
#include "llvm/Transforms/IPO/PassManagerBuilder.h"
#include "llvm/Transforms/IPO/WholeProgramDevirt.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/Debugify.h"
#include <algorithm>
#include <memory>
using namespace llvm;
using namespace opt_tool;
static codegen::RegisterCodeGenFlags CFG;
// The OptimizationList is automatically populated with registered Passes by the
// PassNameParser.
static cl::list<const PassInfo *, bool, PassNameParser> PassList(cl::desc(
"Optimizations available (use '-passes=' for the new pass manager)"));
static cl::opt<bool> EnableNewPassManager(
"enable-new-pm",
cl::desc("Enable the new pass manager, translating "
"'opt -foo' to 'opt -passes=foo'. This is strictly for the new PM "
"migration, use '-passes=' when possible."),
cl::init(LLVM_ENABLE_NEW_PASS_MANAGER));
// This flag specifies a textual description of the optimization pass pipeline
// to run over the module. This flag switches opt to use the new pass manager
// infrastructure, completely disabling all of the flags specific to the old
// pass management.
static cl::opt<std::string> PassPipeline(
"passes",
cl::desc(
"A textual description of the pass pipeline. To have analysis passes "
"available before a certain pass, add 'require<foo-analysis>'."));
static cl::opt<bool> PrintPasses("print-passes",
cl::desc("Print available passes that can be "
"specified in -passes=foo and exit"));
static cl::opt<std::string>
InputFilename(cl::Positional, cl::desc("<input bitcode file>"),
cl::init("-"), cl::value_desc("filename"));
static cl::opt<std::string>
OutputFilename("o", cl::desc("Override output filename"),
cl::value_desc("filename"));
static cl::opt<bool>
Force("f", cl::desc("Enable binary output on terminals"));
static cl::opt<bool>
PrintEachXForm("p", cl::desc("Print module after each transformation"));
static cl::opt<bool>
NoOutput("disable-output",
cl::desc("Do not write result bitcode file"), cl::Hidden);
static cl::opt<bool>
OutputAssembly("S", cl::desc("Write output as LLVM assembly"));
static cl::opt<bool>
OutputThinLTOBC("thinlto-bc",
cl::desc("Write output as ThinLTO-ready bitcode"));
static cl::opt<bool>
SplitLTOUnit("thinlto-split-lto-unit",
cl::desc("Enable splitting of a ThinLTO LTOUnit"));
static cl::opt<std::string> ThinLinkBitcodeFile(
"thin-link-bitcode-file", cl::value_desc("filename"),
cl::desc(
"A file in which to write minimized bitcode for the thin link only"));
static cl::opt<bool>
NoVerify("disable-verify", cl::desc("Do not run the verifier"), cl::Hidden);
static cl::opt<bool> NoUpgradeDebugInfo("disable-upgrade-debug-info",
cl::desc("Generate invalid output"),
cl::ReallyHidden);
static cl::opt<bool> VerifyEach("verify-each",
cl::desc("Verify after each transform"));
static cl::opt<bool>
DisableDITypeMap("disable-debug-info-type-map",
cl::desc("Don't use a uniquing type map for debug info"));
static cl::opt<bool>
StripDebug("strip-debug",
cl::desc("Strip debugger symbol info from translation unit"));
static cl::opt<bool>
StripNamedMetadata("strip-named-metadata",
cl::desc("Strip module-level named metadata"));
static cl::opt<bool>
DisableInline("disable-inlining",
cl::desc("Do not run the inliner pass (legacy PM only)"));
static cl::opt<bool>
DisableOptimizations("disable-opt",
cl::desc("Do not run any optimization passes"));
static cl::opt<bool> StandardLinkOpts(
"std-link-opts",
cl::desc("Include the standard link time optimizations (legacy PM only)"));
static cl::opt<bool>
OptLevelO0("O0", cl::desc("Optimization level 0. Similar to clang -O0. "
"Use -passes='default<O0>' for the new PM"));
static cl::opt<bool>
OptLevelO1("O1", cl::desc("Optimization level 1. Similar to clang -O1. "
"Use -passes='default<O1>' for the new PM"));
static cl::opt<bool>
OptLevelO2("O2", cl::desc("Optimization level 2. Similar to clang -O2. "
"Use -passes='default<O2>' for the new PM"));
static cl::opt<bool>
OptLevelOs("Os", cl::desc("Like -O2 but size-conscious. Similar to clang "
"-Os. Use -passes='default<Os>' for the new PM"));
static cl::opt<bool> OptLevelOz(
"Oz",
cl::desc("Like -O2 but optimize for code size above all else. Similar to "
"clang -Oz. Use -passes='default<Oz>' for the new PM"));
static cl::opt<bool>
OptLevelO3("O3", cl::desc("Optimization level 3. Similar to clang -O3. "
"Use -passes='default<O3>' for the new PM"));
static cl::opt<unsigned> CodeGenOptLevel(
"codegen-opt-level",
cl::desc("Override optimization level for codegen hooks, legacy PM only"));
static cl::opt<std::string>
TargetTriple("mtriple", cl::desc("Override target triple for module"));
cl::opt<bool> DisableLoopUnrolling(
"disable-loop-unrolling",
cl::desc("Disable loop unrolling in all relevant passes"), cl::init(false));
static cl::opt<bool> EmitSummaryIndex("module-summary",
cl::desc("Emit module summary index"),
cl::init(false));
static cl::opt<bool> EmitModuleHash("module-hash", cl::desc("Emit module hash"),
cl::init(false));
static cl::opt<bool>
DisableSimplifyLibCalls("disable-simplify-libcalls",
cl::desc("Disable simplify-libcalls"));
static cl::list<std::string>
DisableBuiltins("disable-builtin",
cl::desc("Disable specific target library builtin function"),
cl::ZeroOrMore);
static cl::opt<bool>
AnalyzeOnly("analyze", cl::desc("Only perform analysis, no optimization. "
"Legacy pass manager only."));
static cl::opt<bool> EnableDebugify(
"enable-debugify",
cl::desc(
"Start the pipeline with debugify and end it with check-debugify"));
static cl::opt<bool> VerifyDebugInfoPreserve(
"verify-debuginfo-preserve",
cl::desc("Start the pipeline with collecting and end it with checking of "
"debug info preservation."));
static cl::opt<bool> VerifyEachDebugInfoPreserve(
"verify-each-debuginfo-preserve",
cl::desc("Start each pass with collecting and end it with checking of "
"debug info preservation."));
static cl::opt<std::string>
VerifyDIPreserveExport("verify-di-preserve-export",
cl::desc("Export debug info preservation failures into "
"specified (JSON) file (should be abs path as we use"
" append mode to insert new JSON objects)"),
cl::value_desc("filename"), cl::init(""));
static cl::opt<bool>
PrintBreakpoints("print-breakpoints-for-testing",
cl::desc("Print select breakpoints location for testing"));
static cl::opt<std::string> ClDataLayout("data-layout",
cl::desc("data layout string to use"),
cl::value_desc("layout-string"),
cl::init(""));
static cl::opt<bool> PreserveBitcodeUseListOrder(
"preserve-bc-uselistorder",
cl::desc("Preserve use-list order when writing LLVM bitcode."),
cl::init(true), cl::Hidden);
static cl::opt<bool> PreserveAssemblyUseListOrder(
"preserve-ll-uselistorder",
cl::desc("Preserve use-list order when writing LLVM assembly."),
cl::init(false), cl::Hidden);
static cl::opt<bool> RunTwice("run-twice",
cl::desc("Run all passes twice, re-using the "
"same pass manager (legacy PM only)."),
cl::init(false), cl::Hidden);
static cl::opt<bool> DiscardValueNames(
"discard-value-names",
cl::desc("Discard names from Value (other than GlobalValue)."),
cl::init(false), cl::Hidden);
static cl::opt<bool> Coroutines(
"enable-coroutines",
cl::desc("Enable coroutine passes."),
cl::init(false), cl::Hidden);
static cl::opt<bool> TimeTrace(
"time-trace",
cl::desc("Record time trace"));
static cl::opt<unsigned> TimeTraceGranularity(
"time-trace-granularity",
cl::desc("Minimum time granularity (in microseconds) traced by time profiler"),
cl::init(500), cl::Hidden);
static cl::opt<std::string>
TimeTraceFile("time-trace-file",
cl::desc("Specify time trace file destination"),
cl::value_desc("filename"));
static cl::opt<bool> RemarksWithHotness(
"pass-remarks-with-hotness",
cl::desc("With PGO, include profile count in optimization remarks"),
cl::Hidden);
static cl::opt<Optional<uint64_t>, false, remarks::HotnessThresholdParser>
RemarksHotnessThreshold(
"pass-remarks-hotness-threshold",
cl::desc("Minimum profile count required for "
"an optimization remark to be output. "
"Use 'auto' to apply the threshold from profile summary."),
cl::value_desc("N or 'auto'"), cl::init(0), cl::Hidden);
static cl::opt<std::string>
RemarksFilename("pass-remarks-output",
cl::desc("Output filename for pass remarks"),
cl::value_desc("filename"));
static cl::opt<std::string>
RemarksPasses("pass-remarks-filter",
cl::desc("Only record optimization remarks from passes whose "
"names match the given regular expression"),
cl::value_desc("regex"));
static cl::opt<std::string> RemarksFormat(
"pass-remarks-format",
cl::desc("The format used for serializing remarks (default: YAML)"),
cl::value_desc("format"), cl::init("yaml"));
namespace llvm {
cl::opt<PGOKind>
PGOKindFlag("pgo-kind", cl::init(NoPGO), cl::Hidden,
cl::desc("The kind of profile guided optimization"),
cl::values(clEnumValN(NoPGO, "nopgo", "Do not use PGO."),
clEnumValN(InstrGen, "pgo-instr-gen-pipeline",
"Instrument the IR to generate profile."),
clEnumValN(InstrUse, "pgo-instr-use-pipeline",
"Use instrumented profile to guide PGO."),
clEnumValN(SampleUse, "pgo-sample-use-pipeline",
"Use sampled profile to guide PGO.")));
cl::opt<std::string> ProfileFile("profile-file",
cl::desc("Path to the profile."), cl::Hidden);
cl::opt<CSPGOKind> CSPGOKindFlag(
"cspgo-kind", cl::init(NoCSPGO), cl::Hidden,
cl::desc("The kind of context sensitive profile guided optimization"),
cl::values(
clEnumValN(NoCSPGO, "nocspgo", "Do not use CSPGO."),
clEnumValN(
CSInstrGen, "cspgo-instr-gen-pipeline",
"Instrument (context sensitive) the IR to generate profile."),
clEnumValN(
CSInstrUse, "cspgo-instr-use-pipeline",
"Use instrumented (context sensitive) profile to guide PGO.")));
cl::opt<std::string> CSProfileGenFile(
"cs-profilegen-file",
cl::desc("Path to the instrumented context sensitive profile."),
cl::Hidden);
} // namespace llvm
static inline void addPass(legacy::PassManagerBase &PM, Pass *P) {
// Add the pass to the pass manager...
PM.add(P);
// If we are verifying all of the intermediate steps, add the verifier...
if (VerifyEach)
PM.add(createVerifierPass());
}
/// This routine adds optimization passes based on selected optimization level,
/// OptLevel.
///
/// OptLevel - Optimization Level
static void AddOptimizationPasses(legacy::PassManagerBase &MPM,
legacy::FunctionPassManager &FPM,
TargetMachine *TM, unsigned OptLevel,
unsigned SizeLevel) {
if (!NoVerify || VerifyEach)
FPM.add(createVerifierPass()); // Verify that input is correct
PassManagerBuilder Builder;
Builder.OptLevel = OptLevel;
Builder.SizeLevel = SizeLevel;
if (DisableInline) {
// No inlining pass
} else if (OptLevel > 1) {
Builder.Inliner = createFunctionInliningPass(OptLevel, SizeLevel, false);
} else {
Builder.Inliner = createAlwaysInlinerLegacyPass();
}
Builder.DisableUnrollLoops = (DisableLoopUnrolling.getNumOccurrences() > 0) ?
DisableLoopUnrolling : OptLevel == 0;
Builder.LoopVectorize = OptLevel > 1 && SizeLevel < 2;
Builder.SLPVectorize = OptLevel > 1 && SizeLevel < 2;
if (TM)
TM->adjustPassManager(Builder);
if (Coroutines)
addCoroutinePassesToExtensionPoints(Builder);
switch (PGOKindFlag) {
case InstrGen:
Builder.EnablePGOInstrGen = true;
Builder.PGOInstrGen = ProfileFile;
break;
case InstrUse:
Builder.PGOInstrUse = ProfileFile;
break;
case SampleUse:
Builder.PGOSampleUse = ProfileFile;
break;
default:
break;
}
switch (CSPGOKindFlag) {
case CSInstrGen:
Builder.EnablePGOCSInstrGen = true;
break;
case CSInstrUse:
Builder.EnablePGOCSInstrUse = true;
break;
default:
break;
}
Builder.populateFunctionPassManager(FPM);
Builder.populateModulePassManager(MPM);
}
static void AddStandardLinkPasses(legacy::PassManagerBase &PM) {
PassManagerBuilder Builder;
Builder.VerifyInput = true;
if (DisableOptimizations)
Builder.OptLevel = 0;
if (!DisableInline)
Builder.Inliner = createFunctionInliningPass();
Builder.populateLTOPassManager(PM);
}
//===----------------------------------------------------------------------===//
// CodeGen-related helper functions.
//
static CodeGenOpt::Level GetCodeGenOptLevel() {
if (CodeGenOptLevel.getNumOccurrences())
return static_cast<CodeGenOpt::Level>(unsigned(CodeGenOptLevel));
if (OptLevelO1)
return CodeGenOpt::Less;
if (OptLevelO2)
return CodeGenOpt::Default;
if (OptLevelO3)
return CodeGenOpt::Aggressive;
return CodeGenOpt::None;
}
// Returns the TargetMachine instance or zero if no triple is provided.
static TargetMachine* GetTargetMachine(Triple TheTriple, StringRef CPUStr,
StringRef FeaturesStr,
const TargetOptions &Options) {
std::string Error;
const Target *TheTarget =
TargetRegistry::lookupTarget(codegen::getMArch(), TheTriple, Error);
// Some modules don't specify a triple, and this is okay.
if (!TheTarget) {
return nullptr;
}
return TheTarget->createTargetMachine(
TheTriple.getTriple(), codegen::getCPUStr(), codegen::getFeaturesStr(),
Options, codegen::getExplicitRelocModel(),
codegen::getExplicitCodeModel(), GetCodeGenOptLevel());
}
#ifdef BUILD_EXAMPLES
void initializeExampleIRTransforms(llvm::PassRegistry &Registry);
#endif
struct TimeTracerRAII {
TimeTracerRAII(StringRef ProgramName) {
if (TimeTrace)
timeTraceProfilerInitialize(TimeTraceGranularity, ProgramName);
}
~TimeTracerRAII() {
if (TimeTrace) {
if (auto E = timeTraceProfilerWrite(TimeTraceFile, OutputFilename)) {
handleAllErrors(std::move(E), [&](const StringError &SE) {
errs() << SE.getMessage() << "\n";
});
return;
}
timeTraceProfilerCleanup();
}
}
};
// For use in NPM transition. Currently this contains most codegen-specific
// passes. Remove passes from here when porting to the NPM.
// TODO: use a codegen version of PassRegistry.def/PassBuilder::is*Pass() once
// it exists.
static bool shouldPinPassToLegacyPM(StringRef Pass) {
std::vector<StringRef> PassNameExactToIgnore = {
"nvvm-reflect",
"nvvm-intr-range",
"amdgpu-simplifylib",
"amdgpu-usenative",
"amdgpu-promote-alloca",
"amdgpu-promote-alloca-to-vector",
"amdgpu-lower-kernel-attributes",
"amdgpu-propagate-attributes-early",
"amdgpu-propagate-attributes-late",
"amdgpu-unify-metadata",
"amdgpu-printf-runtime-binding",
"amdgpu-always-inline"};
if (llvm::is_contained(PassNameExactToIgnore, Pass))
return false;
std::vector<StringRef> PassNamePrefix = {
"x86-", "xcore-", "wasm-", "systemz-", "ppc-", "nvvm-", "nvptx-",
"mips-", "lanai-", "hexagon-", "bpf-", "avr-", "thumb2-", "arm-",
"si-", "gcn-", "amdgpu-", "aarch64-", "amdgcn-", "polly-"};
std::vector<StringRef> PassNameContain = {"ehprepare"};
std::vector<StringRef> PassNameExact = {
"safe-stack", "cost-model",
"codegenprepare", "interleaved-load-combine",
"unreachableblockelim", "verify-safepoint-ir",
"atomic-expand", "expandvp",
"hardware-loops", "type-promotion",
"mve-tail-predication", "interleaved-access",
"global-merge", "pre-isel-intrinsic-lowering",
"expand-reductions", "indirectbr-expand",
"generic-to-nvvm", "expandmemcmp",
"loop-reduce", "lower-amx-type",
"pre-amx-config", "lower-amx-intrinsics",
"polyhedral-info", "replace-with-veclib"};
for (const auto &P : PassNamePrefix)
if (Pass.startswith(P))
return true;
for (const auto &P : PassNameContain)
if (Pass.contains(P))
return true;
return llvm::is_contained(PassNameExact, Pass);
}
// For use in NPM transition.
static bool shouldForceLegacyPM() {
for (const auto &P : PassList) {
StringRef Arg = P->getPassArgument();
if (shouldPinPassToLegacyPM(Arg))
return true;
}
return false;
}
//===----------------------------------------------------------------------===//
// main for opt
//
int main(int argc, char **argv) {
InitLLVM X(argc, argv);
// Enable debug stream buffering.
EnableDebugBuffering = true;
InitializeAllTargets();
InitializeAllTargetMCs();
InitializeAllAsmPrinters();
InitializeAllAsmParsers();
// Initialize passes
PassRegistry &Registry = *PassRegistry::getPassRegistry();
initializeCore(Registry);
initializeCoroutines(Registry);
initializeScalarOpts(Registry);
initializeObjCARCOpts(Registry);
initializeVectorization(Registry);
initializeIPO(Registry);
initializeAnalysis(Registry);
initializeTransformUtils(Registry);
initializeInstCombine(Registry);
initializeAggressiveInstCombine(Registry);
initializeInstrumentation(Registry);
initializeTarget(Registry);
// For codegen passes, only passes that do IR to IR transformation are
// supported.
initializeExpandMemCmpPassPass(Registry);
initializeScalarizeMaskedMemIntrinLegacyPassPass(Registry);
initializeCodeGenPreparePass(Registry);
initializeAtomicExpandPass(Registry);
initializeRewriteSymbolsLegacyPassPass(Registry);
initializeWinEHPreparePass(Registry);
initializeDwarfEHPrepareLegacyPassPass(Registry);
initializeSafeStackLegacyPassPass(Registry);
initializeSjLjEHPreparePass(Registry);
initializePreISelIntrinsicLoweringLegacyPassPass(Registry);
initializeGlobalMergePass(Registry);
initializeIndirectBrExpandPassPass(Registry);
initializeInterleavedLoadCombinePass(Registry);
initializeInterleavedAccessPass(Registry);
initializeEntryExitInstrumenterPass(Registry);
initializePostInlineEntryExitInstrumenterPass(Registry);
initializeUnreachableBlockElimLegacyPassPass(Registry);
initializeExpandReductionsPass(Registry);
initializeExpandVectorPredicationPass(Registry);
initializeWasmEHPreparePass(Registry);
initializeWriteBitcodePassPass(Registry);
initializeHardwareLoopsPass(Registry);
initializeTypePromotionPass(Registry);
initializeReplaceWithVeclibLegacyPass(Registry);
#ifdef BUILD_EXAMPLES
initializeExampleIRTransforms(Registry);
#endif
cl::ParseCommandLineOptions(argc, argv,
"llvm .bc -> .bc modular optimizer and analysis printer\n");
LLVMContext Context;
if (AnalyzeOnly && NoOutput) {
errs() << argv[0] << ": analyze mode conflicts with no-output mode.\n";
return 1;
}
// FIXME: once the legacy PM code is deleted, move runPassPipeline() here and
// construct the PassBuilder before parsing IR so we can reuse the same
// PassBuilder for print passes.
if (PrintPasses) {
printPasses(outs());
return 0;
}
TimeTracerRAII TimeTracer(argv[0]);
SMDiagnostic Err;
Context.setDiscardValueNames(DiscardValueNames);
if (!DisableDITypeMap)
Context.enableDebugTypeODRUniquing();
Expected<std::unique_ptr<ToolOutputFile>> RemarksFileOrErr =
setupLLVMOptimizationRemarks(Context, RemarksFilename, RemarksPasses,
RemarksFormat, RemarksWithHotness,
RemarksHotnessThreshold);
if (Error E = RemarksFileOrErr.takeError()) {
errs() << toString(std::move(E)) << '\n';
return 1;
}
std::unique_ptr<ToolOutputFile> RemarksFile = std::move(*RemarksFileOrErr);
// Load the input module...
auto SetDataLayout = [](StringRef) -> Optional<std::string> {
if (ClDataLayout.empty())
return None;
return ClDataLayout;
};
std::unique_ptr<Module> M;
if (NoUpgradeDebugInfo)
M = parseAssemblyFileWithIndexNoUpgradeDebugInfo(
InputFilename, Err, Context, nullptr, SetDataLayout)
.Mod;
else
M = parseIRFile(InputFilename, Err, Context, SetDataLayout);
if (!M) {
Err.print(argv[0], errs());
return 1;
}
// Strip debug info before running the verifier.
if (StripDebug)
StripDebugInfo(*M);
// Erase module-level named metadata, if requested.
if (StripNamedMetadata) {
while (!M->named_metadata_empty()) {
NamedMDNode *NMD = &*M->named_metadata_begin();
M->eraseNamedMetadata(NMD);
}
}
// If we are supposed to override the target triple or data layout, do so now.
if (!TargetTriple.empty())
M->setTargetTriple(Triple::normalize(TargetTriple));
// Immediately run the verifier to catch any problems before starting up the
// pass pipelines. Otherwise we can crash on broken code during
// doInitialization().
if (!NoVerify && verifyModule(*M, &errs())) {
errs() << argv[0] << ": " << InputFilename
<< ": error: input module is broken!\n";
return 1;
}
// Enable testing of whole program devirtualization on this module by invoking
// the facility for updating public visibility to linkage unit visibility when
// specified by an internal option. This is normally done during LTO which is
// not performed via opt.
updateVCallVisibilityInModule(*M,
/* WholeProgramVisibilityEnabledInLTO */ false,
/* DynamicExportSymbols */ {});
// Figure out what stream we are supposed to write to...
std::unique_ptr<ToolOutputFile> Out;
std::unique_ptr<ToolOutputFile> ThinLinkOut;
if (NoOutput) {
if (!OutputFilename.empty())
errs() << "WARNING: The -o (output filename) option is ignored when\n"
"the --disable-output option is used.\n";
} else {
// Default to standard output.
if (OutputFilename.empty())
OutputFilename = "-";
std::error_code EC;
sys::fs::OpenFlags Flags =
OutputAssembly ? sys::fs::OF_TextWithCRLF : sys::fs::OF_None;
Out.reset(new ToolOutputFile(OutputFilename, EC, Flags));
if (EC) {
errs() << EC.message() << '\n';
return 1;
}
if (!ThinLinkBitcodeFile.empty()) {
ThinLinkOut.reset(
new ToolOutputFile(ThinLinkBitcodeFile, EC, sys::fs::OF_None));
if (EC) {
errs() << EC.message() << '\n';
return 1;
}
}
}
Triple ModuleTriple(M->getTargetTriple());
std::string CPUStr, FeaturesStr;
TargetMachine *Machine = nullptr;
const TargetOptions Options =
codegen::InitTargetOptionsFromCodeGenFlags(ModuleTriple);
if (ModuleTriple.getArch()) {
CPUStr = codegen::getCPUStr();
FeaturesStr = codegen::getFeaturesStr();
Machine = GetTargetMachine(ModuleTriple, CPUStr, FeaturesStr, Options);
} else if (ModuleTriple.getArchName() != "unknown" &&
ModuleTriple.getArchName() != "") {
errs() << argv[0] << ": unrecognized architecture '"
<< ModuleTriple.getArchName() << "' provided.\n";
return 1;
}
std::unique_ptr<TargetMachine> TM(Machine);
// Override function attributes based on CPUStr, FeaturesStr, and command line
// flags.
codegen::setFunctionAttributes(CPUStr, FeaturesStr, *M);
// If the output is set to be emitted to standard out, and standard out is a
// console, print out a warning message and refuse to do it. We don't
// impress anyone by spewing tons of binary goo to a terminal.
if (!Force && !NoOutput && !AnalyzeOnly && !OutputAssembly)
if (CheckBitcodeOutputToConsole(Out->os()))
NoOutput = true;
if (OutputThinLTOBC)
M->addModuleFlag(Module::Error, "EnableSplitLTOUnit", SplitLTOUnit);
// Add an appropriate TargetLibraryInfo pass for the module's triple.
TargetLibraryInfoImpl TLII(ModuleTriple);
// The -disable-simplify-libcalls flag actually disables all builtin optzns.
if (DisableSimplifyLibCalls)
TLII.disableAllFunctions();
else {
// Disable individual builtin functions in TargetLibraryInfo.
LibFunc F;
for (auto &FuncName : DisableBuiltins)
if (TLII.getLibFunc(FuncName, F))
TLII.setUnavailable(F);
else {
errs() << argv[0] << ": cannot disable nonexistent builtin function "
<< FuncName << '\n';
return 1;
}
}
// If `-passes=` is specified, use NPM.
// If `-enable-new-pm` is specified and there are no codegen passes, use NPM.
// e.g. `-enable-new-pm -sroa` will use NPM.
// but `-enable-new-pm -codegenprepare` will still revert to legacy PM.
if ((EnableNewPassManager && !shouldForceLegacyPM()) ||
PassPipeline.getNumOccurrences() > 0) {
if (AnalyzeOnly) {
errs() << "Cannot specify -analyze under new pass manager, either "
"specify '-enable-new-pm=0', or use the corresponding new pass "
"manager pass, e.g. '-passes=print<scalar-evolution>'. For a "
"full list of passes, see the '--print-passes' flag.\n";
return 1;
}
if (legacy::debugPassSpecified()) {
errs()
<< "-debug-pass does not work with the new PM, either use "
"-debug-pass-manager, or use the legacy PM (-enable-new-pm=0)\n";
return 1;
}
if (PassPipeline.getNumOccurrences() > 0 && PassList.size() > 0) {
errs()
<< "Cannot specify passes via both -foo-pass and --passes=foo-pass\n";
return 1;
}
SmallVector<StringRef, 4> Passes;
if (OptLevelO0)
Passes.push_back("default<O0>");
if (OptLevelO1)
Passes.push_back("default<O1>");
if (OptLevelO2)
Passes.push_back("default<O2>");
if (OptLevelO3)
Passes.push_back("default<O3>");
if (OptLevelOs)
Passes.push_back("default<Os>");
if (OptLevelOz)
Passes.push_back("default<Oz>");
for (const auto &P : PassList)
Passes.push_back(P->getPassArgument());
OutputKind OK = OK_NoOutput;
if (!NoOutput)
OK = OutputAssembly
? OK_OutputAssembly
: (OutputThinLTOBC ? OK_OutputThinLTOBitcode : OK_OutputBitcode);
VerifierKind VK = VK_VerifyInAndOut;
if (NoVerify)
VK = VK_NoVerifier;
else if (VerifyEach)
VK = VK_VerifyEachPass;
// The user has asked to use the new pass manager and provided a pipeline
// string. Hand off the rest of the functionality to the new code for that
// layer.
return runPassPipeline(argv[0], *M, TM.get(), &TLII, Out.get(),
ThinLinkOut.get(), RemarksFile.get(), PassPipeline,
Passes, OK, VK, PreserveAssemblyUseListOrder,
PreserveBitcodeUseListOrder, EmitSummaryIndex,
EmitModuleHash, EnableDebugify)
? 0
: 1;
}
// Create a PassManager to hold and optimize the collection of passes we are
// about to build. If the -debugify-each option is set, wrap each pass with
// the (-check)-debugify passes.
DebugifyCustomPassManager Passes;
DebugifyStatsMap DIStatsMap;
DebugInfoPerPassMap DIPreservationMap;
if (DebugifyEach) {
Passes.setDebugifyMode(DebugifyMode::SyntheticDebugInfo);
Passes.setDIStatsMap(DIStatsMap);
} else if (VerifyEachDebugInfoPreserve) {
Passes.setDebugifyMode(DebugifyMode::OriginalDebugInfo);
Passes.setDIPreservationMap(DIPreservationMap);
if (!VerifyDIPreserveExport.empty())
Passes.setOrigDIVerifyBugsReportFilePath(VerifyDIPreserveExport);
}
bool AddOneTimeDebugifyPasses =
(EnableDebugify && !DebugifyEach) ||
(VerifyDebugInfoPreserve && !VerifyEachDebugInfoPreserve);
Passes.add(new TargetLibraryInfoWrapperPass(TLII));
// Add internal analysis passes from the target machine.
Passes.add(createTargetTransformInfoWrapperPass(TM ? TM->getTargetIRAnalysis()
: TargetIRAnalysis()));
if (AddOneTimeDebugifyPasses) {
if (EnableDebugify) {
Passes.setDIStatsMap(DIStatsMap);
Passes.add(createDebugifyModulePass());
} else if (VerifyDebugInfoPreserve) {
Passes.setDIPreservationMap(DIPreservationMap);
Passes.add(createDebugifyModulePass(
DebugifyMode::OriginalDebugInfo, "",
&(Passes.getDebugInfoPerPassMap())));
}
}
std::unique_ptr<legacy::FunctionPassManager> FPasses;
if (OptLevelO0 || OptLevelO1 || OptLevelO2 || OptLevelOs || OptLevelOz ||
OptLevelO3) {
FPasses.reset(new legacy::FunctionPassManager(M.get()));
FPasses->add(createTargetTransformInfoWrapperPass(
TM ? TM->getTargetIRAnalysis() : TargetIRAnalysis()));
}
if (PrintBreakpoints) {
// Default to standard output.
if (!Out) {
if (OutputFilename.empty())
OutputFilename = "-";
std::error_code EC;
Out = std::make_unique<ToolOutputFile>(OutputFilename, EC,
sys::fs::OF_None);
if (EC) {
errs() << EC.message() << '\n';
return 1;
}
}
Passes.add(createBreakpointPrinter(Out->os()));
NoOutput = true;
}
if (TM) {
// FIXME: We should dyn_cast this when supported.
auto &LTM = static_cast<LLVMTargetMachine &>(*TM);
Pass *TPC = LTM.createPassConfig(Passes);
Passes.add(TPC);
}
// Create a new optimization pass for each one specified on the command line
for (unsigned i = 0; i < PassList.size(); ++i) {
if (StandardLinkOpts &&
StandardLinkOpts.getPosition() < PassList.getPosition(i)) {
AddStandardLinkPasses(Passes);
StandardLinkOpts = false;
}
if (OptLevelO0 && OptLevelO0.getPosition() < PassList.getPosition(i)) {
AddOptimizationPasses(Passes, *FPasses, TM.get(), 0, 0);
OptLevelO0 = false;
}
if (OptLevelO1 && OptLevelO1.getPosition() < PassList.getPosition(i)) {
AddOptimizationPasses(Passes, *FPasses, TM.get(), 1, 0);
OptLevelO1 = false;
}
if (OptLevelO2 && OptLevelO2.getPosition() < PassList.getPosition(i)) {
AddOptimizationPasses(Passes, *FPasses, TM.get(), 2, 0);
OptLevelO2 = false;
}
if (OptLevelOs && OptLevelOs.getPosition() < PassList.getPosition(i)) {
AddOptimizationPasses(Passes, *FPasses, TM.get(), 2, 1);
OptLevelOs = false;
}
if (OptLevelOz && OptLevelOz.getPosition() < PassList.getPosition(i)) {
AddOptimizationPasses(Passes, *FPasses, TM.get(), 2, 2);
OptLevelOz = false;
}
if (OptLevelO3 && OptLevelO3.getPosition() < PassList.getPosition(i)) {
AddOptimizationPasses(Passes, *FPasses, TM.get(), 3, 0);
OptLevelO3 = false;
}
const PassInfo *PassInf = PassList[i];
Pass *P = nullptr;
if (PassInf->getNormalCtor())
P = PassInf->getNormalCtor()();
else
errs() << argv[0] << ": cannot create pass: "
<< PassInf->getPassName() << "\n";
if (P) {
PassKind Kind = P->getPassKind();
addPass(Passes, P);
if (AnalyzeOnly) {
switch (Kind) {
case PT_Region:
Passes.add(createRegionPassPrinter(PassInf, Out->os()));
break;
case PT_Loop:
Passes.add(createLoopPassPrinter(PassInf, Out->os()));
break;
case PT_Function:
Passes.add(createFunctionPassPrinter(PassInf, Out->os()));
break;
case PT_CallGraphSCC:
Passes.add(createCallGraphPassPrinter(PassInf, Out->os()));
break;
default:
Passes.add(createModulePassPrinter(PassInf, Out->os()));
break;
}
}
}
if (PrintEachXForm)
Passes.add(
createPrintModulePass(errs(), "", PreserveAssemblyUseListOrder));
}
if (StandardLinkOpts) {
AddStandardLinkPasses(Passes);
StandardLinkOpts = false;
}
if (OptLevelO0)
AddOptimizationPasses(Passes, *FPasses, TM.get(), 0, 0);
if (OptLevelO1)
AddOptimizationPasses(Passes, *FPasses, TM.get(), 1, 0);
if (OptLevelO2)
AddOptimizationPasses(Passes, *FPasses, TM.get(), 2, 0);
if (OptLevelOs)
AddOptimizationPasses(Passes, *FPasses, TM.get(), 2, 1);
if (OptLevelOz)
AddOptimizationPasses(Passes, *FPasses, TM.get(), 2, 2);
if (OptLevelO3)
AddOptimizationPasses(Passes, *FPasses, TM.get(), 3, 0);
if (FPasses) {
FPasses->doInitialization();
for (Function &F : *M)
FPasses->run(F);
FPasses->doFinalization();
}
// Check that the module is well formed on completion of optimization
if (!NoVerify && !VerifyEach)
Passes.add(createVerifierPass());
if (AddOneTimeDebugifyPasses) {
if (EnableDebugify)
Passes.add(createCheckDebugifyModulePass(false));
else if (VerifyDebugInfoPreserve) {
if (!VerifyDIPreserveExport.empty())
Passes.setOrigDIVerifyBugsReportFilePath(VerifyDIPreserveExport);
Passes.add(createCheckDebugifyModulePass(
false, "", nullptr, DebugifyMode::OriginalDebugInfo,
&(Passes.getDebugInfoPerPassMap()), VerifyDIPreserveExport));
}
}
// In run twice mode, we want to make sure the output is bit-by-bit
// equivalent if we run the pass manager again, so setup two buffers and
// a stream to write to them. Note that llc does something similar and it
// may be worth to abstract this out in the future.
SmallVector<char, 0> Buffer;
SmallVector<char, 0> FirstRunBuffer;
std::unique_ptr<raw_svector_ostream> BOS;
raw_ostream *OS = nullptr;
const bool ShouldEmitOutput = !NoOutput && !AnalyzeOnly;
// Write bitcode or assembly to the output as the last step...
if (ShouldEmitOutput || RunTwice) {
assert(Out);
OS = &Out->os();
if (RunTwice) {
BOS = std::make_unique<raw_svector_ostream>(Buffer);
OS = BOS.get();
}
if (OutputAssembly) {
if (EmitSummaryIndex)
report_fatal_error("Text output is incompatible with -module-summary");
if (EmitModuleHash)
report_fatal_error("Text output is incompatible with -module-hash");
Passes.add(createPrintModulePass(*OS, "", PreserveAssemblyUseListOrder));
} else if (OutputThinLTOBC)
Passes.add(createWriteThinLTOBitcodePass(
*OS, ThinLinkOut ? &ThinLinkOut->os() : nullptr));
else
Passes.add(createBitcodeWriterPass(*OS, PreserveBitcodeUseListOrder,
EmitSummaryIndex, EmitModuleHash));
}
// Before executing passes, print the final values of the LLVM options.
cl::PrintOptionValues();
if (!RunTwice) {
// Now that we have all of the passes ready, run them.
Passes.run(*M);
} else {
// If requested, run all passes twice with the same pass manager to catch
// bugs caused by persistent state in the passes.
std::unique_ptr<Module> M2(CloneModule(*M));
// Run all passes on the original module first, so the second run processes
// the clone to catch CloneModule bugs.
Passes.run(*M);
FirstRunBuffer = Buffer;
Buffer.clear();
Passes.run(*M2);
// Compare the two outputs and make sure they're the same
assert(Out);
if (Buffer.size() != FirstRunBuffer.size() ||
(memcmp(Buffer.data(), FirstRunBuffer.data(), Buffer.size()) != 0)) {
errs()
<< "Running the pass manager twice changed the output.\n"
"Writing the result of the second run to the specified output.\n"
"To generate the one-run comparison binary, just run without\n"
"the compile-twice option\n";
if (ShouldEmitOutput) {
Out->os() << BOS->str();
Out->keep();
}
if (RemarksFile)
RemarksFile->keep();
return 1;
}
if (ShouldEmitOutput)
Out->os() << BOS->str();
}
if (DebugifyEach && !DebugifyExport.empty())
exportDebugifyStats(DebugifyExport, Passes.getDebugifyStatsMap());
// Declare success.
if (!NoOutput || PrintBreakpoints)
Out->keep();
if (RemarksFile)
RemarksFile->keep();
if (ThinLinkOut)
ThinLinkOut->keep();
return 0;
}