mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-26 04:32:44 +01:00
ed8bd8f4b1
Summary: Passes ORE, BPI, BFI are not being preserved by Loop passes, hence it is incorrect to retrieve these passes as cached. This patch makes the loop passes in question compute a new instance. In some of these cases, however, it may be beneficial to change the Loop pass to a Function pass instead, similar to the change for LoopUnrollAndJam. Reviewers: chandlerc, dmgreen, jdoerfert, reames Subscribers: mehdi_amini, hiraditya, zzheng, steven_wu, dexonsmith, Whitney, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D72891
1247 lines
49 KiB
C++
1247 lines
49 KiB
C++
//===-- LoopPredication.cpp - Guard based loop predication pass -----------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// The LoopPredication pass tries to convert loop variant range checks to loop
|
|
// invariant by widening checks across loop iterations. For example, it will
|
|
// convert
|
|
//
|
|
// for (i = 0; i < n; i++) {
|
|
// guard(i < len);
|
|
// ...
|
|
// }
|
|
//
|
|
// to
|
|
//
|
|
// for (i = 0; i < n; i++) {
|
|
// guard(n - 1 < len);
|
|
// ...
|
|
// }
|
|
//
|
|
// After this transformation the condition of the guard is loop invariant, so
|
|
// loop-unswitch can later unswitch the loop by this condition which basically
|
|
// predicates the loop by the widened condition:
|
|
//
|
|
// if (n - 1 < len)
|
|
// for (i = 0; i < n; i++) {
|
|
// ...
|
|
// }
|
|
// else
|
|
// deoptimize
|
|
//
|
|
// It's tempting to rely on SCEV here, but it has proven to be problematic.
|
|
// Generally the facts SCEV provides about the increment step of add
|
|
// recurrences are true if the backedge of the loop is taken, which implicitly
|
|
// assumes that the guard doesn't fail. Using these facts to optimize the
|
|
// guard results in a circular logic where the guard is optimized under the
|
|
// assumption that it never fails.
|
|
//
|
|
// For example, in the loop below the induction variable will be marked as nuw
|
|
// basing on the guard. Basing on nuw the guard predicate will be considered
|
|
// monotonic. Given a monotonic condition it's tempting to replace the induction
|
|
// variable in the condition with its value on the last iteration. But this
|
|
// transformation is not correct, e.g. e = 4, b = 5 breaks the loop.
|
|
//
|
|
// for (int i = b; i != e; i++)
|
|
// guard(i u< len)
|
|
//
|
|
// One of the ways to reason about this problem is to use an inductive proof
|
|
// approach. Given the loop:
|
|
//
|
|
// if (B(0)) {
|
|
// do {
|
|
// I = PHI(0, I.INC)
|
|
// I.INC = I + Step
|
|
// guard(G(I));
|
|
// } while (B(I));
|
|
// }
|
|
//
|
|
// where B(x) and G(x) are predicates that map integers to booleans, we want a
|
|
// loop invariant expression M such the following program has the same semantics
|
|
// as the above:
|
|
//
|
|
// if (B(0)) {
|
|
// do {
|
|
// I = PHI(0, I.INC)
|
|
// I.INC = I + Step
|
|
// guard(G(0) && M);
|
|
// } while (B(I));
|
|
// }
|
|
//
|
|
// One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step)
|
|
//
|
|
// Informal proof that the transformation above is correct:
|
|
//
|
|
// By the definition of guards we can rewrite the guard condition to:
|
|
// G(I) && G(0) && M
|
|
//
|
|
// Let's prove that for each iteration of the loop:
|
|
// G(0) && M => G(I)
|
|
// And the condition above can be simplified to G(Start) && M.
|
|
//
|
|
// Induction base.
|
|
// G(0) && M => G(0)
|
|
//
|
|
// Induction step. Assuming G(0) && M => G(I) on the subsequent
|
|
// iteration:
|
|
//
|
|
// B(I) is true because it's the backedge condition.
|
|
// G(I) is true because the backedge is guarded by this condition.
|
|
//
|
|
// So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step).
|
|
//
|
|
// Note that we can use anything stronger than M, i.e. any condition which
|
|
// implies M.
|
|
//
|
|
// When S = 1 (i.e. forward iterating loop), the transformation is supported
|
|
// when:
|
|
// * The loop has a single latch with the condition of the form:
|
|
// B(X) = latchStart + X <pred> latchLimit,
|
|
// where <pred> is u<, u<=, s<, or s<=.
|
|
// * The guard condition is of the form
|
|
// G(X) = guardStart + X u< guardLimit
|
|
//
|
|
// For the ult latch comparison case M is:
|
|
// forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit =>
|
|
// guardStart + X + 1 u< guardLimit
|
|
//
|
|
// The only way the antecedent can be true and the consequent can be false is
|
|
// if
|
|
// X == guardLimit - 1 - guardStart
|
|
// (and guardLimit is non-zero, but we won't use this latter fact).
|
|
// If X == guardLimit - 1 - guardStart then the second half of the antecedent is
|
|
// latchStart + guardLimit - 1 - guardStart u< latchLimit
|
|
// and its negation is
|
|
// latchStart + guardLimit - 1 - guardStart u>= latchLimit
|
|
//
|
|
// In other words, if
|
|
// latchLimit u<= latchStart + guardLimit - 1 - guardStart
|
|
// then:
|
|
// (the ranges below are written in ConstantRange notation, where [A, B) is the
|
|
// set for (I = A; I != B; I++ /*maywrap*/) yield(I);)
|
|
//
|
|
// forall X . guardStart + X u< guardLimit &&
|
|
// latchStart + X u< latchLimit =>
|
|
// guardStart + X + 1 u< guardLimit
|
|
// == forall X . guardStart + X u< guardLimit &&
|
|
// latchStart + X u< latchStart + guardLimit - 1 - guardStart =>
|
|
// guardStart + X + 1 u< guardLimit
|
|
// == forall X . (guardStart + X) in [0, guardLimit) &&
|
|
// (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) =>
|
|
// (guardStart + X + 1) in [0, guardLimit)
|
|
// == forall X . X in [-guardStart, guardLimit - guardStart) &&
|
|
// X in [-latchStart, guardLimit - 1 - guardStart) =>
|
|
// X in [-guardStart - 1, guardLimit - guardStart - 1)
|
|
// == true
|
|
//
|
|
// So the widened condition is:
|
|
// guardStart u< guardLimit &&
|
|
// latchStart + guardLimit - 1 - guardStart u>= latchLimit
|
|
// Similarly for ule condition the widened condition is:
|
|
// guardStart u< guardLimit &&
|
|
// latchStart + guardLimit - 1 - guardStart u> latchLimit
|
|
// For slt condition the widened condition is:
|
|
// guardStart u< guardLimit &&
|
|
// latchStart + guardLimit - 1 - guardStart s>= latchLimit
|
|
// For sle condition the widened condition is:
|
|
// guardStart u< guardLimit &&
|
|
// latchStart + guardLimit - 1 - guardStart s> latchLimit
|
|
//
|
|
// When S = -1 (i.e. reverse iterating loop), the transformation is supported
|
|
// when:
|
|
// * The loop has a single latch with the condition of the form:
|
|
// B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=.
|
|
// * The guard condition is of the form
|
|
// G(X) = X - 1 u< guardLimit
|
|
//
|
|
// For the ugt latch comparison case M is:
|
|
// forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit
|
|
//
|
|
// The only way the antecedent can be true and the consequent can be false is if
|
|
// X == 1.
|
|
// If X == 1 then the second half of the antecedent is
|
|
// 1 u> latchLimit, and its negation is latchLimit u>= 1.
|
|
//
|
|
// So the widened condition is:
|
|
// guardStart u< guardLimit && latchLimit u>= 1.
|
|
// Similarly for sgt condition the widened condition is:
|
|
// guardStart u< guardLimit && latchLimit s>= 1.
|
|
// For uge condition the widened condition is:
|
|
// guardStart u< guardLimit && latchLimit u> 1.
|
|
// For sge condition the widened condition is:
|
|
// guardStart u< guardLimit && latchLimit s> 1.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Scalar/LoopPredication.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/BranchProbabilityInfo.h"
|
|
#include "llvm/Analysis/GuardUtils.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/LoopPass.h"
|
|
#include "llvm/Analysis/ScalarEvolution.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpander.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GlobalValue.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Transforms/Utils/GuardUtils.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "llvm/Transforms/Utils/LoopUtils.h"
|
|
|
|
#define DEBUG_TYPE "loop-predication"
|
|
|
|
STATISTIC(TotalConsidered, "Number of guards considered");
|
|
STATISTIC(TotalWidened, "Number of checks widened");
|
|
|
|
using namespace llvm;
|
|
|
|
static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation",
|
|
cl::Hidden, cl::init(true));
|
|
|
|
static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop",
|
|
cl::Hidden, cl::init(true));
|
|
|
|
static cl::opt<bool>
|
|
SkipProfitabilityChecks("loop-predication-skip-profitability-checks",
|
|
cl::Hidden, cl::init(false));
|
|
|
|
// This is the scale factor for the latch probability. We use this during
|
|
// profitability analysis to find other exiting blocks that have a much higher
|
|
// probability of exiting the loop instead of loop exiting via latch.
|
|
// This value should be greater than 1 for a sane profitability check.
|
|
static cl::opt<float> LatchExitProbabilityScale(
|
|
"loop-predication-latch-probability-scale", cl::Hidden, cl::init(2.0),
|
|
cl::desc("scale factor for the latch probability. Value should be greater "
|
|
"than 1. Lower values are ignored"));
|
|
|
|
static cl::opt<bool> PredicateWidenableBranchGuards(
|
|
"loop-predication-predicate-widenable-branches-to-deopt", cl::Hidden,
|
|
cl::desc("Whether or not we should predicate guards "
|
|
"expressed as widenable branches to deoptimize blocks"),
|
|
cl::init(true));
|
|
|
|
namespace {
|
|
/// Represents an induction variable check:
|
|
/// icmp Pred, <induction variable>, <loop invariant limit>
|
|
struct LoopICmp {
|
|
ICmpInst::Predicate Pred;
|
|
const SCEVAddRecExpr *IV;
|
|
const SCEV *Limit;
|
|
LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV,
|
|
const SCEV *Limit)
|
|
: Pred(Pred), IV(IV), Limit(Limit) {}
|
|
LoopICmp() {}
|
|
void dump() {
|
|
dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV
|
|
<< ", Limit = " << *Limit << "\n";
|
|
}
|
|
};
|
|
|
|
class LoopPredication {
|
|
AliasAnalysis *AA;
|
|
DominatorTree *DT;
|
|
ScalarEvolution *SE;
|
|
LoopInfo *LI;
|
|
BranchProbabilityInfo *BPI;
|
|
|
|
Loop *L;
|
|
const DataLayout *DL;
|
|
BasicBlock *Preheader;
|
|
LoopICmp LatchCheck;
|
|
|
|
bool isSupportedStep(const SCEV* Step);
|
|
Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI);
|
|
Optional<LoopICmp> parseLoopLatchICmp();
|
|
|
|
/// Return an insertion point suitable for inserting a safe to speculate
|
|
/// instruction whose only user will be 'User' which has operands 'Ops'. A
|
|
/// trivial result would be the at the User itself, but we try to return a
|
|
/// loop invariant location if possible.
|
|
Instruction *findInsertPt(Instruction *User, ArrayRef<Value*> Ops);
|
|
/// Same as above, *except* that this uses the SCEV definition of invariant
|
|
/// which is that an expression *can be made* invariant via SCEVExpander.
|
|
/// Thus, this version is only suitable for finding an insert point to be be
|
|
/// passed to SCEVExpander!
|
|
Instruction *findInsertPt(Instruction *User, ArrayRef<const SCEV*> Ops);
|
|
|
|
/// Return true if the value is known to produce a single fixed value across
|
|
/// all iterations on which it executes. Note that this does not imply
|
|
/// speculation safety. That must be established seperately.
|
|
bool isLoopInvariantValue(const SCEV* S);
|
|
|
|
Value *expandCheck(SCEVExpander &Expander, Instruction *Guard,
|
|
ICmpInst::Predicate Pred, const SCEV *LHS,
|
|
const SCEV *RHS);
|
|
|
|
Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander,
|
|
Instruction *Guard);
|
|
Optional<Value *> widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck,
|
|
LoopICmp RangeCheck,
|
|
SCEVExpander &Expander,
|
|
Instruction *Guard);
|
|
Optional<Value *> widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck,
|
|
LoopICmp RangeCheck,
|
|
SCEVExpander &Expander,
|
|
Instruction *Guard);
|
|
unsigned collectChecks(SmallVectorImpl<Value *> &Checks, Value *Condition,
|
|
SCEVExpander &Expander, Instruction *Guard);
|
|
bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander);
|
|
bool widenWidenableBranchGuardConditions(BranchInst *Guard, SCEVExpander &Expander);
|
|
// If the loop always exits through another block in the loop, we should not
|
|
// predicate based on the latch check. For example, the latch check can be a
|
|
// very coarse grained check and there can be more fine grained exit checks
|
|
// within the loop. We identify such unprofitable loops through BPI.
|
|
bool isLoopProfitableToPredicate();
|
|
|
|
bool predicateLoopExits(Loop *L, SCEVExpander &Rewriter);
|
|
|
|
public:
|
|
LoopPredication(AliasAnalysis *AA, DominatorTree *DT,
|
|
ScalarEvolution *SE, LoopInfo *LI,
|
|
BranchProbabilityInfo *BPI)
|
|
: AA(AA), DT(DT), SE(SE), LI(LI), BPI(BPI) {};
|
|
bool runOnLoop(Loop *L);
|
|
};
|
|
|
|
class LoopPredicationLegacyPass : public LoopPass {
|
|
public:
|
|
static char ID;
|
|
LoopPredicationLegacyPass() : LoopPass(ID) {
|
|
initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<BranchProbabilityInfoWrapperPass>();
|
|
getLoopAnalysisUsage(AU);
|
|
}
|
|
|
|
bool runOnLoop(Loop *L, LPPassManager &LPM) override {
|
|
if (skipLoop(L))
|
|
return false;
|
|
auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
|
|
auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
|
|
auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
BranchProbabilityInfo &BPI =
|
|
getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
|
|
auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
|
|
LoopPredication LP(AA, DT, SE, LI, &BPI);
|
|
return LP.runOnLoop(L);
|
|
}
|
|
};
|
|
|
|
char LoopPredicationLegacyPass::ID = 0;
|
|
} // end namespace
|
|
|
|
INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication",
|
|
"Loop predication", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(LoopPass)
|
|
INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication",
|
|
"Loop predication", false, false)
|
|
|
|
Pass *llvm::createLoopPredicationPass() {
|
|
return new LoopPredicationLegacyPass();
|
|
}
|
|
|
|
PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM,
|
|
LoopStandardAnalysisResults &AR,
|
|
LPMUpdater &U) {
|
|
Function *F = L.getHeader()->getParent();
|
|
// For the new PM, we also can't use BranchProbabilityInfo as an analysis
|
|
// pass. Function analyses need to be preserved across loop transformations
|
|
// but BPI is not preserved, hence a newly built one is needed.
|
|
BranchProbabilityInfo BPI;
|
|
BPI.calculate(*F, AR.LI);
|
|
LoopPredication LP(&AR.AA, &AR.DT, &AR.SE, &AR.LI, &BPI);
|
|
if (!LP.runOnLoop(&L))
|
|
return PreservedAnalyses::all();
|
|
|
|
return getLoopPassPreservedAnalyses();
|
|
}
|
|
|
|
Optional<LoopICmp>
|
|
LoopPredication::parseLoopICmp(ICmpInst *ICI) {
|
|
auto Pred = ICI->getPredicate();
|
|
auto *LHS = ICI->getOperand(0);
|
|
auto *RHS = ICI->getOperand(1);
|
|
|
|
const SCEV *LHSS = SE->getSCEV(LHS);
|
|
if (isa<SCEVCouldNotCompute>(LHSS))
|
|
return None;
|
|
const SCEV *RHSS = SE->getSCEV(RHS);
|
|
if (isa<SCEVCouldNotCompute>(RHSS))
|
|
return None;
|
|
|
|
// Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV
|
|
if (SE->isLoopInvariant(LHSS, L)) {
|
|
std::swap(LHS, RHS);
|
|
std::swap(LHSS, RHSS);
|
|
Pred = ICmpInst::getSwappedPredicate(Pred);
|
|
}
|
|
|
|
const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS);
|
|
if (!AR || AR->getLoop() != L)
|
|
return None;
|
|
|
|
return LoopICmp(Pred, AR, RHSS);
|
|
}
|
|
|
|
Value *LoopPredication::expandCheck(SCEVExpander &Expander,
|
|
Instruction *Guard,
|
|
ICmpInst::Predicate Pred, const SCEV *LHS,
|
|
const SCEV *RHS) {
|
|
Type *Ty = LHS->getType();
|
|
assert(Ty == RHS->getType() && "expandCheck operands have different types?");
|
|
|
|
if (SE->isLoopInvariant(LHS, L) && SE->isLoopInvariant(RHS, L)) {
|
|
IRBuilder<> Builder(Guard);
|
|
if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS))
|
|
return Builder.getTrue();
|
|
if (SE->isLoopEntryGuardedByCond(L, ICmpInst::getInversePredicate(Pred),
|
|
LHS, RHS))
|
|
return Builder.getFalse();
|
|
}
|
|
|
|
Value *LHSV = Expander.expandCodeFor(LHS, Ty, findInsertPt(Guard, {LHS}));
|
|
Value *RHSV = Expander.expandCodeFor(RHS, Ty, findInsertPt(Guard, {RHS}));
|
|
IRBuilder<> Builder(findInsertPt(Guard, {LHSV, RHSV}));
|
|
return Builder.CreateICmp(Pred, LHSV, RHSV);
|
|
}
|
|
|
|
|
|
// Returns true if its safe to truncate the IV to RangeCheckType.
|
|
// When the IV type is wider than the range operand type, we can still do loop
|
|
// predication, by generating SCEVs for the range and latch that are of the
|
|
// same type. We achieve this by generating a SCEV truncate expression for the
|
|
// latch IV. This is done iff truncation of the IV is a safe operation,
|
|
// without loss of information.
|
|
// Another way to achieve this is by generating a wider type SCEV for the
|
|
// range check operand, however, this needs a more involved check that
|
|
// operands do not overflow. This can lead to loss of information when the
|
|
// range operand is of the form: add i32 %offset, %iv. We need to prove that
|
|
// sext(x + y) is same as sext(x) + sext(y).
|
|
// This function returns true if we can safely represent the IV type in
|
|
// the RangeCheckType without loss of information.
|
|
static bool isSafeToTruncateWideIVType(const DataLayout &DL,
|
|
ScalarEvolution &SE,
|
|
const LoopICmp LatchCheck,
|
|
Type *RangeCheckType) {
|
|
if (!EnableIVTruncation)
|
|
return false;
|
|
assert(DL.getTypeSizeInBits(LatchCheck.IV->getType()) >
|
|
DL.getTypeSizeInBits(RangeCheckType) &&
|
|
"Expected latch check IV type to be larger than range check operand "
|
|
"type!");
|
|
// The start and end values of the IV should be known. This is to guarantee
|
|
// that truncating the wide type will not lose information.
|
|
auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit);
|
|
auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart());
|
|
if (!Limit || !Start)
|
|
return false;
|
|
// This check makes sure that the IV does not change sign during loop
|
|
// iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE,
|
|
// LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the
|
|
// IV wraps around, and the truncation of the IV would lose the range of
|
|
// iterations between 2^32 and 2^64.
|
|
bool Increasing;
|
|
if (!SE.isMonotonicPredicate(LatchCheck.IV, LatchCheck.Pred, Increasing))
|
|
return false;
|
|
// The active bits should be less than the bits in the RangeCheckType. This
|
|
// guarantees that truncating the latch check to RangeCheckType is a safe
|
|
// operation.
|
|
auto RangeCheckTypeBitSize = DL.getTypeSizeInBits(RangeCheckType);
|
|
return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize &&
|
|
Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize;
|
|
}
|
|
|
|
|
|
// Return an LoopICmp describing a latch check equivlent to LatchCheck but with
|
|
// the requested type if safe to do so. May involve the use of a new IV.
|
|
static Optional<LoopICmp> generateLoopLatchCheck(const DataLayout &DL,
|
|
ScalarEvolution &SE,
|
|
const LoopICmp LatchCheck,
|
|
Type *RangeCheckType) {
|
|
|
|
auto *LatchType = LatchCheck.IV->getType();
|
|
if (RangeCheckType == LatchType)
|
|
return LatchCheck;
|
|
// For now, bail out if latch type is narrower than range type.
|
|
if (DL.getTypeSizeInBits(LatchType) < DL.getTypeSizeInBits(RangeCheckType))
|
|
return None;
|
|
if (!isSafeToTruncateWideIVType(DL, SE, LatchCheck, RangeCheckType))
|
|
return None;
|
|
// We can now safely identify the truncated version of the IV and limit for
|
|
// RangeCheckType.
|
|
LoopICmp NewLatchCheck;
|
|
NewLatchCheck.Pred = LatchCheck.Pred;
|
|
NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>(
|
|
SE.getTruncateExpr(LatchCheck.IV, RangeCheckType));
|
|
if (!NewLatchCheck.IV)
|
|
return None;
|
|
NewLatchCheck.Limit = SE.getTruncateExpr(LatchCheck.Limit, RangeCheckType);
|
|
LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType
|
|
<< "can be represented as range check type:"
|
|
<< *RangeCheckType << "\n");
|
|
LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n");
|
|
LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n");
|
|
return NewLatchCheck;
|
|
}
|
|
|
|
bool LoopPredication::isSupportedStep(const SCEV* Step) {
|
|
return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop);
|
|
}
|
|
|
|
Instruction *LoopPredication::findInsertPt(Instruction *Use,
|
|
ArrayRef<Value*> Ops) {
|
|
for (Value *Op : Ops)
|
|
if (!L->isLoopInvariant(Op))
|
|
return Use;
|
|
return Preheader->getTerminator();
|
|
}
|
|
|
|
Instruction *LoopPredication::findInsertPt(Instruction *Use,
|
|
ArrayRef<const SCEV*> Ops) {
|
|
// Subtlety: SCEV considers things to be invariant if the value produced is
|
|
// the same across iterations. This is not the same as being able to
|
|
// evaluate outside the loop, which is what we actually need here.
|
|
for (const SCEV *Op : Ops)
|
|
if (!SE->isLoopInvariant(Op, L) ||
|
|
!isSafeToExpandAt(Op, Preheader->getTerminator(), *SE))
|
|
return Use;
|
|
return Preheader->getTerminator();
|
|
}
|
|
|
|
bool LoopPredication::isLoopInvariantValue(const SCEV* S) {
|
|
// Handling expressions which produce invariant results, but *haven't* yet
|
|
// been removed from the loop serves two important purposes.
|
|
// 1) Most importantly, it resolves a pass ordering cycle which would
|
|
// otherwise need us to iteration licm, loop-predication, and either
|
|
// loop-unswitch or loop-peeling to make progress on examples with lots of
|
|
// predicable range checks in a row. (Since, in the general case, we can't
|
|
// hoist the length checks until the dominating checks have been discharged
|
|
// as we can't prove doing so is safe.)
|
|
// 2) As a nice side effect, this exposes the value of peeling or unswitching
|
|
// much more obviously in the IR. Otherwise, the cost modeling for other
|
|
// transforms would end up needing to duplicate all of this logic to model a
|
|
// check which becomes predictable based on a modeled peel or unswitch.
|
|
//
|
|
// The cost of doing so in the worst case is an extra fill from the stack in
|
|
// the loop to materialize the loop invariant test value instead of checking
|
|
// against the original IV which is presumable in a register inside the loop.
|
|
// Such cases are presumably rare, and hint at missing oppurtunities for
|
|
// other passes.
|
|
|
|
if (SE->isLoopInvariant(S, L))
|
|
// Note: This the SCEV variant, so the original Value* may be within the
|
|
// loop even though SCEV has proven it is loop invariant.
|
|
return true;
|
|
|
|
// Handle a particular important case which SCEV doesn't yet know about which
|
|
// shows up in range checks on arrays with immutable lengths.
|
|
// TODO: This should be sunk inside SCEV.
|
|
if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S))
|
|
if (const auto *LI = dyn_cast<LoadInst>(U->getValue()))
|
|
if (LI->isUnordered() && L->hasLoopInvariantOperands(LI))
|
|
if (AA->pointsToConstantMemory(LI->getOperand(0)) ||
|
|
LI->hasMetadata(LLVMContext::MD_invariant_load))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
Optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop(
|
|
LoopICmp LatchCheck, LoopICmp RangeCheck,
|
|
SCEVExpander &Expander, Instruction *Guard) {
|
|
auto *Ty = RangeCheck.IV->getType();
|
|
// Generate the widened condition for the forward loop:
|
|
// guardStart u< guardLimit &&
|
|
// latchLimit <pred> guardLimit - 1 - guardStart + latchStart
|
|
// where <pred> depends on the latch condition predicate. See the file
|
|
// header comment for the reasoning.
|
|
// guardLimit - guardStart + latchStart - 1
|
|
const SCEV *GuardStart = RangeCheck.IV->getStart();
|
|
const SCEV *GuardLimit = RangeCheck.Limit;
|
|
const SCEV *LatchStart = LatchCheck.IV->getStart();
|
|
const SCEV *LatchLimit = LatchCheck.Limit;
|
|
// Subtlety: We need all the values to be *invariant* across all iterations,
|
|
// but we only need to check expansion safety for those which *aren't*
|
|
// already guaranteed to dominate the guard.
|
|
if (!isLoopInvariantValue(GuardStart) ||
|
|
!isLoopInvariantValue(GuardLimit) ||
|
|
!isLoopInvariantValue(LatchStart) ||
|
|
!isLoopInvariantValue(LatchLimit)) {
|
|
LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
|
|
return None;
|
|
}
|
|
if (!isSafeToExpandAt(LatchStart, Guard, *SE) ||
|
|
!isSafeToExpandAt(LatchLimit, Guard, *SE)) {
|
|
LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
|
|
return None;
|
|
}
|
|
|
|
// guardLimit - guardStart + latchStart - 1
|
|
const SCEV *RHS =
|
|
SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart),
|
|
SE->getMinusSCEV(LatchStart, SE->getOne(Ty)));
|
|
auto LimitCheckPred =
|
|
ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
|
|
|
|
LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n");
|
|
LLVM_DEBUG(dbgs() << "RHS: " << *RHS << "\n");
|
|
LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n");
|
|
|
|
auto *LimitCheck =
|
|
expandCheck(Expander, Guard, LimitCheckPred, LatchLimit, RHS);
|
|
auto *FirstIterationCheck = expandCheck(Expander, Guard, RangeCheck.Pred,
|
|
GuardStart, GuardLimit);
|
|
IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck}));
|
|
return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
|
|
}
|
|
|
|
Optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop(
|
|
LoopICmp LatchCheck, LoopICmp RangeCheck,
|
|
SCEVExpander &Expander, Instruction *Guard) {
|
|
auto *Ty = RangeCheck.IV->getType();
|
|
const SCEV *GuardStart = RangeCheck.IV->getStart();
|
|
const SCEV *GuardLimit = RangeCheck.Limit;
|
|
const SCEV *LatchStart = LatchCheck.IV->getStart();
|
|
const SCEV *LatchLimit = LatchCheck.Limit;
|
|
// Subtlety: We need all the values to be *invariant* across all iterations,
|
|
// but we only need to check expansion safety for those which *aren't*
|
|
// already guaranteed to dominate the guard.
|
|
if (!isLoopInvariantValue(GuardStart) ||
|
|
!isLoopInvariantValue(GuardLimit) ||
|
|
!isLoopInvariantValue(LatchStart) ||
|
|
!isLoopInvariantValue(LatchLimit)) {
|
|
LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
|
|
return None;
|
|
}
|
|
if (!isSafeToExpandAt(LatchStart, Guard, *SE) ||
|
|
!isSafeToExpandAt(LatchLimit, Guard, *SE)) {
|
|
LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
|
|
return None;
|
|
}
|
|
// The decrement of the latch check IV should be the same as the
|
|
// rangeCheckIV.
|
|
auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE);
|
|
if (RangeCheck.IV != PostDecLatchCheckIV) {
|
|
LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: "
|
|
<< *PostDecLatchCheckIV
|
|
<< " and RangeCheckIV: " << *RangeCheck.IV << "\n");
|
|
return None;
|
|
}
|
|
|
|
// Generate the widened condition for CountDownLoop:
|
|
// guardStart u< guardLimit &&
|
|
// latchLimit <pred> 1.
|
|
// See the header comment for reasoning of the checks.
|
|
auto LimitCheckPred =
|
|
ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
|
|
auto *FirstIterationCheck = expandCheck(Expander, Guard,
|
|
ICmpInst::ICMP_ULT,
|
|
GuardStart, GuardLimit);
|
|
auto *LimitCheck = expandCheck(Expander, Guard, LimitCheckPred, LatchLimit,
|
|
SE->getOne(Ty));
|
|
IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck}));
|
|
return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
|
|
}
|
|
|
|
static void normalizePredicate(ScalarEvolution *SE, Loop *L,
|
|
LoopICmp& RC) {
|
|
// LFTR canonicalizes checks to the ICMP_NE/EQ form; normalize back to the
|
|
// ULT/UGE form for ease of handling by our caller.
|
|
if (ICmpInst::isEquality(RC.Pred) &&
|
|
RC.IV->getStepRecurrence(*SE)->isOne() &&
|
|
SE->isKnownPredicate(ICmpInst::ICMP_ULE, RC.IV->getStart(), RC.Limit))
|
|
RC.Pred = RC.Pred == ICmpInst::ICMP_NE ?
|
|
ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE;
|
|
}
|
|
|
|
|
|
/// If ICI can be widened to a loop invariant condition emits the loop
|
|
/// invariant condition in the loop preheader and return it, otherwise
|
|
/// returns None.
|
|
Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI,
|
|
SCEVExpander &Expander,
|
|
Instruction *Guard) {
|
|
LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n");
|
|
LLVM_DEBUG(ICI->dump());
|
|
|
|
// parseLoopStructure guarantees that the latch condition is:
|
|
// ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=.
|
|
// We are looking for the range checks of the form:
|
|
// i u< guardLimit
|
|
auto RangeCheck = parseLoopICmp(ICI);
|
|
if (!RangeCheck) {
|
|
LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
|
|
return None;
|
|
}
|
|
LLVM_DEBUG(dbgs() << "Guard check:\n");
|
|
LLVM_DEBUG(RangeCheck->dump());
|
|
if (RangeCheck->Pred != ICmpInst::ICMP_ULT) {
|
|
LLVM_DEBUG(dbgs() << "Unsupported range check predicate("
|
|
<< RangeCheck->Pred << ")!\n");
|
|
return None;
|
|
}
|
|
auto *RangeCheckIV = RangeCheck->IV;
|
|
if (!RangeCheckIV->isAffine()) {
|
|
LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n");
|
|
return None;
|
|
}
|
|
auto *Step = RangeCheckIV->getStepRecurrence(*SE);
|
|
// We cannot just compare with latch IV step because the latch and range IVs
|
|
// may have different types.
|
|
if (!isSupportedStep(Step)) {
|
|
LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n");
|
|
return None;
|
|
}
|
|
auto *Ty = RangeCheckIV->getType();
|
|
auto CurrLatchCheckOpt = generateLoopLatchCheck(*DL, *SE, LatchCheck, Ty);
|
|
if (!CurrLatchCheckOpt) {
|
|
LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check "
|
|
"corresponding to range type: "
|
|
<< *Ty << "\n");
|
|
return None;
|
|
}
|
|
|
|
LoopICmp CurrLatchCheck = *CurrLatchCheckOpt;
|
|
// At this point, the range and latch step should have the same type, but need
|
|
// not have the same value (we support both 1 and -1 steps).
|
|
assert(Step->getType() ==
|
|
CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() &&
|
|
"Range and latch steps should be of same type!");
|
|
if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) {
|
|
LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n");
|
|
return None;
|
|
}
|
|
|
|
if (Step->isOne())
|
|
return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck,
|
|
Expander, Guard);
|
|
else {
|
|
assert(Step->isAllOnesValue() && "Step should be -1!");
|
|
return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck,
|
|
Expander, Guard);
|
|
}
|
|
}
|
|
|
|
unsigned LoopPredication::collectChecks(SmallVectorImpl<Value *> &Checks,
|
|
Value *Condition,
|
|
SCEVExpander &Expander,
|
|
Instruction *Guard) {
|
|
unsigned NumWidened = 0;
|
|
// The guard condition is expected to be in form of:
|
|
// cond1 && cond2 && cond3 ...
|
|
// Iterate over subconditions looking for icmp conditions which can be
|
|
// widened across loop iterations. Widening these conditions remember the
|
|
// resulting list of subconditions in Checks vector.
|
|
SmallVector<Value *, 4> Worklist(1, Condition);
|
|
SmallPtrSet<Value *, 4> Visited;
|
|
Value *WideableCond = nullptr;
|
|
do {
|
|
Value *Condition = Worklist.pop_back_val();
|
|
if (!Visited.insert(Condition).second)
|
|
continue;
|
|
|
|
Value *LHS, *RHS;
|
|
using namespace llvm::PatternMatch;
|
|
if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) {
|
|
Worklist.push_back(LHS);
|
|
Worklist.push_back(RHS);
|
|
continue;
|
|
}
|
|
|
|
if (match(Condition,
|
|
m_Intrinsic<Intrinsic::experimental_widenable_condition>())) {
|
|
// Pick any, we don't care which
|
|
WideableCond = Condition;
|
|
continue;
|
|
}
|
|
|
|
if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) {
|
|
if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander,
|
|
Guard)) {
|
|
Checks.push_back(NewRangeCheck.getValue());
|
|
NumWidened++;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Save the condition as is if we can't widen it
|
|
Checks.push_back(Condition);
|
|
} while (!Worklist.empty());
|
|
// At the moment, our matching logic for wideable conditions implicitly
|
|
// assumes we preserve the form: (br (and Cond, WC())). FIXME
|
|
// Note that if there were multiple calls to wideable condition in the
|
|
// traversal, we only need to keep one, and which one is arbitrary.
|
|
if (WideableCond)
|
|
Checks.push_back(WideableCond);
|
|
return NumWidened;
|
|
}
|
|
|
|
bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard,
|
|
SCEVExpander &Expander) {
|
|
LLVM_DEBUG(dbgs() << "Processing guard:\n");
|
|
LLVM_DEBUG(Guard->dump());
|
|
|
|
TotalConsidered++;
|
|
SmallVector<Value *, 4> Checks;
|
|
unsigned NumWidened = collectChecks(Checks, Guard->getOperand(0), Expander,
|
|
Guard);
|
|
if (NumWidened == 0)
|
|
return false;
|
|
|
|
TotalWidened += NumWidened;
|
|
|
|
// Emit the new guard condition
|
|
IRBuilder<> Builder(findInsertPt(Guard, Checks));
|
|
Value *AllChecks = Builder.CreateAnd(Checks);
|
|
auto *OldCond = Guard->getOperand(0);
|
|
Guard->setOperand(0, AllChecks);
|
|
RecursivelyDeleteTriviallyDeadInstructions(OldCond);
|
|
|
|
LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
|
|
return true;
|
|
}
|
|
|
|
bool LoopPredication::widenWidenableBranchGuardConditions(
|
|
BranchInst *BI, SCEVExpander &Expander) {
|
|
assert(isGuardAsWidenableBranch(BI) && "Must be!");
|
|
LLVM_DEBUG(dbgs() << "Processing guard:\n");
|
|
LLVM_DEBUG(BI->dump());
|
|
|
|
TotalConsidered++;
|
|
SmallVector<Value *, 4> Checks;
|
|
unsigned NumWidened = collectChecks(Checks, BI->getCondition(),
|
|
Expander, BI);
|
|
if (NumWidened == 0)
|
|
return false;
|
|
|
|
TotalWidened += NumWidened;
|
|
|
|
// Emit the new guard condition
|
|
IRBuilder<> Builder(findInsertPt(BI, Checks));
|
|
Value *AllChecks = Builder.CreateAnd(Checks);
|
|
auto *OldCond = BI->getCondition();
|
|
BI->setCondition(AllChecks);
|
|
RecursivelyDeleteTriviallyDeadInstructions(OldCond);
|
|
assert(isGuardAsWidenableBranch(BI) &&
|
|
"Stopped being a guard after transform?");
|
|
|
|
LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
|
|
return true;
|
|
}
|
|
|
|
Optional<LoopICmp> LoopPredication::parseLoopLatchICmp() {
|
|
using namespace PatternMatch;
|
|
|
|
BasicBlock *LoopLatch = L->getLoopLatch();
|
|
if (!LoopLatch) {
|
|
LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n");
|
|
return None;
|
|
}
|
|
|
|
auto *BI = dyn_cast<BranchInst>(LoopLatch->getTerminator());
|
|
if (!BI || !BI->isConditional()) {
|
|
LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n");
|
|
return None;
|
|
}
|
|
BasicBlock *TrueDest = BI->getSuccessor(0);
|
|
assert(
|
|
(TrueDest == L->getHeader() || BI->getSuccessor(1) == L->getHeader()) &&
|
|
"One of the latch's destinations must be the header");
|
|
|
|
auto *ICI = dyn_cast<ICmpInst>(BI->getCondition());
|
|
if (!ICI) {
|
|
LLVM_DEBUG(dbgs() << "Failed to match the latch condition!\n");
|
|
return None;
|
|
}
|
|
auto Result = parseLoopICmp(ICI);
|
|
if (!Result) {
|
|
LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
|
|
return None;
|
|
}
|
|
|
|
if (TrueDest != L->getHeader())
|
|
Result->Pred = ICmpInst::getInversePredicate(Result->Pred);
|
|
|
|
// Check affine first, so if it's not we don't try to compute the step
|
|
// recurrence.
|
|
if (!Result->IV->isAffine()) {
|
|
LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n");
|
|
return None;
|
|
}
|
|
|
|
auto *Step = Result->IV->getStepRecurrence(*SE);
|
|
if (!isSupportedStep(Step)) {
|
|
LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n");
|
|
return None;
|
|
}
|
|
|
|
auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) {
|
|
if (Step->isOne()) {
|
|
return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT &&
|
|
Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE;
|
|
} else {
|
|
assert(Step->isAllOnesValue() && "Step should be -1!");
|
|
return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT &&
|
|
Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_SGE;
|
|
}
|
|
};
|
|
|
|
normalizePredicate(SE, L, *Result);
|
|
if (IsUnsupportedPredicate(Step, Result->Pred)) {
|
|
LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred
|
|
<< ")!\n");
|
|
return None;
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
|
|
bool LoopPredication::isLoopProfitableToPredicate() {
|
|
if (SkipProfitabilityChecks || !BPI)
|
|
return true;
|
|
|
|
SmallVector<std::pair<BasicBlock *, BasicBlock *>, 8> ExitEdges;
|
|
L->getExitEdges(ExitEdges);
|
|
// If there is only one exiting edge in the loop, it is always profitable to
|
|
// predicate the loop.
|
|
if (ExitEdges.size() == 1)
|
|
return true;
|
|
|
|
// Calculate the exiting probabilities of all exiting edges from the loop,
|
|
// starting with the LatchExitProbability.
|
|
// Heuristic for profitability: If any of the exiting blocks' probability of
|
|
// exiting the loop is larger than exiting through the latch block, it's not
|
|
// profitable to predicate the loop.
|
|
auto *LatchBlock = L->getLoopLatch();
|
|
assert(LatchBlock && "Should have a single latch at this point!");
|
|
auto *LatchTerm = LatchBlock->getTerminator();
|
|
assert(LatchTerm->getNumSuccessors() == 2 &&
|
|
"expected to be an exiting block with 2 succs!");
|
|
unsigned LatchBrExitIdx =
|
|
LatchTerm->getSuccessor(0) == L->getHeader() ? 1 : 0;
|
|
BranchProbability LatchExitProbability =
|
|
BPI->getEdgeProbability(LatchBlock, LatchBrExitIdx);
|
|
|
|
// Protect against degenerate inputs provided by the user. Providing a value
|
|
// less than one, can invert the definition of profitable loop predication.
|
|
float ScaleFactor = LatchExitProbabilityScale;
|
|
if (ScaleFactor < 1) {
|
|
LLVM_DEBUG(
|
|
dbgs()
|
|
<< "Ignored user setting for loop-predication-latch-probability-scale: "
|
|
<< LatchExitProbabilityScale << "\n");
|
|
LLVM_DEBUG(dbgs() << "The value is set to 1.0\n");
|
|
ScaleFactor = 1.0;
|
|
}
|
|
const auto LatchProbabilityThreshold =
|
|
LatchExitProbability * ScaleFactor;
|
|
|
|
for (const auto &ExitEdge : ExitEdges) {
|
|
BranchProbability ExitingBlockProbability =
|
|
BPI->getEdgeProbability(ExitEdge.first, ExitEdge.second);
|
|
// Some exiting edge has higher probability than the latch exiting edge.
|
|
// No longer profitable to predicate.
|
|
if (ExitingBlockProbability > LatchProbabilityThreshold)
|
|
return false;
|
|
}
|
|
// Using BPI, we have concluded that the most probable way to exit from the
|
|
// loop is through the latch (or there's no profile information and all
|
|
// exits are equally likely).
|
|
return true;
|
|
}
|
|
|
|
/// If we can (cheaply) find a widenable branch which controls entry into the
|
|
/// loop, return it.
|
|
static BranchInst *FindWidenableTerminatorAboveLoop(Loop *L, LoopInfo &LI) {
|
|
// Walk back through any unconditional executed blocks and see if we can find
|
|
// a widenable condition which seems to control execution of this loop. Note
|
|
// that we predict that maythrow calls are likely untaken and thus that it's
|
|
// profitable to widen a branch before a maythrow call with a condition
|
|
// afterwards even though that may cause the slow path to run in a case where
|
|
// it wouldn't have otherwise.
|
|
BasicBlock *BB = L->getLoopPreheader();
|
|
if (!BB)
|
|
return nullptr;
|
|
do {
|
|
if (BasicBlock *Pred = BB->getSinglePredecessor())
|
|
if (BB == Pred->getSingleSuccessor()) {
|
|
BB = Pred;
|
|
continue;
|
|
}
|
|
break;
|
|
} while (true);
|
|
|
|
if (BasicBlock *Pred = BB->getSinglePredecessor()) {
|
|
auto *Term = Pred->getTerminator();
|
|
|
|
Value *Cond, *WC;
|
|
BasicBlock *IfTrueBB, *IfFalseBB;
|
|
if (parseWidenableBranch(Term, Cond, WC, IfTrueBB, IfFalseBB) &&
|
|
IfTrueBB == BB)
|
|
return cast<BranchInst>(Term);
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
/// Return the minimum of all analyzeable exit counts. This is an upper bound
|
|
/// on the actual exit count. If there are not at least two analyzeable exits,
|
|
/// returns SCEVCouldNotCompute.
|
|
static const SCEV *getMinAnalyzeableBackedgeTakenCount(ScalarEvolution &SE,
|
|
DominatorTree &DT,
|
|
Loop *L) {
|
|
SmallVector<BasicBlock *, 16> ExitingBlocks;
|
|
L->getExitingBlocks(ExitingBlocks);
|
|
|
|
SmallVector<const SCEV *, 4> ExitCounts;
|
|
for (BasicBlock *ExitingBB : ExitingBlocks) {
|
|
const SCEV *ExitCount = SE.getExitCount(L, ExitingBB);
|
|
if (isa<SCEVCouldNotCompute>(ExitCount))
|
|
continue;
|
|
assert(DT.dominates(ExitingBB, L->getLoopLatch()) &&
|
|
"We should only have known counts for exiting blocks that "
|
|
"dominate latch!");
|
|
ExitCounts.push_back(ExitCount);
|
|
}
|
|
if (ExitCounts.size() < 2)
|
|
return SE.getCouldNotCompute();
|
|
return SE.getUMinFromMismatchedTypes(ExitCounts);
|
|
}
|
|
|
|
/// This implements an analogous, but entirely distinct transform from the main
|
|
/// loop predication transform. This one is phrased in terms of using a
|
|
/// widenable branch *outside* the loop to allow us to simplify loop exits in a
|
|
/// following loop. This is close in spirit to the IndVarSimplify transform
|
|
/// of the same name, but is materially different widening loosens legality
|
|
/// sharply.
|
|
bool LoopPredication::predicateLoopExits(Loop *L, SCEVExpander &Rewriter) {
|
|
// The transformation performed here aims to widen a widenable condition
|
|
// above the loop such that all analyzeable exit leading to deopt are dead.
|
|
// It assumes that the latch is the dominant exit for profitability and that
|
|
// exits branching to deoptimizing blocks are rarely taken. It relies on the
|
|
// semantics of widenable expressions for legality. (i.e. being able to fall
|
|
// down the widenable path spuriously allows us to ignore exit order,
|
|
// unanalyzeable exits, side effects, exceptional exits, and other challenges
|
|
// which restrict the applicability of the non-WC based version of this
|
|
// transform in IndVarSimplify.)
|
|
//
|
|
// NOTE ON POISON/UNDEF - We're hoisting an expression above guards which may
|
|
// imply flags on the expression being hoisted and inserting new uses (flags
|
|
// are only correct for current uses). The result is that we may be
|
|
// inserting a branch on the value which can be either poison or undef. In
|
|
// this case, the branch can legally go either way; we just need to avoid
|
|
// introducing UB. This is achieved through the use of the freeze
|
|
// instruction.
|
|
|
|
SmallVector<BasicBlock *, 16> ExitingBlocks;
|
|
L->getExitingBlocks(ExitingBlocks);
|
|
|
|
if (ExitingBlocks.empty())
|
|
return false; // Nothing to do.
|
|
|
|
auto *Latch = L->getLoopLatch();
|
|
if (!Latch)
|
|
return false;
|
|
|
|
auto *WidenableBR = FindWidenableTerminatorAboveLoop(L, *LI);
|
|
if (!WidenableBR)
|
|
return false;
|
|
|
|
const SCEV *LatchEC = SE->getExitCount(L, Latch);
|
|
if (isa<SCEVCouldNotCompute>(LatchEC))
|
|
return false; // profitability - want hot exit in analyzeable set
|
|
|
|
// At this point, we have found an analyzeable latch, and a widenable
|
|
// condition above the loop. If we have a widenable exit within the loop
|
|
// (for which we can't compute exit counts), drop the ability to further
|
|
// widen so that we gain ability to analyze it's exit count and perform this
|
|
// transform. TODO: It'd be nice to know for sure the exit became
|
|
// analyzeable after dropping widenability.
|
|
{
|
|
bool Invalidate = false;
|
|
|
|
for (auto *ExitingBB : ExitingBlocks) {
|
|
if (LI->getLoopFor(ExitingBB) != L)
|
|
continue;
|
|
|
|
auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
|
|
if (!BI)
|
|
continue;
|
|
|
|
Use *Cond, *WC;
|
|
BasicBlock *IfTrueBB, *IfFalseBB;
|
|
if (parseWidenableBranch(BI, Cond, WC, IfTrueBB, IfFalseBB) &&
|
|
L->contains(IfTrueBB)) {
|
|
WC->set(ConstantInt::getTrue(IfTrueBB->getContext()));
|
|
Invalidate = true;
|
|
}
|
|
}
|
|
if (Invalidate)
|
|
SE->forgetLoop(L);
|
|
}
|
|
|
|
// The use of umin(all analyzeable exits) instead of latch is subtle, but
|
|
// important for profitability. We may have a loop which hasn't been fully
|
|
// canonicalized just yet. If the exit we chose to widen is provably never
|
|
// taken, we want the widened form to *also* be provably never taken. We
|
|
// can't guarantee this as a current unanalyzeable exit may later become
|
|
// analyzeable, but we can at least avoid the obvious cases.
|
|
const SCEV *MinEC = getMinAnalyzeableBackedgeTakenCount(*SE, *DT, L);
|
|
if (isa<SCEVCouldNotCompute>(MinEC) || MinEC->getType()->isPointerTy() ||
|
|
!SE->isLoopInvariant(MinEC, L) ||
|
|
!isSafeToExpandAt(MinEC, WidenableBR, *SE))
|
|
return false;
|
|
|
|
// Subtlety: We need to avoid inserting additional uses of the WC. We know
|
|
// that it can only have one transitive use at the moment, and thus moving
|
|
// that use to just before the branch and inserting code before it and then
|
|
// modifying the operand is legal.
|
|
auto *IP = cast<Instruction>(WidenableBR->getCondition());
|
|
IP->moveBefore(WidenableBR);
|
|
Rewriter.setInsertPoint(IP);
|
|
IRBuilder<> B(IP);
|
|
|
|
bool Changed = false;
|
|
Value *MinECV = nullptr; // lazily generated if needed
|
|
for (BasicBlock *ExitingBB : ExitingBlocks) {
|
|
// If our exiting block exits multiple loops, we can only rewrite the
|
|
// innermost one. Otherwise, we're changing how many times the innermost
|
|
// loop runs before it exits.
|
|
if (LI->getLoopFor(ExitingBB) != L)
|
|
continue;
|
|
|
|
// Can't rewrite non-branch yet.
|
|
auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
|
|
if (!BI)
|
|
continue;
|
|
|
|
// If already constant, nothing to do.
|
|
if (isa<Constant>(BI->getCondition()))
|
|
continue;
|
|
|
|
const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
|
|
if (isa<SCEVCouldNotCompute>(ExitCount) ||
|
|
ExitCount->getType()->isPointerTy() ||
|
|
!isSafeToExpandAt(ExitCount, WidenableBR, *SE))
|
|
continue;
|
|
|
|
const bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB));
|
|
BasicBlock *ExitBB = BI->getSuccessor(ExitIfTrue ? 0 : 1);
|
|
if (!ExitBB->getPostdominatingDeoptimizeCall())
|
|
continue;
|
|
|
|
/// Here we can be fairly sure that executing this exit will most likely
|
|
/// lead to executing llvm.experimental.deoptimize.
|
|
/// This is a profitability heuristic, not a legality constraint.
|
|
|
|
// If we found a widenable exit condition, do two things:
|
|
// 1) fold the widened exit test into the widenable condition
|
|
// 2) fold the branch to untaken - avoids infinite looping
|
|
|
|
Value *ECV = Rewriter.expandCodeFor(ExitCount);
|
|
if (!MinECV)
|
|
MinECV = Rewriter.expandCodeFor(MinEC);
|
|
Value *RHS = MinECV;
|
|
if (ECV->getType() != RHS->getType()) {
|
|
Type *WiderTy = SE->getWiderType(ECV->getType(), RHS->getType());
|
|
ECV = B.CreateZExt(ECV, WiderTy);
|
|
RHS = B.CreateZExt(RHS, WiderTy);
|
|
}
|
|
assert(!Latch || DT->dominates(ExitingBB, Latch));
|
|
Value *NewCond = B.CreateICmp(ICmpInst::ICMP_UGT, ECV, RHS);
|
|
// Freeze poison or undef to an arbitrary bit pattern to ensure we can
|
|
// branch without introducing UB. See NOTE ON POISON/UNDEF above for
|
|
// context.
|
|
NewCond = B.CreateFreeze(NewCond);
|
|
|
|
widenWidenableBranch(WidenableBR, NewCond);
|
|
|
|
Value *OldCond = BI->getCondition();
|
|
BI->setCondition(ConstantInt::get(OldCond->getType(), !ExitIfTrue));
|
|
Changed = true;
|
|
}
|
|
|
|
if (Changed)
|
|
// We just mutated a bunch of loop exits changing there exit counts
|
|
// widely. We need to force recomputation of the exit counts given these
|
|
// changes. Note that all of the inserted exits are never taken, and
|
|
// should be removed next time the CFG is modified.
|
|
SE->forgetLoop(L);
|
|
return Changed;
|
|
}
|
|
|
|
bool LoopPredication::runOnLoop(Loop *Loop) {
|
|
L = Loop;
|
|
|
|
LLVM_DEBUG(dbgs() << "Analyzing ");
|
|
LLVM_DEBUG(L->dump());
|
|
|
|
Module *M = L->getHeader()->getModule();
|
|
|
|
// There is nothing to do if the module doesn't use guards
|
|
auto *GuardDecl =
|
|
M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard));
|
|
bool HasIntrinsicGuards = GuardDecl && !GuardDecl->use_empty();
|
|
auto *WCDecl = M->getFunction(
|
|
Intrinsic::getName(Intrinsic::experimental_widenable_condition));
|
|
bool HasWidenableConditions =
|
|
PredicateWidenableBranchGuards && WCDecl && !WCDecl->use_empty();
|
|
if (!HasIntrinsicGuards && !HasWidenableConditions)
|
|
return false;
|
|
|
|
DL = &M->getDataLayout();
|
|
|
|
Preheader = L->getLoopPreheader();
|
|
if (!Preheader)
|
|
return false;
|
|
|
|
auto LatchCheckOpt = parseLoopLatchICmp();
|
|
if (!LatchCheckOpt)
|
|
return false;
|
|
LatchCheck = *LatchCheckOpt;
|
|
|
|
LLVM_DEBUG(dbgs() << "Latch check:\n");
|
|
LLVM_DEBUG(LatchCheck.dump());
|
|
|
|
if (!isLoopProfitableToPredicate()) {
|
|
LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n");
|
|
return false;
|
|
}
|
|
// Collect all the guards into a vector and process later, so as not
|
|
// to invalidate the instruction iterator.
|
|
SmallVector<IntrinsicInst *, 4> Guards;
|
|
SmallVector<BranchInst *, 4> GuardsAsWidenableBranches;
|
|
for (const auto BB : L->blocks()) {
|
|
for (auto &I : *BB)
|
|
if (isGuard(&I))
|
|
Guards.push_back(cast<IntrinsicInst>(&I));
|
|
if (PredicateWidenableBranchGuards &&
|
|
isGuardAsWidenableBranch(BB->getTerminator()))
|
|
GuardsAsWidenableBranches.push_back(
|
|
cast<BranchInst>(BB->getTerminator()));
|
|
}
|
|
|
|
SCEVExpander Expander(*SE, *DL, "loop-predication");
|
|
bool Changed = false;
|
|
for (auto *Guard : Guards)
|
|
Changed |= widenGuardConditions(Guard, Expander);
|
|
for (auto *Guard : GuardsAsWidenableBranches)
|
|
Changed |= widenWidenableBranchGuardConditions(Guard, Expander);
|
|
Changed |= predicateLoopExits(L, Expander);
|
|
return Changed;
|
|
}
|