mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-23 11:13:28 +01:00
29cf2215d1
It was revealed by D69260. Tool crashed when scanned relocations in a object without a symbol table. This patch teaches it either to handle such objects (when relocations does not use symbols we do not need a symbol table to proceed) or to show an appropriate error otherwise. Differential revision: https://reviews.llvm.org/D69304
2325 lines
81 KiB
C++
2325 lines
81 KiB
C++
//===- Object.cpp ---------------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "Object.h"
|
|
#include "llvm-objcopy.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/ADT/iterator_range.h"
|
|
#include "llvm/BinaryFormat/ELF.h"
|
|
#include "llvm/MC/MCTargetOptions.h"
|
|
#include "llvm/Object/ELFObjectFile.h"
|
|
#include "llvm/Support/Compression.h"
|
|
#include "llvm/Support/Endian.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/FileOutputBuffer.h"
|
|
#include "llvm/Support/Path.h"
|
|
#include <algorithm>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <iterator>
|
|
#include <unordered_set>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
namespace llvm {
|
|
namespace objcopy {
|
|
namespace elf {
|
|
|
|
using namespace object;
|
|
using namespace ELF;
|
|
|
|
template <class ELFT> void ELFWriter<ELFT>::writePhdr(const Segment &Seg) {
|
|
uint8_t *B = Buf.getBufferStart() + Obj.ProgramHdrSegment.Offset +
|
|
Seg.Index * sizeof(Elf_Phdr);
|
|
Elf_Phdr &Phdr = *reinterpret_cast<Elf_Phdr *>(B);
|
|
Phdr.p_type = Seg.Type;
|
|
Phdr.p_flags = Seg.Flags;
|
|
Phdr.p_offset = Seg.Offset;
|
|
Phdr.p_vaddr = Seg.VAddr;
|
|
Phdr.p_paddr = Seg.PAddr;
|
|
Phdr.p_filesz = Seg.FileSize;
|
|
Phdr.p_memsz = Seg.MemSize;
|
|
Phdr.p_align = Seg.Align;
|
|
}
|
|
|
|
Error SectionBase::removeSectionReferences(
|
|
bool AllowBrokenLinks,
|
|
function_ref<bool(const SectionBase *)> ToRemove) {
|
|
return Error::success();
|
|
}
|
|
|
|
Error SectionBase::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) {
|
|
return Error::success();
|
|
}
|
|
|
|
void SectionBase::initialize(SectionTableRef SecTable) {}
|
|
void SectionBase::finalize() {}
|
|
void SectionBase::markSymbols() {}
|
|
void SectionBase::replaceSectionReferences(
|
|
const DenseMap<SectionBase *, SectionBase *> &) {}
|
|
|
|
template <class ELFT> void ELFWriter<ELFT>::writeShdr(const SectionBase &Sec) {
|
|
uint8_t *B = Buf.getBufferStart() + Sec.HeaderOffset;
|
|
Elf_Shdr &Shdr = *reinterpret_cast<Elf_Shdr *>(B);
|
|
Shdr.sh_name = Sec.NameIndex;
|
|
Shdr.sh_type = Sec.Type;
|
|
Shdr.sh_flags = Sec.Flags;
|
|
Shdr.sh_addr = Sec.Addr;
|
|
Shdr.sh_offset = Sec.Offset;
|
|
Shdr.sh_size = Sec.Size;
|
|
Shdr.sh_link = Sec.Link;
|
|
Shdr.sh_info = Sec.Info;
|
|
Shdr.sh_addralign = Sec.Align;
|
|
Shdr.sh_entsize = Sec.EntrySize;
|
|
}
|
|
|
|
template <class ELFT> void ELFSectionSizer<ELFT>::visit(Section &Sec) {}
|
|
|
|
template <class ELFT>
|
|
void ELFSectionSizer<ELFT>::visit(OwnedDataSection &Sec) {}
|
|
|
|
template <class ELFT>
|
|
void ELFSectionSizer<ELFT>::visit(StringTableSection &Sec) {}
|
|
|
|
template <class ELFT>
|
|
void ELFSectionSizer<ELFT>::visit(DynamicRelocationSection &Sec) {}
|
|
|
|
template <class ELFT>
|
|
void ELFSectionSizer<ELFT>::visit(SymbolTableSection &Sec) {
|
|
Sec.EntrySize = sizeof(Elf_Sym);
|
|
Sec.Size = Sec.Symbols.size() * Sec.EntrySize;
|
|
// Align to the largest field in Elf_Sym.
|
|
Sec.Align = ELFT::Is64Bits ? sizeof(Elf_Xword) : sizeof(Elf_Word);
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ELFSectionSizer<ELFT>::visit(RelocationSection &Sec) {
|
|
Sec.EntrySize = Sec.Type == SHT_REL ? sizeof(Elf_Rel) : sizeof(Elf_Rela);
|
|
Sec.Size = Sec.Relocations.size() * Sec.EntrySize;
|
|
// Align to the largest field in Elf_Rel(a).
|
|
Sec.Align = ELFT::Is64Bits ? sizeof(Elf_Xword) : sizeof(Elf_Word);
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ELFSectionSizer<ELFT>::visit(GnuDebugLinkSection &Sec) {}
|
|
|
|
template <class ELFT> void ELFSectionSizer<ELFT>::visit(GroupSection &Sec) {}
|
|
|
|
template <class ELFT>
|
|
void ELFSectionSizer<ELFT>::visit(SectionIndexSection &Sec) {}
|
|
|
|
template <class ELFT>
|
|
void ELFSectionSizer<ELFT>::visit(CompressedSection &Sec) {}
|
|
|
|
template <class ELFT>
|
|
void ELFSectionSizer<ELFT>::visit(DecompressedSection &Sec) {}
|
|
|
|
void BinarySectionWriter::visit(const SectionIndexSection &Sec) {
|
|
error("cannot write symbol section index table '" + Sec.Name + "' ");
|
|
}
|
|
|
|
void BinarySectionWriter::visit(const SymbolTableSection &Sec) {
|
|
error("cannot write symbol table '" + Sec.Name + "' out to binary");
|
|
}
|
|
|
|
void BinarySectionWriter::visit(const RelocationSection &Sec) {
|
|
error("cannot write relocation section '" + Sec.Name + "' out to binary");
|
|
}
|
|
|
|
void BinarySectionWriter::visit(const GnuDebugLinkSection &Sec) {
|
|
error("cannot write '" + Sec.Name + "' out to binary");
|
|
}
|
|
|
|
void BinarySectionWriter::visit(const GroupSection &Sec) {
|
|
error("cannot write '" + Sec.Name + "' out to binary");
|
|
}
|
|
|
|
void SectionWriter::visit(const Section &Sec) {
|
|
if (Sec.Type != SHT_NOBITS)
|
|
llvm::copy(Sec.Contents, Out.getBufferStart() + Sec.Offset);
|
|
}
|
|
|
|
static bool addressOverflows32bit(uint64_t Addr) {
|
|
// Sign extended 32 bit addresses (e.g 0xFFFFFFFF80000000) are ok
|
|
return Addr > UINT32_MAX && Addr + 0x80000000 > UINT32_MAX;
|
|
}
|
|
|
|
template <class T> static T checkedGetHex(StringRef S) {
|
|
T Value;
|
|
bool Fail = S.getAsInteger(16, Value);
|
|
assert(!Fail);
|
|
(void)Fail;
|
|
return Value;
|
|
}
|
|
|
|
// Fills exactly Len bytes of buffer with hexadecimal characters
|
|
// representing value 'X'
|
|
template <class T, class Iterator>
|
|
static Iterator utohexstr(T X, Iterator It, size_t Len) {
|
|
// Fill range with '0'
|
|
std::fill(It, It + Len, '0');
|
|
|
|
for (long I = Len - 1; I >= 0; --I) {
|
|
unsigned char Mod = static_cast<unsigned char>(X) & 15;
|
|
*(It + I) = hexdigit(Mod, false);
|
|
X >>= 4;
|
|
}
|
|
assert(X == 0);
|
|
return It + Len;
|
|
}
|
|
|
|
uint8_t IHexRecord::getChecksum(StringRef S) {
|
|
assert((S.size() & 1) == 0);
|
|
uint8_t Checksum = 0;
|
|
while (!S.empty()) {
|
|
Checksum += checkedGetHex<uint8_t>(S.take_front(2));
|
|
S = S.drop_front(2);
|
|
}
|
|
return -Checksum;
|
|
}
|
|
|
|
IHexLineData IHexRecord::getLine(uint8_t Type, uint16_t Addr,
|
|
ArrayRef<uint8_t> Data) {
|
|
IHexLineData Line(getLineLength(Data.size()));
|
|
assert(Line.size());
|
|
auto Iter = Line.begin();
|
|
*Iter++ = ':';
|
|
Iter = utohexstr(Data.size(), Iter, 2);
|
|
Iter = utohexstr(Addr, Iter, 4);
|
|
Iter = utohexstr(Type, Iter, 2);
|
|
for (uint8_t X : Data)
|
|
Iter = utohexstr(X, Iter, 2);
|
|
StringRef S(Line.data() + 1, std::distance(Line.begin() + 1, Iter));
|
|
Iter = utohexstr(getChecksum(S), Iter, 2);
|
|
*Iter++ = '\r';
|
|
*Iter++ = '\n';
|
|
assert(Iter == Line.end());
|
|
return Line;
|
|
}
|
|
|
|
static Error checkRecord(const IHexRecord &R) {
|
|
switch (R.Type) {
|
|
case IHexRecord::Data:
|
|
if (R.HexData.size() == 0)
|
|
return createStringError(
|
|
errc::invalid_argument,
|
|
"zero data length is not allowed for data records");
|
|
break;
|
|
case IHexRecord::EndOfFile:
|
|
break;
|
|
case IHexRecord::SegmentAddr:
|
|
// 20-bit segment address. Data length must be 2 bytes
|
|
// (4 bytes in hex)
|
|
if (R.HexData.size() != 4)
|
|
return createStringError(
|
|
errc::invalid_argument,
|
|
"segment address data should be 2 bytes in size");
|
|
break;
|
|
case IHexRecord::StartAddr80x86:
|
|
case IHexRecord::StartAddr:
|
|
if (R.HexData.size() != 8)
|
|
return createStringError(errc::invalid_argument,
|
|
"start address data should be 4 bytes in size");
|
|
// According to Intel HEX specification '03' record
|
|
// only specifies the code address within the 20-bit
|
|
// segmented address space of the 8086/80186. This
|
|
// means 12 high order bits should be zeroes.
|
|
if (R.Type == IHexRecord::StartAddr80x86 &&
|
|
R.HexData.take_front(3) != "000")
|
|
return createStringError(errc::invalid_argument,
|
|
"start address exceeds 20 bit for 80x86");
|
|
break;
|
|
case IHexRecord::ExtendedAddr:
|
|
// 16-31 bits of linear base address
|
|
if (R.HexData.size() != 4)
|
|
return createStringError(
|
|
errc::invalid_argument,
|
|
"extended address data should be 2 bytes in size");
|
|
break;
|
|
default:
|
|
// Unknown record type
|
|
return createStringError(errc::invalid_argument, "unknown record type: %u",
|
|
static_cast<unsigned>(R.Type));
|
|
}
|
|
return Error::success();
|
|
}
|
|
|
|
// Checks that IHEX line contains valid characters.
|
|
// This allows converting hexadecimal data to integers
|
|
// without extra verification.
|
|
static Error checkChars(StringRef Line) {
|
|
assert(!Line.empty());
|
|
if (Line[0] != ':')
|
|
return createStringError(errc::invalid_argument,
|
|
"missing ':' in the beginning of line.");
|
|
|
|
for (size_t Pos = 1; Pos < Line.size(); ++Pos)
|
|
if (hexDigitValue(Line[Pos]) == -1U)
|
|
return createStringError(errc::invalid_argument,
|
|
"invalid character at position %zu.", Pos + 1);
|
|
return Error::success();
|
|
}
|
|
|
|
Expected<IHexRecord> IHexRecord::parse(StringRef Line) {
|
|
assert(!Line.empty());
|
|
|
|
// ':' + Length + Address + Type + Checksum with empty data ':LLAAAATTCC'
|
|
if (Line.size() < 11)
|
|
return createStringError(errc::invalid_argument,
|
|
"line is too short: %zu chars.", Line.size());
|
|
|
|
if (Error E = checkChars(Line))
|
|
return std::move(E);
|
|
|
|
IHexRecord Rec;
|
|
size_t DataLen = checkedGetHex<uint8_t>(Line.substr(1, 2));
|
|
if (Line.size() != getLength(DataLen))
|
|
return createStringError(errc::invalid_argument,
|
|
"invalid line length %zu (should be %zu)",
|
|
Line.size(), getLength(DataLen));
|
|
|
|
Rec.Addr = checkedGetHex<uint16_t>(Line.substr(3, 4));
|
|
Rec.Type = checkedGetHex<uint8_t>(Line.substr(7, 2));
|
|
Rec.HexData = Line.substr(9, DataLen * 2);
|
|
|
|
if (getChecksum(Line.drop_front(1)) != 0)
|
|
return createStringError(errc::invalid_argument, "incorrect checksum.");
|
|
if (Error E = checkRecord(Rec))
|
|
return std::move(E);
|
|
return Rec;
|
|
}
|
|
|
|
static uint64_t sectionPhysicalAddr(const SectionBase *Sec) {
|
|
Segment *Seg = Sec->ParentSegment;
|
|
if (Seg && Seg->Type != ELF::PT_LOAD)
|
|
Seg = nullptr;
|
|
return Seg ? Seg->PAddr + Sec->OriginalOffset - Seg->OriginalOffset
|
|
: Sec->Addr;
|
|
}
|
|
|
|
void IHexSectionWriterBase::writeSection(const SectionBase *Sec,
|
|
ArrayRef<uint8_t> Data) {
|
|
assert(Data.size() == Sec->Size);
|
|
const uint32_t ChunkSize = 16;
|
|
uint32_t Addr = sectionPhysicalAddr(Sec) & 0xFFFFFFFFU;
|
|
while (!Data.empty()) {
|
|
uint64_t DataSize = std::min<uint64_t>(Data.size(), ChunkSize);
|
|
if (Addr > SegmentAddr + BaseAddr + 0xFFFFU) {
|
|
if (Addr > 0xFFFFFU) {
|
|
// Write extended address record, zeroing segment address
|
|
// if needed.
|
|
if (SegmentAddr != 0)
|
|
SegmentAddr = writeSegmentAddr(0U);
|
|
BaseAddr = writeBaseAddr(Addr);
|
|
} else {
|
|
// We can still remain 16-bit
|
|
SegmentAddr = writeSegmentAddr(Addr);
|
|
}
|
|
}
|
|
uint64_t SegOffset = Addr - BaseAddr - SegmentAddr;
|
|
assert(SegOffset <= 0xFFFFU);
|
|
DataSize = std::min(DataSize, 0x10000U - SegOffset);
|
|
writeData(0, SegOffset, Data.take_front(DataSize));
|
|
Addr += DataSize;
|
|
Data = Data.drop_front(DataSize);
|
|
}
|
|
}
|
|
|
|
uint64_t IHexSectionWriterBase::writeSegmentAddr(uint64_t Addr) {
|
|
assert(Addr <= 0xFFFFFU);
|
|
uint8_t Data[] = {static_cast<uint8_t>((Addr & 0xF0000U) >> 12), 0};
|
|
writeData(2, 0, Data);
|
|
return Addr & 0xF0000U;
|
|
}
|
|
|
|
uint64_t IHexSectionWriterBase::writeBaseAddr(uint64_t Addr) {
|
|
assert(Addr <= 0xFFFFFFFFU);
|
|
uint64_t Base = Addr & 0xFFFF0000U;
|
|
uint8_t Data[] = {static_cast<uint8_t>(Base >> 24),
|
|
static_cast<uint8_t>((Base >> 16) & 0xFF)};
|
|
writeData(4, 0, Data);
|
|
return Base;
|
|
}
|
|
|
|
void IHexSectionWriterBase::writeData(uint8_t Type, uint16_t Addr,
|
|
ArrayRef<uint8_t> Data) {
|
|
Offset += IHexRecord::getLineLength(Data.size());
|
|
}
|
|
|
|
void IHexSectionWriterBase::visit(const Section &Sec) {
|
|
writeSection(&Sec, Sec.Contents);
|
|
}
|
|
|
|
void IHexSectionWriterBase::visit(const OwnedDataSection &Sec) {
|
|
writeSection(&Sec, Sec.Data);
|
|
}
|
|
|
|
void IHexSectionWriterBase::visit(const StringTableSection &Sec) {
|
|
// Check that sizer has already done its work
|
|
assert(Sec.Size == Sec.StrTabBuilder.getSize());
|
|
// We are free to pass an invalid pointer to writeSection as long
|
|
// as we don't actually write any data. The real writer class has
|
|
// to override this method .
|
|
writeSection(&Sec, {nullptr, static_cast<size_t>(Sec.Size)});
|
|
}
|
|
|
|
void IHexSectionWriterBase::visit(const DynamicRelocationSection &Sec) {
|
|
writeSection(&Sec, Sec.Contents);
|
|
}
|
|
|
|
void IHexSectionWriter::writeData(uint8_t Type, uint16_t Addr,
|
|
ArrayRef<uint8_t> Data) {
|
|
IHexLineData HexData = IHexRecord::getLine(Type, Addr, Data);
|
|
memcpy(Out.getBufferStart() + Offset, HexData.data(), HexData.size());
|
|
Offset += HexData.size();
|
|
}
|
|
|
|
void IHexSectionWriter::visit(const StringTableSection &Sec) {
|
|
assert(Sec.Size == Sec.StrTabBuilder.getSize());
|
|
std::vector<uint8_t> Data(Sec.Size);
|
|
Sec.StrTabBuilder.write(Data.data());
|
|
writeSection(&Sec, Data);
|
|
}
|
|
|
|
void Section::accept(SectionVisitor &Visitor) const { Visitor.visit(*this); }
|
|
|
|
void Section::accept(MutableSectionVisitor &Visitor) { Visitor.visit(*this); }
|
|
|
|
void SectionWriter::visit(const OwnedDataSection &Sec) {
|
|
llvm::copy(Sec.Data, Out.getBufferStart() + Sec.Offset);
|
|
}
|
|
|
|
static constexpr std::array<uint8_t, 4> ZlibGnuMagic = {{'Z', 'L', 'I', 'B'}};
|
|
|
|
static bool isDataGnuCompressed(ArrayRef<uint8_t> Data) {
|
|
return Data.size() > ZlibGnuMagic.size() &&
|
|
std::equal(ZlibGnuMagic.begin(), ZlibGnuMagic.end(), Data.data());
|
|
}
|
|
|
|
template <class ELFT>
|
|
static std::tuple<uint64_t, uint64_t>
|
|
getDecompressedSizeAndAlignment(ArrayRef<uint8_t> Data) {
|
|
const bool IsGnuDebug = isDataGnuCompressed(Data);
|
|
const uint64_t DecompressedSize =
|
|
IsGnuDebug
|
|
? support::endian::read64be(Data.data() + ZlibGnuMagic.size())
|
|
: reinterpret_cast<const Elf_Chdr_Impl<ELFT> *>(Data.data())->ch_size;
|
|
const uint64_t DecompressedAlign =
|
|
IsGnuDebug ? 1
|
|
: reinterpret_cast<const Elf_Chdr_Impl<ELFT> *>(Data.data())
|
|
->ch_addralign;
|
|
|
|
return std::make_tuple(DecompressedSize, DecompressedAlign);
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ELFSectionWriter<ELFT>::visit(const DecompressedSection &Sec) {
|
|
const size_t DataOffset = isDataGnuCompressed(Sec.OriginalData)
|
|
? (ZlibGnuMagic.size() + sizeof(Sec.Size))
|
|
: sizeof(Elf_Chdr_Impl<ELFT>);
|
|
|
|
StringRef CompressedContent(
|
|
reinterpret_cast<const char *>(Sec.OriginalData.data()) + DataOffset,
|
|
Sec.OriginalData.size() - DataOffset);
|
|
|
|
SmallVector<char, 128> DecompressedContent;
|
|
if (Error E = zlib::uncompress(CompressedContent, DecompressedContent,
|
|
static_cast<size_t>(Sec.Size)))
|
|
reportError(Sec.Name, std::move(E));
|
|
|
|
uint8_t *Buf = Out.getBufferStart() + Sec.Offset;
|
|
std::copy(DecompressedContent.begin(), DecompressedContent.end(), Buf);
|
|
}
|
|
|
|
void BinarySectionWriter::visit(const DecompressedSection &Sec) {
|
|
error("cannot write compressed section '" + Sec.Name + "' ");
|
|
}
|
|
|
|
void DecompressedSection::accept(SectionVisitor &Visitor) const {
|
|
Visitor.visit(*this);
|
|
}
|
|
|
|
void DecompressedSection::accept(MutableSectionVisitor &Visitor) {
|
|
Visitor.visit(*this);
|
|
}
|
|
|
|
void OwnedDataSection::accept(SectionVisitor &Visitor) const {
|
|
Visitor.visit(*this);
|
|
}
|
|
|
|
void OwnedDataSection::accept(MutableSectionVisitor &Visitor) {
|
|
Visitor.visit(*this);
|
|
}
|
|
|
|
void OwnedDataSection::appendHexData(StringRef HexData) {
|
|
assert((HexData.size() & 1) == 0);
|
|
while (!HexData.empty()) {
|
|
Data.push_back(checkedGetHex<uint8_t>(HexData.take_front(2)));
|
|
HexData = HexData.drop_front(2);
|
|
}
|
|
Size = Data.size();
|
|
}
|
|
|
|
void BinarySectionWriter::visit(const CompressedSection &Sec) {
|
|
error("cannot write compressed section '" + Sec.Name + "' ");
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ELFSectionWriter<ELFT>::visit(const CompressedSection &Sec) {
|
|
uint8_t *Buf = Out.getBufferStart() + Sec.Offset;
|
|
if (Sec.CompressionType == DebugCompressionType::None) {
|
|
std::copy(Sec.OriginalData.begin(), Sec.OriginalData.end(), Buf);
|
|
return;
|
|
}
|
|
|
|
if (Sec.CompressionType == DebugCompressionType::GNU) {
|
|
const char *Magic = "ZLIB";
|
|
memcpy(Buf, Magic, strlen(Magic));
|
|
Buf += strlen(Magic);
|
|
const uint64_t DecompressedSize =
|
|
support::endian::read64be(&Sec.DecompressedSize);
|
|
memcpy(Buf, &DecompressedSize, sizeof(DecompressedSize));
|
|
Buf += sizeof(DecompressedSize);
|
|
} else {
|
|
Elf_Chdr_Impl<ELFT> Chdr;
|
|
Chdr.ch_type = ELF::ELFCOMPRESS_ZLIB;
|
|
Chdr.ch_size = Sec.DecompressedSize;
|
|
Chdr.ch_addralign = Sec.DecompressedAlign;
|
|
memcpy(Buf, &Chdr, sizeof(Chdr));
|
|
Buf += sizeof(Chdr);
|
|
}
|
|
|
|
std::copy(Sec.CompressedData.begin(), Sec.CompressedData.end(), Buf);
|
|
}
|
|
|
|
CompressedSection::CompressedSection(const SectionBase &Sec,
|
|
DebugCompressionType CompressionType)
|
|
: SectionBase(Sec), CompressionType(CompressionType),
|
|
DecompressedSize(Sec.OriginalData.size()), DecompressedAlign(Sec.Align) {
|
|
if (Error E = zlib::compress(
|
|
StringRef(reinterpret_cast<const char *>(OriginalData.data()),
|
|
OriginalData.size()),
|
|
CompressedData))
|
|
reportError(Name, std::move(E));
|
|
|
|
size_t ChdrSize;
|
|
if (CompressionType == DebugCompressionType::GNU) {
|
|
Name = ".z" + Sec.Name.substr(1);
|
|
ChdrSize = sizeof("ZLIB") - 1 + sizeof(uint64_t);
|
|
} else {
|
|
Flags |= ELF::SHF_COMPRESSED;
|
|
ChdrSize =
|
|
std::max(std::max(sizeof(object::Elf_Chdr_Impl<object::ELF64LE>),
|
|
sizeof(object::Elf_Chdr_Impl<object::ELF64BE>)),
|
|
std::max(sizeof(object::Elf_Chdr_Impl<object::ELF32LE>),
|
|
sizeof(object::Elf_Chdr_Impl<object::ELF32BE>)));
|
|
}
|
|
Size = ChdrSize + CompressedData.size();
|
|
Align = 8;
|
|
}
|
|
|
|
CompressedSection::CompressedSection(ArrayRef<uint8_t> CompressedData,
|
|
uint64_t DecompressedSize,
|
|
uint64_t DecompressedAlign)
|
|
: CompressionType(DebugCompressionType::None),
|
|
DecompressedSize(DecompressedSize), DecompressedAlign(DecompressedAlign) {
|
|
OriginalData = CompressedData;
|
|
}
|
|
|
|
void CompressedSection::accept(SectionVisitor &Visitor) const {
|
|
Visitor.visit(*this);
|
|
}
|
|
|
|
void CompressedSection::accept(MutableSectionVisitor &Visitor) {
|
|
Visitor.visit(*this);
|
|
}
|
|
|
|
void StringTableSection::addString(StringRef Name) { StrTabBuilder.add(Name); }
|
|
|
|
uint32_t StringTableSection::findIndex(StringRef Name) const {
|
|
return StrTabBuilder.getOffset(Name);
|
|
}
|
|
|
|
void StringTableSection::prepareForLayout() {
|
|
StrTabBuilder.finalize();
|
|
Size = StrTabBuilder.getSize();
|
|
}
|
|
|
|
void SectionWriter::visit(const StringTableSection &Sec) {
|
|
Sec.StrTabBuilder.write(Out.getBufferStart() + Sec.Offset);
|
|
}
|
|
|
|
void StringTableSection::accept(SectionVisitor &Visitor) const {
|
|
Visitor.visit(*this);
|
|
}
|
|
|
|
void StringTableSection::accept(MutableSectionVisitor &Visitor) {
|
|
Visitor.visit(*this);
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ELFSectionWriter<ELFT>::visit(const SectionIndexSection &Sec) {
|
|
uint8_t *Buf = Out.getBufferStart() + Sec.Offset;
|
|
llvm::copy(Sec.Indexes, reinterpret_cast<Elf_Word *>(Buf));
|
|
}
|
|
|
|
void SectionIndexSection::initialize(SectionTableRef SecTable) {
|
|
Size = 0;
|
|
setSymTab(SecTable.getSectionOfType<SymbolTableSection>(
|
|
Link,
|
|
"Link field value " + Twine(Link) + " in section " + Name + " is invalid",
|
|
"Link field value " + Twine(Link) + " in section " + Name +
|
|
" is not a symbol table"));
|
|
Symbols->setShndxTable(this);
|
|
}
|
|
|
|
void SectionIndexSection::finalize() { Link = Symbols->Index; }
|
|
|
|
void SectionIndexSection::accept(SectionVisitor &Visitor) const {
|
|
Visitor.visit(*this);
|
|
}
|
|
|
|
void SectionIndexSection::accept(MutableSectionVisitor &Visitor) {
|
|
Visitor.visit(*this);
|
|
}
|
|
|
|
static bool isValidReservedSectionIndex(uint16_t Index, uint16_t Machine) {
|
|
switch (Index) {
|
|
case SHN_ABS:
|
|
case SHN_COMMON:
|
|
return true;
|
|
}
|
|
|
|
if (Machine == EM_AMDGPU) {
|
|
return Index == SHN_AMDGPU_LDS;
|
|
}
|
|
|
|
if (Machine == EM_HEXAGON) {
|
|
switch (Index) {
|
|
case SHN_HEXAGON_SCOMMON:
|
|
case SHN_HEXAGON_SCOMMON_2:
|
|
case SHN_HEXAGON_SCOMMON_4:
|
|
case SHN_HEXAGON_SCOMMON_8:
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Large indexes force us to clarify exactly what this function should do. This
|
|
// function should return the value that will appear in st_shndx when written
|
|
// out.
|
|
uint16_t Symbol::getShndx() const {
|
|
if (DefinedIn != nullptr) {
|
|
if (DefinedIn->Index >= SHN_LORESERVE)
|
|
return SHN_XINDEX;
|
|
return DefinedIn->Index;
|
|
}
|
|
|
|
if (ShndxType == SYMBOL_SIMPLE_INDEX) {
|
|
// This means that we don't have a defined section but we do need to
|
|
// output a legitimate section index.
|
|
return SHN_UNDEF;
|
|
}
|
|
|
|
assert(ShndxType == SYMBOL_ABS || ShndxType == SYMBOL_COMMON ||
|
|
(ShndxType >= SYMBOL_LOPROC && ShndxType <= SYMBOL_HIPROC) ||
|
|
(ShndxType >= SYMBOL_LOOS && ShndxType <= SYMBOL_HIOS));
|
|
return static_cast<uint16_t>(ShndxType);
|
|
}
|
|
|
|
bool Symbol::isCommon() const { return getShndx() == SHN_COMMON; }
|
|
|
|
void SymbolTableSection::assignIndices() {
|
|
uint32_t Index = 0;
|
|
for (auto &Sym : Symbols)
|
|
Sym->Index = Index++;
|
|
}
|
|
|
|
void SymbolTableSection::addSymbol(Twine Name, uint8_t Bind, uint8_t Type,
|
|
SectionBase *DefinedIn, uint64_t Value,
|
|
uint8_t Visibility, uint16_t Shndx,
|
|
uint64_t SymbolSize) {
|
|
Symbol Sym;
|
|
Sym.Name = Name.str();
|
|
Sym.Binding = Bind;
|
|
Sym.Type = Type;
|
|
Sym.DefinedIn = DefinedIn;
|
|
if (DefinedIn != nullptr)
|
|
DefinedIn->HasSymbol = true;
|
|
if (DefinedIn == nullptr) {
|
|
if (Shndx >= SHN_LORESERVE)
|
|
Sym.ShndxType = static_cast<SymbolShndxType>(Shndx);
|
|
else
|
|
Sym.ShndxType = SYMBOL_SIMPLE_INDEX;
|
|
}
|
|
Sym.Value = Value;
|
|
Sym.Visibility = Visibility;
|
|
Sym.Size = SymbolSize;
|
|
Sym.Index = Symbols.size();
|
|
Symbols.emplace_back(std::make_unique<Symbol>(Sym));
|
|
Size += this->EntrySize;
|
|
}
|
|
|
|
Error SymbolTableSection::removeSectionReferences(
|
|
bool AllowBrokenLinks,
|
|
function_ref<bool(const SectionBase *)> ToRemove) {
|
|
if (ToRemove(SectionIndexTable))
|
|
SectionIndexTable = nullptr;
|
|
if (ToRemove(SymbolNames)) {
|
|
if (!AllowBrokenLinks)
|
|
return createStringError(
|
|
llvm::errc::invalid_argument,
|
|
"string table '%s' cannot be removed because it is "
|
|
"referenced by the symbol table '%s'",
|
|
SymbolNames->Name.data(), this->Name.data());
|
|
SymbolNames = nullptr;
|
|
}
|
|
return removeSymbols(
|
|
[ToRemove](const Symbol &Sym) { return ToRemove(Sym.DefinedIn); });
|
|
}
|
|
|
|
void SymbolTableSection::updateSymbols(function_ref<void(Symbol &)> Callable) {
|
|
std::for_each(std::begin(Symbols) + 1, std::end(Symbols),
|
|
[Callable](SymPtr &Sym) { Callable(*Sym); });
|
|
std::stable_partition(
|
|
std::begin(Symbols), std::end(Symbols),
|
|
[](const SymPtr &Sym) { return Sym->Binding == STB_LOCAL; });
|
|
assignIndices();
|
|
}
|
|
|
|
Error SymbolTableSection::removeSymbols(
|
|
function_ref<bool(const Symbol &)> ToRemove) {
|
|
Symbols.erase(
|
|
std::remove_if(std::begin(Symbols) + 1, std::end(Symbols),
|
|
[ToRemove](const SymPtr &Sym) { return ToRemove(*Sym); }),
|
|
std::end(Symbols));
|
|
Size = Symbols.size() * EntrySize;
|
|
assignIndices();
|
|
return Error::success();
|
|
}
|
|
|
|
void SymbolTableSection::replaceSectionReferences(
|
|
const DenseMap<SectionBase *, SectionBase *> &FromTo) {
|
|
for (std::unique_ptr<Symbol> &Sym : Symbols)
|
|
if (SectionBase *To = FromTo.lookup(Sym->DefinedIn))
|
|
Sym->DefinedIn = To;
|
|
}
|
|
|
|
void SymbolTableSection::initialize(SectionTableRef SecTable) {
|
|
Size = 0;
|
|
setStrTab(SecTable.getSectionOfType<StringTableSection>(
|
|
Link,
|
|
"Symbol table has link index of " + Twine(Link) +
|
|
" which is not a valid index",
|
|
"Symbol table has link index of " + Twine(Link) +
|
|
" which is not a string table"));
|
|
}
|
|
|
|
void SymbolTableSection::finalize() {
|
|
uint32_t MaxLocalIndex = 0;
|
|
for (std::unique_ptr<Symbol> &Sym : Symbols) {
|
|
Sym->NameIndex =
|
|
SymbolNames == nullptr ? 0 : SymbolNames->findIndex(Sym->Name);
|
|
if (Sym->Binding == STB_LOCAL)
|
|
MaxLocalIndex = std::max(MaxLocalIndex, Sym->Index);
|
|
}
|
|
// Now we need to set the Link and Info fields.
|
|
Link = SymbolNames == nullptr ? 0 : SymbolNames->Index;
|
|
Info = MaxLocalIndex + 1;
|
|
}
|
|
|
|
void SymbolTableSection::prepareForLayout() {
|
|
// Reserve proper amount of space in section index table, so we can
|
|
// layout sections correctly. We will fill the table with correct
|
|
// indexes later in fillShdnxTable.
|
|
if (SectionIndexTable)
|
|
SectionIndexTable->reserve(Symbols.size());
|
|
|
|
// Add all of our strings to SymbolNames so that SymbolNames has the right
|
|
// size before layout is decided.
|
|
// If the symbol names section has been removed, don't try to add strings to
|
|
// the table.
|
|
if (SymbolNames != nullptr)
|
|
for (std::unique_ptr<Symbol> &Sym : Symbols)
|
|
SymbolNames->addString(Sym->Name);
|
|
}
|
|
|
|
void SymbolTableSection::fillShndxTable() {
|
|
if (SectionIndexTable == nullptr)
|
|
return;
|
|
// Fill section index table with real section indexes. This function must
|
|
// be called after assignOffsets.
|
|
for (const std::unique_ptr<Symbol> &Sym : Symbols) {
|
|
if (Sym->DefinedIn != nullptr && Sym->DefinedIn->Index >= SHN_LORESERVE)
|
|
SectionIndexTable->addIndex(Sym->DefinedIn->Index);
|
|
else
|
|
SectionIndexTable->addIndex(SHN_UNDEF);
|
|
}
|
|
}
|
|
|
|
const Symbol *SymbolTableSection::getSymbolByIndex(uint32_t Index) const {
|
|
if (Symbols.size() <= Index)
|
|
error("invalid symbol index: " + Twine(Index));
|
|
return Symbols[Index].get();
|
|
}
|
|
|
|
Symbol *SymbolTableSection::getSymbolByIndex(uint32_t Index) {
|
|
return const_cast<Symbol *>(
|
|
static_cast<const SymbolTableSection *>(this)->getSymbolByIndex(Index));
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ELFSectionWriter<ELFT>::visit(const SymbolTableSection &Sec) {
|
|
Elf_Sym *Sym = reinterpret_cast<Elf_Sym *>(Out.getBufferStart() + Sec.Offset);
|
|
// Loop though symbols setting each entry of the symbol table.
|
|
for (const std::unique_ptr<Symbol> &Symbol : Sec.Symbols) {
|
|
Sym->st_name = Symbol->NameIndex;
|
|
Sym->st_value = Symbol->Value;
|
|
Sym->st_size = Symbol->Size;
|
|
Sym->st_other = Symbol->Visibility;
|
|
Sym->setBinding(Symbol->Binding);
|
|
Sym->setType(Symbol->Type);
|
|
Sym->st_shndx = Symbol->getShndx();
|
|
++Sym;
|
|
}
|
|
}
|
|
|
|
void SymbolTableSection::accept(SectionVisitor &Visitor) const {
|
|
Visitor.visit(*this);
|
|
}
|
|
|
|
void SymbolTableSection::accept(MutableSectionVisitor &Visitor) {
|
|
Visitor.visit(*this);
|
|
}
|
|
|
|
Error RelocationSection::removeSectionReferences(
|
|
bool AllowBrokenLinks,
|
|
function_ref<bool(const SectionBase *)> ToRemove) {
|
|
if (ToRemove(Symbols)) {
|
|
if (!AllowBrokenLinks)
|
|
return createStringError(
|
|
llvm::errc::invalid_argument,
|
|
"symbol table '%s' cannot be removed because it is "
|
|
"referenced by the relocation section '%s'",
|
|
Symbols->Name.data(), this->Name.data());
|
|
Symbols = nullptr;
|
|
}
|
|
|
|
for (const Relocation &R : Relocations) {
|
|
if (!R.RelocSymbol || !R.RelocSymbol->DefinedIn ||
|
|
!ToRemove(R.RelocSymbol->DefinedIn))
|
|
continue;
|
|
return createStringError(llvm::errc::invalid_argument,
|
|
"section '%s' cannot be removed: (%s+0x%" PRIx64
|
|
") has relocation against symbol '%s'",
|
|
R.RelocSymbol->DefinedIn->Name.data(),
|
|
SecToApplyRel->Name.data(), R.Offset,
|
|
R.RelocSymbol->Name.c_str());
|
|
}
|
|
|
|
return Error::success();
|
|
}
|
|
|
|
template <class SymTabType>
|
|
void RelocSectionWithSymtabBase<SymTabType>::initialize(
|
|
SectionTableRef SecTable) {
|
|
if (Link != SHN_UNDEF)
|
|
setSymTab(SecTable.getSectionOfType<SymTabType>(
|
|
Link,
|
|
"Link field value " + Twine(Link) + " in section " + Name +
|
|
" is invalid",
|
|
"Link field value " + Twine(Link) + " in section " + Name +
|
|
" is not a symbol table"));
|
|
|
|
if (Info != SHN_UNDEF)
|
|
setSection(SecTable.getSection(Info, "Info field value " + Twine(Info) +
|
|
" in section " + Name +
|
|
" is invalid"));
|
|
else
|
|
setSection(nullptr);
|
|
}
|
|
|
|
template <class SymTabType>
|
|
void RelocSectionWithSymtabBase<SymTabType>::finalize() {
|
|
this->Link = Symbols ? Symbols->Index : 0;
|
|
|
|
if (SecToApplyRel != nullptr)
|
|
this->Info = SecToApplyRel->Index;
|
|
}
|
|
|
|
template <class ELFT>
|
|
static void setAddend(Elf_Rel_Impl<ELFT, false> &Rel, uint64_t Addend) {}
|
|
|
|
template <class ELFT>
|
|
static void setAddend(Elf_Rel_Impl<ELFT, true> &Rela, uint64_t Addend) {
|
|
Rela.r_addend = Addend;
|
|
}
|
|
|
|
template <class RelRange, class T>
|
|
static void writeRel(const RelRange &Relocations, T *Buf) {
|
|
for (const auto &Reloc : Relocations) {
|
|
Buf->r_offset = Reloc.Offset;
|
|
setAddend(*Buf, Reloc.Addend);
|
|
Buf->setSymbolAndType(Reloc.RelocSymbol ? Reloc.RelocSymbol->Index : 0,
|
|
Reloc.Type, false);
|
|
++Buf;
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ELFSectionWriter<ELFT>::visit(const RelocationSection &Sec) {
|
|
uint8_t *Buf = Out.getBufferStart() + Sec.Offset;
|
|
if (Sec.Type == SHT_REL)
|
|
writeRel(Sec.Relocations, reinterpret_cast<Elf_Rel *>(Buf));
|
|
else
|
|
writeRel(Sec.Relocations, reinterpret_cast<Elf_Rela *>(Buf));
|
|
}
|
|
|
|
void RelocationSection::accept(SectionVisitor &Visitor) const {
|
|
Visitor.visit(*this);
|
|
}
|
|
|
|
void RelocationSection::accept(MutableSectionVisitor &Visitor) {
|
|
Visitor.visit(*this);
|
|
}
|
|
|
|
Error RelocationSection::removeSymbols(
|
|
function_ref<bool(const Symbol &)> ToRemove) {
|
|
for (const Relocation &Reloc : Relocations)
|
|
if (Reloc.RelocSymbol && ToRemove(*Reloc.RelocSymbol))
|
|
return createStringError(
|
|
llvm::errc::invalid_argument,
|
|
"not stripping symbol '%s' because it is named in a relocation",
|
|
Reloc.RelocSymbol->Name.data());
|
|
return Error::success();
|
|
}
|
|
|
|
void RelocationSection::markSymbols() {
|
|
for (const Relocation &Reloc : Relocations)
|
|
if (Reloc.RelocSymbol)
|
|
Reloc.RelocSymbol->Referenced = true;
|
|
}
|
|
|
|
void RelocationSection::replaceSectionReferences(
|
|
const DenseMap<SectionBase *, SectionBase *> &FromTo) {
|
|
// Update the target section if it was replaced.
|
|
if (SectionBase *To = FromTo.lookup(SecToApplyRel))
|
|
SecToApplyRel = To;
|
|
}
|
|
|
|
void SectionWriter::visit(const DynamicRelocationSection &Sec) {
|
|
llvm::copy(Sec.Contents, Out.getBufferStart() + Sec.Offset);
|
|
}
|
|
|
|
void DynamicRelocationSection::accept(SectionVisitor &Visitor) const {
|
|
Visitor.visit(*this);
|
|
}
|
|
|
|
void DynamicRelocationSection::accept(MutableSectionVisitor &Visitor) {
|
|
Visitor.visit(*this);
|
|
}
|
|
|
|
Error DynamicRelocationSection::removeSectionReferences(
|
|
bool AllowBrokenLinks, function_ref<bool(const SectionBase *)> ToRemove) {
|
|
if (ToRemove(Symbols)) {
|
|
if (!AllowBrokenLinks)
|
|
return createStringError(
|
|
llvm::errc::invalid_argument,
|
|
"symbol table '%s' cannot be removed because it is "
|
|
"referenced by the relocation section '%s'",
|
|
Symbols->Name.data(), this->Name.data());
|
|
Symbols = nullptr;
|
|
}
|
|
|
|
// SecToApplyRel contains a section referenced by sh_info field. It keeps
|
|
// a section to which the relocation section applies. When we remove any
|
|
// sections we also remove their relocation sections. Since we do that much
|
|
// earlier, this assert should never be triggered.
|
|
assert(!SecToApplyRel || !ToRemove(SecToApplyRel));
|
|
return Error::success();
|
|
}
|
|
|
|
Error Section::removeSectionReferences(
|
|
bool AllowBrokenDependency,
|
|
function_ref<bool(const SectionBase *)> ToRemove) {
|
|
if (ToRemove(LinkSection)) {
|
|
if (!AllowBrokenDependency)
|
|
return createStringError(llvm::errc::invalid_argument,
|
|
"section '%s' cannot be removed because it is "
|
|
"referenced by the section '%s'",
|
|
LinkSection->Name.data(), this->Name.data());
|
|
LinkSection = nullptr;
|
|
}
|
|
return Error::success();
|
|
}
|
|
|
|
void GroupSection::finalize() {
|
|
this->Info = Sym->Index;
|
|
this->Link = SymTab->Index;
|
|
}
|
|
|
|
Error GroupSection::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) {
|
|
if (ToRemove(*Sym))
|
|
return createStringError(llvm::errc::invalid_argument,
|
|
"symbol '%s' cannot be removed because it is "
|
|
"referenced by the section '%s[%d]'",
|
|
Sym->Name.data(), this->Name.data(), this->Index);
|
|
return Error::success();
|
|
}
|
|
|
|
void GroupSection::markSymbols() {
|
|
if (Sym)
|
|
Sym->Referenced = true;
|
|
}
|
|
|
|
void GroupSection::replaceSectionReferences(
|
|
const DenseMap<SectionBase *, SectionBase *> &FromTo) {
|
|
for (SectionBase *&Sec : GroupMembers)
|
|
if (SectionBase *To = FromTo.lookup(Sec))
|
|
Sec = To;
|
|
}
|
|
|
|
void Section::initialize(SectionTableRef SecTable) {
|
|
if (Link == ELF::SHN_UNDEF)
|
|
return;
|
|
LinkSection =
|
|
SecTable.getSection(Link, "Link field value " + Twine(Link) +
|
|
" in section " + Name + " is invalid");
|
|
if (LinkSection->Type == ELF::SHT_SYMTAB)
|
|
LinkSection = nullptr;
|
|
}
|
|
|
|
void Section::finalize() { this->Link = LinkSection ? LinkSection->Index : 0; }
|
|
|
|
void GnuDebugLinkSection::init(StringRef File) {
|
|
FileName = sys::path::filename(File);
|
|
// The format for the .gnu_debuglink starts with the file name and is
|
|
// followed by a null terminator and then the CRC32 of the file. The CRC32
|
|
// should be 4 byte aligned. So we add the FileName size, a 1 for the null
|
|
// byte, and then finally push the size to alignment and add 4.
|
|
Size = alignTo(FileName.size() + 1, 4) + 4;
|
|
// The CRC32 will only be aligned if we align the whole section.
|
|
Align = 4;
|
|
Type = ELF::SHT_PROGBITS;
|
|
Name = ".gnu_debuglink";
|
|
// For sections not found in segments, OriginalOffset is only used to
|
|
// establish the order that sections should go in. By using the maximum
|
|
// possible offset we cause this section to wind up at the end.
|
|
OriginalOffset = std::numeric_limits<uint64_t>::max();
|
|
}
|
|
|
|
GnuDebugLinkSection::GnuDebugLinkSection(StringRef File,
|
|
uint32_t PrecomputedCRC)
|
|
: FileName(File), CRC32(PrecomputedCRC) {
|
|
init(File);
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ELFSectionWriter<ELFT>::visit(const GnuDebugLinkSection &Sec) {
|
|
unsigned char *Buf = Out.getBufferStart() + Sec.Offset;
|
|
Elf_Word *CRC =
|
|
reinterpret_cast<Elf_Word *>(Buf + Sec.Size - sizeof(Elf_Word));
|
|
*CRC = Sec.CRC32;
|
|
llvm::copy(Sec.FileName, Buf);
|
|
}
|
|
|
|
void GnuDebugLinkSection::accept(SectionVisitor &Visitor) const {
|
|
Visitor.visit(*this);
|
|
}
|
|
|
|
void GnuDebugLinkSection::accept(MutableSectionVisitor &Visitor) {
|
|
Visitor.visit(*this);
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ELFSectionWriter<ELFT>::visit(const GroupSection &Sec) {
|
|
ELF::Elf32_Word *Buf =
|
|
reinterpret_cast<ELF::Elf32_Word *>(Out.getBufferStart() + Sec.Offset);
|
|
*Buf++ = Sec.FlagWord;
|
|
for (SectionBase *S : Sec.GroupMembers)
|
|
support::endian::write32<ELFT::TargetEndianness>(Buf++, S->Index);
|
|
}
|
|
|
|
void GroupSection::accept(SectionVisitor &Visitor) const {
|
|
Visitor.visit(*this);
|
|
}
|
|
|
|
void GroupSection::accept(MutableSectionVisitor &Visitor) {
|
|
Visitor.visit(*this);
|
|
}
|
|
|
|
// Returns true IFF a section is wholly inside the range of a segment
|
|
static bool sectionWithinSegment(const SectionBase &Sec, const Segment &Seg) {
|
|
// If a section is empty it should be treated like it has a size of 1. This is
|
|
// to clarify the case when an empty section lies on a boundary between two
|
|
// segments and ensures that the section "belongs" to the second segment and
|
|
// not the first.
|
|
uint64_t SecSize = Sec.Size ? Sec.Size : 1;
|
|
|
|
if (Sec.Type == SHT_NOBITS) {
|
|
if (!(Sec.Flags & SHF_ALLOC))
|
|
return false;
|
|
|
|
bool SectionIsTLS = Sec.Flags & SHF_TLS;
|
|
bool SegmentIsTLS = Seg.Type == PT_TLS;
|
|
if (SectionIsTLS != SegmentIsTLS)
|
|
return false;
|
|
|
|
return Seg.VAddr <= Sec.Addr &&
|
|
Seg.VAddr + Seg.MemSize >= Sec.Addr + SecSize;
|
|
}
|
|
|
|
return Seg.Offset <= Sec.OriginalOffset &&
|
|
Seg.Offset + Seg.FileSize >= Sec.OriginalOffset + SecSize;
|
|
}
|
|
|
|
// Returns true IFF a segment's original offset is inside of another segment's
|
|
// range.
|
|
static bool segmentOverlapsSegment(const Segment &Child,
|
|
const Segment &Parent) {
|
|
|
|
return Parent.OriginalOffset <= Child.OriginalOffset &&
|
|
Parent.OriginalOffset + Parent.FileSize > Child.OriginalOffset;
|
|
}
|
|
|
|
static bool compareSegmentsByOffset(const Segment *A, const Segment *B) {
|
|
// Any segment without a parent segment should come before a segment
|
|
// that has a parent segment.
|
|
if (A->OriginalOffset < B->OriginalOffset)
|
|
return true;
|
|
if (A->OriginalOffset > B->OriginalOffset)
|
|
return false;
|
|
return A->Index < B->Index;
|
|
}
|
|
|
|
static bool compareSegmentsByPAddr(const Segment *A, const Segment *B) {
|
|
if (A->PAddr < B->PAddr)
|
|
return true;
|
|
if (A->PAddr > B->PAddr)
|
|
return false;
|
|
return A->Index < B->Index;
|
|
}
|
|
|
|
void BasicELFBuilder::initFileHeader() {
|
|
Obj->Flags = 0x0;
|
|
Obj->Type = ET_REL;
|
|
Obj->OSABI = ELFOSABI_NONE;
|
|
Obj->ABIVersion = 0;
|
|
Obj->Entry = 0x0;
|
|
Obj->Machine = EM_NONE;
|
|
Obj->Version = 1;
|
|
}
|
|
|
|
void BasicELFBuilder::initHeaderSegment() { Obj->ElfHdrSegment.Index = 0; }
|
|
|
|
StringTableSection *BasicELFBuilder::addStrTab() {
|
|
auto &StrTab = Obj->addSection<StringTableSection>();
|
|
StrTab.Name = ".strtab";
|
|
|
|
Obj->SectionNames = &StrTab;
|
|
return &StrTab;
|
|
}
|
|
|
|
SymbolTableSection *BasicELFBuilder::addSymTab(StringTableSection *StrTab) {
|
|
auto &SymTab = Obj->addSection<SymbolTableSection>();
|
|
|
|
SymTab.Name = ".symtab";
|
|
SymTab.Link = StrTab->Index;
|
|
|
|
// The symbol table always needs a null symbol
|
|
SymTab.addSymbol("", 0, 0, nullptr, 0, 0, 0, 0);
|
|
|
|
Obj->SymbolTable = &SymTab;
|
|
return &SymTab;
|
|
}
|
|
|
|
void BasicELFBuilder::initSections() {
|
|
for (SectionBase &Sec : Obj->sections())
|
|
Sec.initialize(Obj->sections());
|
|
}
|
|
|
|
void BinaryELFBuilder::addData(SymbolTableSection *SymTab) {
|
|
auto Data = ArrayRef<uint8_t>(
|
|
reinterpret_cast<const uint8_t *>(MemBuf->getBufferStart()),
|
|
MemBuf->getBufferSize());
|
|
auto &DataSection = Obj->addSection<Section>(Data);
|
|
DataSection.Name = ".data";
|
|
DataSection.Type = ELF::SHT_PROGBITS;
|
|
DataSection.Size = Data.size();
|
|
DataSection.Flags = ELF::SHF_ALLOC | ELF::SHF_WRITE;
|
|
|
|
std::string SanitizedFilename = MemBuf->getBufferIdentifier().str();
|
|
std::replace_if(std::begin(SanitizedFilename), std::end(SanitizedFilename),
|
|
[](char C) { return !isalnum(C); }, '_');
|
|
Twine Prefix = Twine("_binary_") + SanitizedFilename;
|
|
|
|
SymTab->addSymbol(Prefix + "_start", STB_GLOBAL, STT_NOTYPE, &DataSection,
|
|
/*Value=*/0, NewSymbolVisibility, 0, 0);
|
|
SymTab->addSymbol(Prefix + "_end", STB_GLOBAL, STT_NOTYPE, &DataSection,
|
|
/*Value=*/DataSection.Size, NewSymbolVisibility, 0, 0);
|
|
SymTab->addSymbol(Prefix + "_size", STB_GLOBAL, STT_NOTYPE, nullptr,
|
|
/*Value=*/DataSection.Size, NewSymbolVisibility, SHN_ABS,
|
|
0);
|
|
}
|
|
|
|
std::unique_ptr<Object> BinaryELFBuilder::build() {
|
|
initFileHeader();
|
|
initHeaderSegment();
|
|
|
|
SymbolTableSection *SymTab = addSymTab(addStrTab());
|
|
initSections();
|
|
addData(SymTab);
|
|
|
|
return std::move(Obj);
|
|
}
|
|
|
|
// Adds sections from IHEX data file. Data should have been
|
|
// fully validated by this time.
|
|
void IHexELFBuilder::addDataSections() {
|
|
OwnedDataSection *Section = nullptr;
|
|
uint64_t SegmentAddr = 0, BaseAddr = 0;
|
|
uint32_t SecNo = 1;
|
|
|
|
for (const IHexRecord &R : Records) {
|
|
uint64_t RecAddr;
|
|
switch (R.Type) {
|
|
case IHexRecord::Data:
|
|
// Ignore empty data records
|
|
if (R.HexData.empty())
|
|
continue;
|
|
RecAddr = R.Addr + SegmentAddr + BaseAddr;
|
|
if (!Section || Section->Addr + Section->Size != RecAddr)
|
|
// OriginalOffset field is only used to sort section properly, so
|
|
// instead of keeping track of real offset in IHEX file, we use
|
|
// section number.
|
|
Section = &Obj->addSection<OwnedDataSection>(
|
|
".sec" + std::to_string(SecNo++), RecAddr,
|
|
ELF::SHF_ALLOC | ELF::SHF_WRITE, SecNo);
|
|
Section->appendHexData(R.HexData);
|
|
break;
|
|
case IHexRecord::EndOfFile:
|
|
break;
|
|
case IHexRecord::SegmentAddr:
|
|
// 20-bit segment address.
|
|
SegmentAddr = checkedGetHex<uint16_t>(R.HexData) << 4;
|
|
break;
|
|
case IHexRecord::StartAddr80x86:
|
|
case IHexRecord::StartAddr:
|
|
Obj->Entry = checkedGetHex<uint32_t>(R.HexData);
|
|
assert(Obj->Entry <= 0xFFFFFU);
|
|
break;
|
|
case IHexRecord::ExtendedAddr:
|
|
// 16-31 bits of linear base address
|
|
BaseAddr = checkedGetHex<uint16_t>(R.HexData) << 16;
|
|
break;
|
|
default:
|
|
llvm_unreachable("unknown record type");
|
|
}
|
|
}
|
|
}
|
|
|
|
std::unique_ptr<Object> IHexELFBuilder::build() {
|
|
initFileHeader();
|
|
initHeaderSegment();
|
|
StringTableSection *StrTab = addStrTab();
|
|
addSymTab(StrTab);
|
|
initSections();
|
|
addDataSections();
|
|
|
|
return std::move(Obj);
|
|
}
|
|
|
|
template <class ELFT> void ELFBuilder<ELFT>::setParentSegment(Segment &Child) {
|
|
for (Segment &Parent : Obj.segments()) {
|
|
// Every segment will overlap with itself but we don't want a segment to
|
|
// be it's own parent so we avoid that situation.
|
|
if (&Child != &Parent && segmentOverlapsSegment(Child, Parent)) {
|
|
// We want a canonical "most parental" segment but this requires
|
|
// inspecting the ParentSegment.
|
|
if (compareSegmentsByOffset(&Parent, &Child))
|
|
if (Child.ParentSegment == nullptr ||
|
|
compareSegmentsByOffset(&Parent, Child.ParentSegment)) {
|
|
Child.ParentSegment = &Parent;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class ELFT> void ELFBuilder<ELFT>::findEhdrOffset() {
|
|
if (!ExtractPartition)
|
|
return;
|
|
|
|
for (const SectionBase &Sec : Obj.sections()) {
|
|
if (Sec.Type == SHT_LLVM_PART_EHDR && Sec.Name == *ExtractPartition) {
|
|
EhdrOffset = Sec.Offset;
|
|
return;
|
|
}
|
|
}
|
|
error("could not find partition named '" + *ExtractPartition + "'");
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ELFBuilder<ELFT>::readProgramHeaders(const ELFFile<ELFT> &HeadersFile) {
|
|
uint32_t Index = 0;
|
|
for (const auto &Phdr : unwrapOrError(HeadersFile.program_headers())) {
|
|
if (Phdr.p_offset + Phdr.p_filesz > HeadersFile.getBufSize())
|
|
error("program header with offset 0x" + Twine::utohexstr(Phdr.p_offset) +
|
|
" and file size 0x" + Twine::utohexstr(Phdr.p_filesz) +
|
|
" goes past the end of the file");
|
|
|
|
ArrayRef<uint8_t> Data{HeadersFile.base() + Phdr.p_offset,
|
|
(size_t)Phdr.p_filesz};
|
|
Segment &Seg = Obj.addSegment(Data);
|
|
Seg.Type = Phdr.p_type;
|
|
Seg.Flags = Phdr.p_flags;
|
|
Seg.OriginalOffset = Phdr.p_offset + EhdrOffset;
|
|
Seg.Offset = Phdr.p_offset + EhdrOffset;
|
|
Seg.VAddr = Phdr.p_vaddr;
|
|
Seg.PAddr = Phdr.p_paddr;
|
|
Seg.FileSize = Phdr.p_filesz;
|
|
Seg.MemSize = Phdr.p_memsz;
|
|
Seg.Align = Phdr.p_align;
|
|
Seg.Index = Index++;
|
|
for (SectionBase &Sec : Obj.sections())
|
|
if (sectionWithinSegment(Sec, Seg)) {
|
|
Seg.addSection(&Sec);
|
|
if (!Sec.ParentSegment || Sec.ParentSegment->Offset > Seg.Offset)
|
|
Sec.ParentSegment = &Seg;
|
|
}
|
|
}
|
|
|
|
auto &ElfHdr = Obj.ElfHdrSegment;
|
|
ElfHdr.Index = Index++;
|
|
ElfHdr.OriginalOffset = ElfHdr.Offset = EhdrOffset;
|
|
|
|
const auto &Ehdr = *HeadersFile.getHeader();
|
|
auto &PrHdr = Obj.ProgramHdrSegment;
|
|
PrHdr.Type = PT_PHDR;
|
|
PrHdr.Flags = 0;
|
|
// The spec requires us to have p_vaddr % p_align == p_offset % p_align.
|
|
// Whereas this works automatically for ElfHdr, here OriginalOffset is
|
|
// always non-zero and to ensure the equation we assign the same value to
|
|
// VAddr as well.
|
|
PrHdr.OriginalOffset = PrHdr.Offset = PrHdr.VAddr = EhdrOffset + Ehdr.e_phoff;
|
|
PrHdr.PAddr = 0;
|
|
PrHdr.FileSize = PrHdr.MemSize = Ehdr.e_phentsize * Ehdr.e_phnum;
|
|
// The spec requires us to naturally align all the fields.
|
|
PrHdr.Align = sizeof(Elf_Addr);
|
|
PrHdr.Index = Index++;
|
|
|
|
// Now we do an O(n^2) loop through the segments in order to match up
|
|
// segments.
|
|
for (Segment &Child : Obj.segments())
|
|
setParentSegment(Child);
|
|
setParentSegment(ElfHdr);
|
|
setParentSegment(PrHdr);
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ELFBuilder<ELFT>::initGroupSection(GroupSection *GroupSec) {
|
|
if (GroupSec->Align % sizeof(ELF::Elf32_Word) != 0)
|
|
error("invalid alignment " + Twine(GroupSec->Align) + " of group section '" +
|
|
GroupSec->Name + "'");
|
|
SectionTableRef SecTable = Obj.sections();
|
|
auto SymTab = SecTable.template getSectionOfType<SymbolTableSection>(
|
|
GroupSec->Link,
|
|
"link field value '" + Twine(GroupSec->Link) + "' in section '" +
|
|
GroupSec->Name + "' is invalid",
|
|
"link field value '" + Twine(GroupSec->Link) + "' in section '" +
|
|
GroupSec->Name + "' is not a symbol table");
|
|
Symbol *Sym = SymTab->getSymbolByIndex(GroupSec->Info);
|
|
if (!Sym)
|
|
error("info field value '" + Twine(GroupSec->Info) + "' in section '" +
|
|
GroupSec->Name + "' is not a valid symbol index");
|
|
GroupSec->setSymTab(SymTab);
|
|
GroupSec->setSymbol(Sym);
|
|
if (GroupSec->Contents.size() % sizeof(ELF::Elf32_Word) ||
|
|
GroupSec->Contents.empty())
|
|
error("the content of the section " + GroupSec->Name + " is malformed");
|
|
const ELF::Elf32_Word *Word =
|
|
reinterpret_cast<const ELF::Elf32_Word *>(GroupSec->Contents.data());
|
|
const ELF::Elf32_Word *End =
|
|
Word + GroupSec->Contents.size() / sizeof(ELF::Elf32_Word);
|
|
GroupSec->setFlagWord(*Word++);
|
|
for (; Word != End; ++Word) {
|
|
uint32_t Index = support::endian::read32<ELFT::TargetEndianness>(Word);
|
|
GroupSec->addMember(SecTable.getSection(
|
|
Index, "group member index " + Twine(Index) + " in section '" +
|
|
GroupSec->Name + "' is invalid"));
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ELFBuilder<ELFT>::initSymbolTable(SymbolTableSection *SymTab) {
|
|
const Elf_Shdr &Shdr = *unwrapOrError(ElfFile.getSection(SymTab->Index));
|
|
StringRef StrTabData = unwrapOrError(ElfFile.getStringTableForSymtab(Shdr));
|
|
ArrayRef<Elf_Word> ShndxData;
|
|
|
|
auto Symbols = unwrapOrError(ElfFile.symbols(&Shdr));
|
|
for (const auto &Sym : Symbols) {
|
|
SectionBase *DefSection = nullptr;
|
|
StringRef Name = unwrapOrError(Sym.getName(StrTabData));
|
|
|
|
if (Sym.st_shndx == SHN_XINDEX) {
|
|
if (SymTab->getShndxTable() == nullptr)
|
|
error("symbol '" + Name +
|
|
"' has index SHN_XINDEX but no SHT_SYMTAB_SHNDX section exists");
|
|
if (ShndxData.data() == nullptr) {
|
|
const Elf_Shdr &ShndxSec =
|
|
*unwrapOrError(ElfFile.getSection(SymTab->getShndxTable()->Index));
|
|
ShndxData = unwrapOrError(
|
|
ElfFile.template getSectionContentsAsArray<Elf_Word>(&ShndxSec));
|
|
if (ShndxData.size() != Symbols.size())
|
|
error("symbol section index table does not have the same number of "
|
|
"entries as the symbol table");
|
|
}
|
|
Elf_Word Index = ShndxData[&Sym - Symbols.begin()];
|
|
DefSection = Obj.sections().getSection(
|
|
Index,
|
|
"symbol '" + Name + "' has invalid section index " + Twine(Index));
|
|
} else if (Sym.st_shndx >= SHN_LORESERVE) {
|
|
if (!isValidReservedSectionIndex(Sym.st_shndx, Obj.Machine)) {
|
|
error(
|
|
"symbol '" + Name +
|
|
"' has unsupported value greater than or equal to SHN_LORESERVE: " +
|
|
Twine(Sym.st_shndx));
|
|
}
|
|
} else if (Sym.st_shndx != SHN_UNDEF) {
|
|
DefSection = Obj.sections().getSection(
|
|
Sym.st_shndx, "symbol '" + Name +
|
|
"' is defined has invalid section index " +
|
|
Twine(Sym.st_shndx));
|
|
}
|
|
|
|
SymTab->addSymbol(Name, Sym.getBinding(), Sym.getType(), DefSection,
|
|
Sym.getValue(), Sym.st_other, Sym.st_shndx, Sym.st_size);
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
static void getAddend(uint64_t &ToSet, const Elf_Rel_Impl<ELFT, false> &Rel) {}
|
|
|
|
template <class ELFT>
|
|
static void getAddend(uint64_t &ToSet, const Elf_Rel_Impl<ELFT, true> &Rela) {
|
|
ToSet = Rela.r_addend;
|
|
}
|
|
|
|
template <class T>
|
|
static void initRelocations(RelocationSection *Relocs,
|
|
SymbolTableSection *SymbolTable, T RelRange) {
|
|
for (const auto &Rel : RelRange) {
|
|
Relocation ToAdd;
|
|
ToAdd.Offset = Rel.r_offset;
|
|
getAddend(ToAdd.Addend, Rel);
|
|
ToAdd.Type = Rel.getType(false);
|
|
|
|
if (uint32_t Sym = Rel.getSymbol(false)) {
|
|
if (!SymbolTable)
|
|
error("'" + Relocs->Name +
|
|
"': relocation references symbol with index " + Twine(Sym) +
|
|
", but there is no symbol table");
|
|
ToAdd.RelocSymbol = SymbolTable->getSymbolByIndex(Sym);
|
|
}
|
|
|
|
Relocs->addRelocation(ToAdd);
|
|
}
|
|
}
|
|
|
|
SectionBase *SectionTableRef::getSection(uint32_t Index, Twine ErrMsg) {
|
|
if (Index == SHN_UNDEF || Index > Sections.size())
|
|
error(ErrMsg);
|
|
return Sections[Index - 1].get();
|
|
}
|
|
|
|
template <class T>
|
|
T *SectionTableRef::getSectionOfType(uint32_t Index, Twine IndexErrMsg,
|
|
Twine TypeErrMsg) {
|
|
if (T *Sec = dyn_cast<T>(getSection(Index, IndexErrMsg)))
|
|
return Sec;
|
|
error(TypeErrMsg);
|
|
}
|
|
|
|
template <class ELFT>
|
|
SectionBase &ELFBuilder<ELFT>::makeSection(const Elf_Shdr &Shdr) {
|
|
ArrayRef<uint8_t> Data;
|
|
switch (Shdr.sh_type) {
|
|
case SHT_REL:
|
|
case SHT_RELA:
|
|
if (Shdr.sh_flags & SHF_ALLOC) {
|
|
Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
|
|
return Obj.addSection<DynamicRelocationSection>(Data);
|
|
}
|
|
return Obj.addSection<RelocationSection>();
|
|
case SHT_STRTAB:
|
|
// If a string table is allocated we don't want to mess with it. That would
|
|
// mean altering the memory image. There are no special link types or
|
|
// anything so we can just use a Section.
|
|
if (Shdr.sh_flags & SHF_ALLOC) {
|
|
Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
|
|
return Obj.addSection<Section>(Data);
|
|
}
|
|
return Obj.addSection<StringTableSection>();
|
|
case SHT_HASH:
|
|
case SHT_GNU_HASH:
|
|
// Hash tables should refer to SHT_DYNSYM which we're not going to change.
|
|
// Because of this we don't need to mess with the hash tables either.
|
|
Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
|
|
return Obj.addSection<Section>(Data);
|
|
case SHT_GROUP:
|
|
Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
|
|
return Obj.addSection<GroupSection>(Data);
|
|
case SHT_DYNSYM:
|
|
Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
|
|
return Obj.addSection<DynamicSymbolTableSection>(Data);
|
|
case SHT_DYNAMIC:
|
|
Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
|
|
return Obj.addSection<DynamicSection>(Data);
|
|
case SHT_SYMTAB: {
|
|
auto &SymTab = Obj.addSection<SymbolTableSection>();
|
|
Obj.SymbolTable = &SymTab;
|
|
return SymTab;
|
|
}
|
|
case SHT_SYMTAB_SHNDX: {
|
|
auto &ShndxSection = Obj.addSection<SectionIndexSection>();
|
|
Obj.SectionIndexTable = &ShndxSection;
|
|
return ShndxSection;
|
|
}
|
|
case SHT_NOBITS:
|
|
return Obj.addSection<Section>(Data);
|
|
default: {
|
|
Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
|
|
|
|
StringRef Name = unwrapOrError(ElfFile.getSectionName(&Shdr));
|
|
if (Name.startswith(".zdebug") || (Shdr.sh_flags & ELF::SHF_COMPRESSED)) {
|
|
uint64_t DecompressedSize, DecompressedAlign;
|
|
std::tie(DecompressedSize, DecompressedAlign) =
|
|
getDecompressedSizeAndAlignment<ELFT>(Data);
|
|
return Obj.addSection<CompressedSection>(Data, DecompressedSize,
|
|
DecompressedAlign);
|
|
}
|
|
|
|
return Obj.addSection<Section>(Data);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class ELFT> void ELFBuilder<ELFT>::readSectionHeaders() {
|
|
uint32_t Index = 0;
|
|
for (const auto &Shdr : unwrapOrError(ElfFile.sections())) {
|
|
if (Index == 0) {
|
|
++Index;
|
|
continue;
|
|
}
|
|
auto &Sec = makeSection(Shdr);
|
|
Sec.Name = unwrapOrError(ElfFile.getSectionName(&Shdr));
|
|
Sec.Type = Shdr.sh_type;
|
|
Sec.Flags = Shdr.sh_flags;
|
|
Sec.Addr = Shdr.sh_addr;
|
|
Sec.Offset = Shdr.sh_offset;
|
|
Sec.OriginalOffset = Shdr.sh_offset;
|
|
Sec.Size = Shdr.sh_size;
|
|
Sec.Link = Shdr.sh_link;
|
|
Sec.Info = Shdr.sh_info;
|
|
Sec.Align = Shdr.sh_addralign;
|
|
Sec.EntrySize = Shdr.sh_entsize;
|
|
Sec.Index = Index++;
|
|
Sec.OriginalData =
|
|
ArrayRef<uint8_t>(ElfFile.base() + Shdr.sh_offset,
|
|
(Shdr.sh_type == SHT_NOBITS) ? 0 : Shdr.sh_size);
|
|
}
|
|
}
|
|
|
|
template <class ELFT> void ELFBuilder<ELFT>::readSections(bool EnsureSymtab) {
|
|
// If a section index table exists we'll need to initialize it before we
|
|
// initialize the symbol table because the symbol table might need to
|
|
// reference it.
|
|
if (Obj.SectionIndexTable)
|
|
Obj.SectionIndexTable->initialize(Obj.sections());
|
|
|
|
// Now that all of the sections have been added we can fill out some extra
|
|
// details about symbol tables. We need the symbol table filled out before
|
|
// any relocations.
|
|
if (Obj.SymbolTable) {
|
|
Obj.SymbolTable->initialize(Obj.sections());
|
|
initSymbolTable(Obj.SymbolTable);
|
|
} else if (EnsureSymtab) {
|
|
// Reuse the existing SHT_STRTAB section if exists.
|
|
StringTableSection *StrTab = nullptr;
|
|
for (auto &Sec : Obj.sections()) {
|
|
if (Sec.Type == ELF::SHT_STRTAB && !(Sec.Flags & SHF_ALLOC)) {
|
|
StrTab = static_cast<StringTableSection *>(&Sec);
|
|
|
|
// Prefer .strtab to .shstrtab.
|
|
if (Obj.SectionNames != &Sec)
|
|
break;
|
|
}
|
|
}
|
|
if (!StrTab)
|
|
StrTab = &Obj.addSection<StringTableSection>();
|
|
|
|
SymbolTableSection &SymTab = Obj.addSection<SymbolTableSection>();
|
|
SymTab.Name = ".symtab";
|
|
SymTab.Link = StrTab->Index;
|
|
SymTab.initialize(Obj.sections());
|
|
SymTab.addSymbol("", 0, 0, nullptr, 0, 0, 0, 0);
|
|
Obj.SymbolTable = &SymTab;
|
|
}
|
|
|
|
// Now that all sections and symbols have been added we can add
|
|
// relocations that reference symbols and set the link and info fields for
|
|
// relocation sections.
|
|
for (auto &Sec : Obj.sections()) {
|
|
if (&Sec == Obj.SymbolTable)
|
|
continue;
|
|
Sec.initialize(Obj.sections());
|
|
if (auto RelSec = dyn_cast<RelocationSection>(&Sec)) {
|
|
auto Shdr = unwrapOrError(ElfFile.sections()).begin() + RelSec->Index;
|
|
if (RelSec->Type == SHT_REL)
|
|
initRelocations(RelSec, Obj.SymbolTable,
|
|
unwrapOrError(ElfFile.rels(Shdr)));
|
|
else
|
|
initRelocations(RelSec, Obj.SymbolTable,
|
|
unwrapOrError(ElfFile.relas(Shdr)));
|
|
} else if (auto GroupSec = dyn_cast<GroupSection>(&Sec)) {
|
|
initGroupSection(GroupSec);
|
|
}
|
|
}
|
|
|
|
uint32_t ShstrIndex = ElfFile.getHeader()->e_shstrndx;
|
|
if (ShstrIndex == SHN_XINDEX)
|
|
ShstrIndex = unwrapOrError(ElfFile.getSection(0))->sh_link;
|
|
|
|
if (ShstrIndex == SHN_UNDEF)
|
|
Obj.HadShdrs = false;
|
|
else
|
|
Obj.SectionNames =
|
|
Obj.sections().template getSectionOfType<StringTableSection>(
|
|
ShstrIndex,
|
|
"e_shstrndx field value " + Twine(ShstrIndex) + " in elf header " +
|
|
" is invalid",
|
|
"e_shstrndx field value " + Twine(ShstrIndex) + " in elf header " +
|
|
" is not a string table");
|
|
}
|
|
|
|
template <class ELFT> void ELFBuilder<ELFT>::build(bool EnsureSymtab) {
|
|
readSectionHeaders();
|
|
findEhdrOffset();
|
|
|
|
// The ELFFile whose ELF headers and program headers are copied into the
|
|
// output file. Normally the same as ElfFile, but if we're extracting a
|
|
// loadable partition it will point to the partition's headers.
|
|
ELFFile<ELFT> HeadersFile = unwrapOrError(ELFFile<ELFT>::create(toStringRef(
|
|
{ElfFile.base() + EhdrOffset, ElfFile.getBufSize() - EhdrOffset})));
|
|
|
|
auto &Ehdr = *HeadersFile.getHeader();
|
|
Obj.OSABI = Ehdr.e_ident[EI_OSABI];
|
|
Obj.ABIVersion = Ehdr.e_ident[EI_ABIVERSION];
|
|
Obj.Type = Ehdr.e_type;
|
|
Obj.Machine = Ehdr.e_machine;
|
|
Obj.Version = Ehdr.e_version;
|
|
Obj.Entry = Ehdr.e_entry;
|
|
Obj.Flags = Ehdr.e_flags;
|
|
|
|
readSections(EnsureSymtab);
|
|
readProgramHeaders(HeadersFile);
|
|
}
|
|
|
|
Writer::~Writer() {}
|
|
|
|
Reader::~Reader() {}
|
|
|
|
std::unique_ptr<Object> BinaryReader::create(bool /*EnsureSymtab*/) const {
|
|
return BinaryELFBuilder(MemBuf, NewSymbolVisibility).build();
|
|
}
|
|
|
|
Expected<std::vector<IHexRecord>> IHexReader::parse() const {
|
|
SmallVector<StringRef, 16> Lines;
|
|
std::vector<IHexRecord> Records;
|
|
bool HasSections = false;
|
|
|
|
MemBuf->getBuffer().split(Lines, '\n');
|
|
Records.reserve(Lines.size());
|
|
for (size_t LineNo = 1; LineNo <= Lines.size(); ++LineNo) {
|
|
StringRef Line = Lines[LineNo - 1].trim();
|
|
if (Line.empty())
|
|
continue;
|
|
|
|
Expected<IHexRecord> R = IHexRecord::parse(Line);
|
|
if (!R)
|
|
return parseError(LineNo, R.takeError());
|
|
if (R->Type == IHexRecord::EndOfFile)
|
|
break;
|
|
HasSections |= (R->Type == IHexRecord::Data);
|
|
Records.push_back(*R);
|
|
}
|
|
if (!HasSections)
|
|
return parseError(-1U, "no sections");
|
|
|
|
return std::move(Records);
|
|
}
|
|
|
|
std::unique_ptr<Object> IHexReader::create(bool /*EnsureSymtab*/) const {
|
|
std::vector<IHexRecord> Records = unwrapOrError(parse());
|
|
return IHexELFBuilder(Records).build();
|
|
}
|
|
|
|
std::unique_ptr<Object> ELFReader::create(bool EnsureSymtab) const {
|
|
auto Obj = std::make_unique<Object>();
|
|
if (auto *O = dyn_cast<ELFObjectFile<ELF32LE>>(Bin)) {
|
|
ELFBuilder<ELF32LE> Builder(*O, *Obj, ExtractPartition);
|
|
Builder.build(EnsureSymtab);
|
|
return Obj;
|
|
} else if (auto *O = dyn_cast<ELFObjectFile<ELF64LE>>(Bin)) {
|
|
ELFBuilder<ELF64LE> Builder(*O, *Obj, ExtractPartition);
|
|
Builder.build(EnsureSymtab);
|
|
return Obj;
|
|
} else if (auto *O = dyn_cast<ELFObjectFile<ELF32BE>>(Bin)) {
|
|
ELFBuilder<ELF32BE> Builder(*O, *Obj, ExtractPartition);
|
|
Builder.build(EnsureSymtab);
|
|
return Obj;
|
|
} else if (auto *O = dyn_cast<ELFObjectFile<ELF64BE>>(Bin)) {
|
|
ELFBuilder<ELF64BE> Builder(*O, *Obj, ExtractPartition);
|
|
Builder.build(EnsureSymtab);
|
|
return Obj;
|
|
}
|
|
error("invalid file type");
|
|
}
|
|
|
|
template <class ELFT> void ELFWriter<ELFT>::writeEhdr() {
|
|
Elf_Ehdr &Ehdr = *reinterpret_cast<Elf_Ehdr *>(Buf.getBufferStart());
|
|
std::fill(Ehdr.e_ident, Ehdr.e_ident + 16, 0);
|
|
Ehdr.e_ident[EI_MAG0] = 0x7f;
|
|
Ehdr.e_ident[EI_MAG1] = 'E';
|
|
Ehdr.e_ident[EI_MAG2] = 'L';
|
|
Ehdr.e_ident[EI_MAG3] = 'F';
|
|
Ehdr.e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32;
|
|
Ehdr.e_ident[EI_DATA] =
|
|
ELFT::TargetEndianness == support::big ? ELFDATA2MSB : ELFDATA2LSB;
|
|
Ehdr.e_ident[EI_VERSION] = EV_CURRENT;
|
|
Ehdr.e_ident[EI_OSABI] = Obj.OSABI;
|
|
Ehdr.e_ident[EI_ABIVERSION] = Obj.ABIVersion;
|
|
|
|
Ehdr.e_type = Obj.Type;
|
|
Ehdr.e_machine = Obj.Machine;
|
|
Ehdr.e_version = Obj.Version;
|
|
Ehdr.e_entry = Obj.Entry;
|
|
// We have to use the fully-qualified name llvm::size
|
|
// since some compilers complain on ambiguous resolution.
|
|
Ehdr.e_phnum = llvm::size(Obj.segments());
|
|
Ehdr.e_phoff = (Ehdr.e_phnum != 0) ? Obj.ProgramHdrSegment.Offset : 0;
|
|
Ehdr.e_phentsize = (Ehdr.e_phnum != 0) ? sizeof(Elf_Phdr) : 0;
|
|
Ehdr.e_flags = Obj.Flags;
|
|
Ehdr.e_ehsize = sizeof(Elf_Ehdr);
|
|
if (WriteSectionHeaders && Obj.sections().size() != 0) {
|
|
Ehdr.e_shentsize = sizeof(Elf_Shdr);
|
|
Ehdr.e_shoff = Obj.SHOff;
|
|
// """
|
|
// If the number of sections is greater than or equal to
|
|
// SHN_LORESERVE (0xff00), this member has the value zero and the actual
|
|
// number of section header table entries is contained in the sh_size field
|
|
// of the section header at index 0.
|
|
// """
|
|
auto Shnum = Obj.sections().size() + 1;
|
|
if (Shnum >= SHN_LORESERVE)
|
|
Ehdr.e_shnum = 0;
|
|
else
|
|
Ehdr.e_shnum = Shnum;
|
|
// """
|
|
// If the section name string table section index is greater than or equal
|
|
// to SHN_LORESERVE (0xff00), this member has the value SHN_XINDEX (0xffff)
|
|
// and the actual index of the section name string table section is
|
|
// contained in the sh_link field of the section header at index 0.
|
|
// """
|
|
if (Obj.SectionNames->Index >= SHN_LORESERVE)
|
|
Ehdr.e_shstrndx = SHN_XINDEX;
|
|
else
|
|
Ehdr.e_shstrndx = Obj.SectionNames->Index;
|
|
} else {
|
|
Ehdr.e_shentsize = 0;
|
|
Ehdr.e_shoff = 0;
|
|
Ehdr.e_shnum = 0;
|
|
Ehdr.e_shstrndx = 0;
|
|
}
|
|
}
|
|
|
|
template <class ELFT> void ELFWriter<ELFT>::writePhdrs() {
|
|
for (auto &Seg : Obj.segments())
|
|
writePhdr(Seg);
|
|
}
|
|
|
|
template <class ELFT> void ELFWriter<ELFT>::writeShdrs() {
|
|
// This reference serves to write the dummy section header at the begining
|
|
// of the file. It is not used for anything else
|
|
Elf_Shdr &Shdr =
|
|
*reinterpret_cast<Elf_Shdr *>(Buf.getBufferStart() + Obj.SHOff);
|
|
Shdr.sh_name = 0;
|
|
Shdr.sh_type = SHT_NULL;
|
|
Shdr.sh_flags = 0;
|
|
Shdr.sh_addr = 0;
|
|
Shdr.sh_offset = 0;
|
|
// See writeEhdr for why we do this.
|
|
uint64_t Shnum = Obj.sections().size() + 1;
|
|
if (Shnum >= SHN_LORESERVE)
|
|
Shdr.sh_size = Shnum;
|
|
else
|
|
Shdr.sh_size = 0;
|
|
// See writeEhdr for why we do this.
|
|
if (Obj.SectionNames != nullptr && Obj.SectionNames->Index >= SHN_LORESERVE)
|
|
Shdr.sh_link = Obj.SectionNames->Index;
|
|
else
|
|
Shdr.sh_link = 0;
|
|
Shdr.sh_info = 0;
|
|
Shdr.sh_addralign = 0;
|
|
Shdr.sh_entsize = 0;
|
|
|
|
for (SectionBase &Sec : Obj.sections())
|
|
writeShdr(Sec);
|
|
}
|
|
|
|
template <class ELFT> void ELFWriter<ELFT>::writeSectionData() {
|
|
for (SectionBase &Sec : Obj.sections())
|
|
// Segments are responsible for writing their contents, so only write the
|
|
// section data if the section is not in a segment. Note that this renders
|
|
// sections in segments effectively immutable.
|
|
if (Sec.ParentSegment == nullptr)
|
|
Sec.accept(*SecWriter);
|
|
}
|
|
|
|
template <class ELFT> void ELFWriter<ELFT>::writeSegmentData() {
|
|
for (Segment &Seg : Obj.segments()) {
|
|
uint8_t *B = Buf.getBufferStart() + Seg.Offset;
|
|
assert(Seg.FileSize == Seg.getContents().size() &&
|
|
"Segment size must match contents size");
|
|
std::memcpy(B, Seg.getContents().data(), Seg.FileSize);
|
|
}
|
|
|
|
// Iterate over removed sections and overwrite their old data with zeroes.
|
|
for (auto &Sec : Obj.removedSections()) {
|
|
Segment *Parent = Sec.ParentSegment;
|
|
if (Parent == nullptr || Sec.Type == SHT_NOBITS || Sec.Size == 0)
|
|
continue;
|
|
uint64_t Offset =
|
|
Sec.OriginalOffset - Parent->OriginalOffset + Parent->Offset;
|
|
std::memset(Buf.getBufferStart() + Offset, 0, Sec.Size);
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
ELFWriter<ELFT>::ELFWriter(Object &Obj, Buffer &Buf, bool WSH)
|
|
: Writer(Obj, Buf), WriteSectionHeaders(WSH && Obj.HadShdrs) {}
|
|
|
|
Error Object::removeSections(bool AllowBrokenLinks,
|
|
std::function<bool(const SectionBase &)> ToRemove) {
|
|
|
|
auto Iter = std::stable_partition(
|
|
std::begin(Sections), std::end(Sections), [=](const SecPtr &Sec) {
|
|
if (ToRemove(*Sec))
|
|
return false;
|
|
if (auto RelSec = dyn_cast<RelocationSectionBase>(Sec.get())) {
|
|
if (auto ToRelSec = RelSec->getSection())
|
|
return !ToRemove(*ToRelSec);
|
|
}
|
|
return true;
|
|
});
|
|
if (SymbolTable != nullptr && ToRemove(*SymbolTable))
|
|
SymbolTable = nullptr;
|
|
if (SectionNames != nullptr && ToRemove(*SectionNames))
|
|
SectionNames = nullptr;
|
|
if (SectionIndexTable != nullptr && ToRemove(*SectionIndexTable))
|
|
SectionIndexTable = nullptr;
|
|
// Now make sure there are no remaining references to the sections that will
|
|
// be removed. Sometimes it is impossible to remove a reference so we emit
|
|
// an error here instead.
|
|
std::unordered_set<const SectionBase *> RemoveSections;
|
|
RemoveSections.reserve(std::distance(Iter, std::end(Sections)));
|
|
for (auto &RemoveSec : make_range(Iter, std::end(Sections))) {
|
|
for (auto &Segment : Segments)
|
|
Segment->removeSection(RemoveSec.get());
|
|
RemoveSections.insert(RemoveSec.get());
|
|
}
|
|
|
|
// For each section that remains alive, we want to remove the dead references.
|
|
// This either might update the content of the section (e.g. remove symbols
|
|
// from symbol table that belongs to removed section) or trigger an error if
|
|
// a live section critically depends on a section being removed somehow
|
|
// (e.g. the removed section is referenced by a relocation).
|
|
for (auto &KeepSec : make_range(std::begin(Sections), Iter)) {
|
|
if (Error E = KeepSec->removeSectionReferences(AllowBrokenLinks,
|
|
[&RemoveSections](const SectionBase *Sec) {
|
|
return RemoveSections.find(Sec) != RemoveSections.end();
|
|
}))
|
|
return E;
|
|
}
|
|
|
|
// Transfer removed sections into the Object RemovedSections container for use
|
|
// later.
|
|
std::move(Iter, Sections.end(), std::back_inserter(RemovedSections));
|
|
// Now finally get rid of them all together.
|
|
Sections.erase(Iter, std::end(Sections));
|
|
return Error::success();
|
|
}
|
|
|
|
Error Object::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) {
|
|
if (SymbolTable)
|
|
for (const SecPtr &Sec : Sections)
|
|
if (Error E = Sec->removeSymbols(ToRemove))
|
|
return E;
|
|
return Error::success();
|
|
}
|
|
|
|
void Object::sortSections() {
|
|
// Use stable_sort to maintain the original ordering as closely as possible.
|
|
llvm::stable_sort(Sections, [](const SecPtr &A, const SecPtr &B) {
|
|
// Put SHT_GROUP sections first, since group section headers must come
|
|
// before the sections they contain. This also matches what GNU objcopy
|
|
// does.
|
|
if (A->Type != B->Type &&
|
|
(A->Type == ELF::SHT_GROUP || B->Type == ELF::SHT_GROUP))
|
|
return A->Type == ELF::SHT_GROUP;
|
|
// For all other sections, sort by offset order.
|
|
return A->OriginalOffset < B->OriginalOffset;
|
|
});
|
|
}
|
|
|
|
// Orders segments such that if x = y->ParentSegment then y comes before x.
|
|
static void orderSegments(std::vector<Segment *> &Segments) {
|
|
llvm::stable_sort(Segments, compareSegmentsByOffset);
|
|
}
|
|
|
|
// This function finds a consistent layout for a list of segments starting from
|
|
// an Offset. It assumes that Segments have been sorted by orderSegments and
|
|
// returns an Offset one past the end of the last segment.
|
|
static uint64_t layoutSegments(std::vector<Segment *> &Segments,
|
|
uint64_t Offset) {
|
|
assert(std::is_sorted(std::begin(Segments), std::end(Segments),
|
|
compareSegmentsByOffset));
|
|
// The only way a segment should move is if a section was between two
|
|
// segments and that section was removed. If that section isn't in a segment
|
|
// then it's acceptable, but not ideal, to simply move it to after the
|
|
// segments. So we can simply layout segments one after the other accounting
|
|
// for alignment.
|
|
for (Segment *Seg : Segments) {
|
|
// We assume that segments have been ordered by OriginalOffset and Index
|
|
// such that a parent segment will always come before a child segment in
|
|
// OrderedSegments. This means that the Offset of the ParentSegment should
|
|
// already be set and we can set our offset relative to it.
|
|
if (Seg->ParentSegment != nullptr) {
|
|
Segment *Parent = Seg->ParentSegment;
|
|
Seg->Offset =
|
|
Parent->Offset + Seg->OriginalOffset - Parent->OriginalOffset;
|
|
} else {
|
|
Seg->Offset =
|
|
alignTo(Offset, std::max<uint64_t>(Seg->Align, 1), Seg->VAddr);
|
|
}
|
|
Offset = std::max(Offset, Seg->Offset + Seg->FileSize);
|
|
}
|
|
return Offset;
|
|
}
|
|
|
|
// This function finds a consistent layout for a list of sections. It assumes
|
|
// that the ->ParentSegment of each section has already been laid out. The
|
|
// supplied starting Offset is used for the starting offset of any section that
|
|
// does not have a ParentSegment. It returns either the offset given if all
|
|
// sections had a ParentSegment or an offset one past the last section if there
|
|
// was a section that didn't have a ParentSegment.
|
|
template <class Range>
|
|
static uint64_t layoutSections(Range Sections, uint64_t Offset) {
|
|
// Now the offset of every segment has been set we can assign the offsets
|
|
// of each section. For sections that are covered by a segment we should use
|
|
// the segment's original offset and the section's original offset to compute
|
|
// the offset from the start of the segment. Using the offset from the start
|
|
// of the segment we can assign a new offset to the section. For sections not
|
|
// covered by segments we can just bump Offset to the next valid location.
|
|
uint32_t Index = 1;
|
|
for (auto &Sec : Sections) {
|
|
Sec.Index = Index++;
|
|
if (Sec.ParentSegment != nullptr) {
|
|
auto Segment = *Sec.ParentSegment;
|
|
Sec.Offset =
|
|
Segment.Offset + (Sec.OriginalOffset - Segment.OriginalOffset);
|
|
} else {
|
|
Offset = alignTo(Offset, Sec.Align == 0 ? 1 : Sec.Align);
|
|
Sec.Offset = Offset;
|
|
if (Sec.Type != SHT_NOBITS)
|
|
Offset += Sec.Size;
|
|
}
|
|
}
|
|
return Offset;
|
|
}
|
|
|
|
template <class ELFT> void ELFWriter<ELFT>::initEhdrSegment() {
|
|
Segment &ElfHdr = Obj.ElfHdrSegment;
|
|
ElfHdr.Type = PT_PHDR;
|
|
ElfHdr.Flags = 0;
|
|
ElfHdr.VAddr = 0;
|
|
ElfHdr.PAddr = 0;
|
|
ElfHdr.FileSize = ElfHdr.MemSize = sizeof(Elf_Ehdr);
|
|
ElfHdr.Align = 0;
|
|
}
|
|
|
|
template <class ELFT> void ELFWriter<ELFT>::assignOffsets() {
|
|
// We need a temporary list of segments that has a special order to it
|
|
// so that we know that anytime ->ParentSegment is set that segment has
|
|
// already had its offset properly set.
|
|
std::vector<Segment *> OrderedSegments;
|
|
for (Segment &Segment : Obj.segments())
|
|
OrderedSegments.push_back(&Segment);
|
|
OrderedSegments.push_back(&Obj.ElfHdrSegment);
|
|
OrderedSegments.push_back(&Obj.ProgramHdrSegment);
|
|
orderSegments(OrderedSegments);
|
|
// Offset is used as the start offset of the first segment to be laid out.
|
|
// Since the ELF Header (ElfHdrSegment) must be at the start of the file,
|
|
// we start at offset 0.
|
|
uint64_t Offset = 0;
|
|
Offset = layoutSegments(OrderedSegments, Offset);
|
|
Offset = layoutSections(Obj.sections(), Offset);
|
|
// If we need to write the section header table out then we need to align the
|
|
// Offset so that SHOffset is valid.
|
|
if (WriteSectionHeaders)
|
|
Offset = alignTo(Offset, sizeof(Elf_Addr));
|
|
Obj.SHOff = Offset;
|
|
}
|
|
|
|
template <class ELFT> size_t ELFWriter<ELFT>::totalSize() const {
|
|
// We already have the section header offset so we can calculate the total
|
|
// size by just adding up the size of each section header.
|
|
if (!WriteSectionHeaders)
|
|
return Obj.SHOff;
|
|
size_t ShdrCount = Obj.sections().size() + 1; // Includes null shdr.
|
|
return Obj.SHOff + ShdrCount * sizeof(Elf_Shdr);
|
|
}
|
|
|
|
template <class ELFT> Error ELFWriter<ELFT>::write() {
|
|
// Segment data must be written first, so that the ELF header and program
|
|
// header tables can overwrite it, if covered by a segment.
|
|
writeSegmentData();
|
|
writeEhdr();
|
|
writePhdrs();
|
|
writeSectionData();
|
|
if (WriteSectionHeaders)
|
|
writeShdrs();
|
|
return Buf.commit();
|
|
}
|
|
|
|
static Error removeUnneededSections(Object &Obj) {
|
|
// We can remove an empty symbol table from non-relocatable objects.
|
|
// Relocatable objects typically have relocation sections whose
|
|
// sh_link field points to .symtab, so we can't remove .symtab
|
|
// even if it is empty.
|
|
if (Obj.isRelocatable() || Obj.SymbolTable == nullptr ||
|
|
!Obj.SymbolTable->empty())
|
|
return Error::success();
|
|
|
|
// .strtab can be used for section names. In such a case we shouldn't
|
|
// remove it.
|
|
auto *StrTab = Obj.SymbolTable->getStrTab() == Obj.SectionNames
|
|
? nullptr
|
|
: Obj.SymbolTable->getStrTab();
|
|
return Obj.removeSections(false, [&](const SectionBase &Sec) {
|
|
return &Sec == Obj.SymbolTable || &Sec == StrTab;
|
|
});
|
|
}
|
|
|
|
template <class ELFT> Error ELFWriter<ELFT>::finalize() {
|
|
// It could happen that SectionNames has been removed and yet the user wants
|
|
// a section header table output. We need to throw an error if a user tries
|
|
// to do that.
|
|
if (Obj.SectionNames == nullptr && WriteSectionHeaders)
|
|
return createStringError(llvm::errc::invalid_argument,
|
|
"cannot write section header table because "
|
|
"section header string table was removed");
|
|
|
|
if (Error E = removeUnneededSections(Obj))
|
|
return E;
|
|
Obj.sortSections();
|
|
|
|
// We need to assign indexes before we perform layout because we need to know
|
|
// if we need large indexes or not. We can assign indexes first and check as
|
|
// we go to see if we will actully need large indexes.
|
|
bool NeedsLargeIndexes = false;
|
|
if (Obj.sections().size() >= SHN_LORESERVE) {
|
|
SectionTableRef Sections = Obj.sections();
|
|
NeedsLargeIndexes =
|
|
std::any_of(Sections.begin() + SHN_LORESERVE, Sections.end(),
|
|
[](const SectionBase &Sec) { return Sec.HasSymbol; });
|
|
// TODO: handle case where only one section needs the large index table but
|
|
// only needs it because the large index table hasn't been removed yet.
|
|
}
|
|
|
|
if (NeedsLargeIndexes) {
|
|
// This means we definitely need to have a section index table but if we
|
|
// already have one then we should use it instead of making a new one.
|
|
if (Obj.SymbolTable != nullptr && Obj.SectionIndexTable == nullptr) {
|
|
// Addition of a section to the end does not invalidate the indexes of
|
|
// other sections and assigns the correct index to the new section.
|
|
auto &Shndx = Obj.addSection<SectionIndexSection>();
|
|
Obj.SymbolTable->setShndxTable(&Shndx);
|
|
Shndx.setSymTab(Obj.SymbolTable);
|
|
}
|
|
} else {
|
|
// Since we don't need SectionIndexTable we should remove it and all
|
|
// references to it.
|
|
if (Obj.SectionIndexTable != nullptr) {
|
|
// We do not support sections referring to the section index table.
|
|
if (Error E = Obj.removeSections(false /*AllowBrokenLinks*/,
|
|
[this](const SectionBase &Sec) {
|
|
return &Sec == Obj.SectionIndexTable;
|
|
}))
|
|
return E;
|
|
}
|
|
}
|
|
|
|
// Make sure we add the names of all the sections. Importantly this must be
|
|
// done after we decide to add or remove SectionIndexes.
|
|
if (Obj.SectionNames != nullptr)
|
|
for (const SectionBase &Sec : Obj.sections())
|
|
Obj.SectionNames->addString(Sec.Name);
|
|
|
|
initEhdrSegment();
|
|
|
|
// Before we can prepare for layout the indexes need to be finalized.
|
|
// Also, the output arch may not be the same as the input arch, so fix up
|
|
// size-related fields before doing layout calculations.
|
|
uint64_t Index = 0;
|
|
auto SecSizer = std::make_unique<ELFSectionSizer<ELFT>>();
|
|
for (SectionBase &Sec : Obj.sections()) {
|
|
Sec.Index = Index++;
|
|
Sec.accept(*SecSizer);
|
|
}
|
|
|
|
// The symbol table does not update all other sections on update. For
|
|
// instance, symbol names are not added as new symbols are added. This means
|
|
// that some sections, like .strtab, don't yet have their final size.
|
|
if (Obj.SymbolTable != nullptr)
|
|
Obj.SymbolTable->prepareForLayout();
|
|
|
|
// Now that all strings are added we want to finalize string table builders,
|
|
// because that affects section sizes which in turn affects section offsets.
|
|
for (SectionBase &Sec : Obj.sections())
|
|
if (auto StrTab = dyn_cast<StringTableSection>(&Sec))
|
|
StrTab->prepareForLayout();
|
|
|
|
assignOffsets();
|
|
|
|
// layoutSections could have modified section indexes, so we need
|
|
// to fill the index table after assignOffsets.
|
|
if (Obj.SymbolTable != nullptr)
|
|
Obj.SymbolTable->fillShndxTable();
|
|
|
|
// Finally now that all offsets and indexes have been set we can finalize any
|
|
// remaining issues.
|
|
uint64_t Offset = Obj.SHOff + sizeof(Elf_Shdr);
|
|
for (SectionBase &Sec : Obj.sections()) {
|
|
Sec.HeaderOffset = Offset;
|
|
Offset += sizeof(Elf_Shdr);
|
|
if (WriteSectionHeaders)
|
|
Sec.NameIndex = Obj.SectionNames->findIndex(Sec.Name);
|
|
Sec.finalize();
|
|
}
|
|
|
|
if (Error E = Buf.allocate(totalSize()))
|
|
return E;
|
|
SecWriter = std::make_unique<ELFSectionWriter<ELFT>>(Buf);
|
|
return Error::success();
|
|
}
|
|
|
|
Error BinaryWriter::write() {
|
|
for (const SectionBase &Sec : Obj.allocSections())
|
|
Sec.accept(*SecWriter);
|
|
return Buf.commit();
|
|
}
|
|
|
|
Error BinaryWriter::finalize() {
|
|
// We need a temporary list of segments that has a special order to it
|
|
// so that we know that anytime ->ParentSegment is set that segment has
|
|
// already had it's offset properly set. We only want to consider the segments
|
|
// that will affect layout of allocated sections so we only add those.
|
|
std::vector<Segment *> OrderedSegments;
|
|
for (const SectionBase &Sec : Obj.allocSections())
|
|
if (Sec.ParentSegment != nullptr)
|
|
OrderedSegments.push_back(Sec.ParentSegment);
|
|
|
|
// For binary output, we're going to use physical addresses instead of
|
|
// virtual addresses, since a binary output is used for cases like ROM
|
|
// loading and physical addresses are intended for ROM loading.
|
|
// However, if no segment has a physical address, we'll fallback to using
|
|
// virtual addresses for all.
|
|
if (all_of(OrderedSegments,
|
|
[](const Segment *Seg) { return Seg->PAddr == 0; }))
|
|
for (Segment *Seg : OrderedSegments)
|
|
Seg->PAddr = Seg->VAddr;
|
|
|
|
llvm::stable_sort(OrderedSegments, compareSegmentsByPAddr);
|
|
|
|
// Because we add a ParentSegment for each section we might have duplicate
|
|
// segments in OrderedSegments. If there were duplicates then layoutSegments
|
|
// would do very strange things.
|
|
auto End =
|
|
std::unique(std::begin(OrderedSegments), std::end(OrderedSegments));
|
|
OrderedSegments.erase(End, std::end(OrderedSegments));
|
|
|
|
uint64_t Offset = 0;
|
|
|
|
// Modify the first segment so that there is no gap at the start. This allows
|
|
// our layout algorithm to proceed as expected while not writing out the gap
|
|
// at the start.
|
|
if (!OrderedSegments.empty()) {
|
|
Segment *Seg = OrderedSegments[0];
|
|
const SectionBase *Sec = Seg->firstSection();
|
|
auto Diff = Sec->OriginalOffset - Seg->OriginalOffset;
|
|
Seg->OriginalOffset += Diff;
|
|
// The size needs to be shrunk as well.
|
|
Seg->FileSize -= Diff;
|
|
// The PAddr needs to be increased to remove the gap before the first
|
|
// section.
|
|
Seg->PAddr += Diff;
|
|
uint64_t LowestPAddr = Seg->PAddr;
|
|
for (Segment *Segment : OrderedSegments) {
|
|
Segment->Offset = Segment->PAddr - LowestPAddr;
|
|
Offset = std::max(Offset, Segment->Offset + Segment->FileSize);
|
|
}
|
|
}
|
|
|
|
layoutSections(Obj.allocSections(), Offset);
|
|
|
|
// Now that every section has been laid out we just need to compute the total
|
|
// file size. This might not be the same as the offset returned by
|
|
// layoutSections, because we want to truncate the last segment to the end of
|
|
// its last section, to match GNU objcopy's behaviour.
|
|
TotalSize = 0;
|
|
for (const SectionBase &Sec : Obj.allocSections())
|
|
if (Sec.Type != SHT_NOBITS)
|
|
TotalSize = std::max(TotalSize, Sec.Offset + Sec.Size);
|
|
|
|
if (Error E = Buf.allocate(TotalSize))
|
|
return E;
|
|
SecWriter = std::make_unique<BinarySectionWriter>(Buf);
|
|
return Error::success();
|
|
}
|
|
|
|
bool IHexWriter::SectionCompare::operator()(const SectionBase *Lhs,
|
|
const SectionBase *Rhs) const {
|
|
return (sectionPhysicalAddr(Lhs) & 0xFFFFFFFFU) <
|
|
(sectionPhysicalAddr(Rhs) & 0xFFFFFFFFU);
|
|
}
|
|
|
|
uint64_t IHexWriter::writeEntryPointRecord(uint8_t *Buf) {
|
|
IHexLineData HexData;
|
|
uint8_t Data[4] = {};
|
|
// We don't write entry point record if entry is zero.
|
|
if (Obj.Entry == 0)
|
|
return 0;
|
|
|
|
if (Obj.Entry <= 0xFFFFFU) {
|
|
Data[0] = ((Obj.Entry & 0xF0000U) >> 12) & 0xFF;
|
|
support::endian::write(&Data[2], static_cast<uint16_t>(Obj.Entry),
|
|
support::big);
|
|
HexData = IHexRecord::getLine(IHexRecord::StartAddr80x86, 0, Data);
|
|
} else {
|
|
support::endian::write(Data, static_cast<uint32_t>(Obj.Entry),
|
|
support::big);
|
|
HexData = IHexRecord::getLine(IHexRecord::StartAddr, 0, Data);
|
|
}
|
|
memcpy(Buf, HexData.data(), HexData.size());
|
|
return HexData.size();
|
|
}
|
|
|
|
uint64_t IHexWriter::writeEndOfFileRecord(uint8_t *Buf) {
|
|
IHexLineData HexData = IHexRecord::getLine(IHexRecord::EndOfFile, 0, {});
|
|
memcpy(Buf, HexData.data(), HexData.size());
|
|
return HexData.size();
|
|
}
|
|
|
|
Error IHexWriter::write() {
|
|
IHexSectionWriter Writer(Buf);
|
|
// Write sections.
|
|
for (const SectionBase *Sec : Sections)
|
|
Sec->accept(Writer);
|
|
|
|
uint64_t Offset = Writer.getBufferOffset();
|
|
// Write entry point address.
|
|
Offset += writeEntryPointRecord(Buf.getBufferStart() + Offset);
|
|
// Write EOF.
|
|
Offset += writeEndOfFileRecord(Buf.getBufferStart() + Offset);
|
|
assert(Offset == TotalSize);
|
|
return Buf.commit();
|
|
}
|
|
|
|
Error IHexWriter::checkSection(const SectionBase &Sec) {
|
|
uint64_t Addr = sectionPhysicalAddr(&Sec);
|
|
if (addressOverflows32bit(Addr) || addressOverflows32bit(Addr + Sec.Size - 1))
|
|
return createStringError(
|
|
errc::invalid_argument,
|
|
"Section '%s' address range [0x%llx, 0x%llx] is not 32 bit", Sec.Name.c_str(),
|
|
Addr, Addr + Sec.Size - 1);
|
|
return Error::success();
|
|
}
|
|
|
|
Error IHexWriter::finalize() {
|
|
bool UseSegments = false;
|
|
auto ShouldWrite = [](const SectionBase &Sec) {
|
|
return (Sec.Flags & ELF::SHF_ALLOC) && (Sec.Type != ELF::SHT_NOBITS);
|
|
};
|
|
auto IsInPtLoad = [](const SectionBase &Sec) {
|
|
return Sec.ParentSegment && Sec.ParentSegment->Type == ELF::PT_LOAD;
|
|
};
|
|
|
|
// We can't write 64-bit addresses.
|
|
if (addressOverflows32bit(Obj.Entry))
|
|
return createStringError(errc::invalid_argument,
|
|
"Entry point address 0x%llx overflows 32 bits.",
|
|
Obj.Entry);
|
|
|
|
// If any section we're to write has segment then we
|
|
// switch to using physical addresses. Otherwise we
|
|
// use section virtual address.
|
|
for (const SectionBase &Sec : Obj.sections())
|
|
if (ShouldWrite(Sec) && IsInPtLoad(Sec)) {
|
|
UseSegments = true;
|
|
break;
|
|
}
|
|
|
|
for (const SectionBase &Sec : Obj.sections())
|
|
if (ShouldWrite(Sec) && (!UseSegments || IsInPtLoad(Sec))) {
|
|
if (Error E = checkSection(Sec))
|
|
return E;
|
|
Sections.insert(&Sec);
|
|
}
|
|
|
|
IHexSectionWriterBase LengthCalc(Buf);
|
|
for (const SectionBase *Sec : Sections)
|
|
Sec->accept(LengthCalc);
|
|
|
|
// We need space to write section records + StartAddress record
|
|
// (if start adress is not zero) + EndOfFile record.
|
|
TotalSize = LengthCalc.getBufferOffset() +
|
|
(Obj.Entry ? IHexRecord::getLineLength(4) : 0) +
|
|
IHexRecord::getLineLength(0);
|
|
if (Error E = Buf.allocate(TotalSize))
|
|
return E;
|
|
return Error::success();
|
|
}
|
|
|
|
template class ELFBuilder<ELF64LE>;
|
|
template class ELFBuilder<ELF64BE>;
|
|
template class ELFBuilder<ELF32LE>;
|
|
template class ELFBuilder<ELF32BE>;
|
|
|
|
template class ELFWriter<ELF64LE>;
|
|
template class ELFWriter<ELF64BE>;
|
|
template class ELFWriter<ELF32LE>;
|
|
template class ELFWriter<ELF32BE>;
|
|
|
|
} // end namespace elf
|
|
} // end namespace objcopy
|
|
} // end namespace llvm
|